Unverified Commit e7487b08 authored by Ying Sheng's avatar Ying Sheng Committed by GitHub
Browse files

Adjust default mem fraction to avoid OOM (#823)

parent ae5c0fc4
......@@ -103,7 +103,7 @@ class RadixAttention(nn.Module):
return o
def extend_forward_flashinfer(self, q, k, v, input_metadata: InputMetadata):
if not input_metadata.use_ragged:
if not input_metadata.flashinfer_use_ragged:
self.store_kv_cache(k, v, input_metadata)
o = input_metadata.flashinfer_prefill_wrapper_paged.forward(
......
......@@ -781,7 +781,7 @@ class InputMetadata:
flashinfer_prefill_wrapper_ragged: "BatchPrefillWithRaggedKVCacheWrapper" = None
flashinfer_prefill_wrapper_paged: "BatchPrefillWithPagedKVCacheWrapper" = None
flashinfer_decode_wrapper: "BatchDecodeWithPagedKVCacheWrapper" = None
use_ragged: bool = False
flashinfer_use_ragged: bool = False
@classmethod
def create(
......@@ -797,10 +797,10 @@ class InputMetadata:
return_logprob=False,
skip_flashinfer_init=False,
):
use_ragged = False
flashinfer_use_ragged = False
if not skip_flashinfer_init and not model_runner.server_args.disable_flashinfer:
if forward_mode != ForwardMode.DECODE and int(torch.sum(seq_lens)) > 4096:
use_ragged = True
flashinfer_use_ragged = True
init_flashinfer_args(
forward_mode,
model_runner,
......@@ -808,7 +808,7 @@ class InputMetadata:
seq_lens,
prefix_lens,
model_runner.flashinfer_decode_wrapper,
use_ragged,
flashinfer_use_ragged,
)
batch_size = len(req_pool_indices)
......@@ -863,7 +863,7 @@ class InputMetadata:
flashinfer_prefill_wrapper_ragged=model_runner.flashinfer_prefill_wrapper_ragged,
flashinfer_prefill_wrapper_paged=model_runner.flashinfer_prefill_wrapper_paged,
flashinfer_decode_wrapper=model_runner.flashinfer_decode_wrapper,
use_ragged=use_ragged,
flashinfer_use_ragged=flashinfer_use_ragged,
)
if model_runner.server_args.disable_flashinfer:
......@@ -884,7 +884,7 @@ def init_flashinfer_args(
seq_lens,
prefix_lens,
flashinfer_decode_wrapper,
use_ragged=False,
flashinfer_use_ragged=False,
):
"""Init auxiliary variables for FlashInfer attention backend."""
num_qo_heads = model_runner.model_config.num_attention_heads // model_runner.tp_size
......@@ -893,7 +893,7 @@ def init_flashinfer_args(
batch_size = len(req_pool_indices)
total_num_tokens = int(torch.sum(seq_lens))
if use_ragged:
if flashinfer_use_ragged:
paged_kernel_lens = prefix_lens
else:
paged_kernel_lens = seq_lens
......@@ -929,7 +929,7 @@ def init_flashinfer_args(
qo_indptr = torch.zeros((batch_size + 1,), dtype=torch.int32, device="cuda")
qo_indptr[1:] = torch.cumsum(seq_lens - prefix_lens, dim=0)
if use_ragged:
if flashinfer_use_ragged:
model_runner.flashinfer_prefill_wrapper_ragged.end_forward()
model_runner.flashinfer_prefill_wrapper_ragged.begin_forward(
qo_indptr,
......
......@@ -212,9 +212,14 @@ class ModelRunner:
)
if max_num_reqs is None:
max_num_reqs = max(
int(self.max_total_num_tokens / self.model_config.context_len * 512),
2048,
max_num_reqs = min(
max(
int(
self.max_total_num_tokens / self.model_config.context_len * 512
),
2048,
),
5120,
)
self.req_to_token_pool = ReqToTokenPool(
......
......@@ -91,15 +91,15 @@ class ServerArgs:
self.tokenizer_path = self.model_path
if self.mem_fraction_static is None:
if self.tp_size >= 16:
self.mem_fraction_static = 0.80
self.mem_fraction_static = 0.79
elif self.tp_size >= 8:
self.mem_fraction_static = 0.84
self.mem_fraction_static = 0.83
elif self.tp_size >= 4:
self.mem_fraction_static = 0.86
self.mem_fraction_static = 0.85
elif self.tp_size >= 2:
self.mem_fraction_static = 0.88
self.mem_fraction_static = 0.87
else:
self.mem_fraction_static = 0.89
self.mem_fraction_static = 0.88
if isinstance(self.additional_ports, int):
self.additional_ports = [self.additional_ports]
elif self.additional_ports is None:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment