Unverified Commit 061e5463 authored by Shuo Yang's avatar Shuo Yang Committed by GitHub
Browse files

Support double sparsity (#1459)

parent 0c1e8796
from __future__ import annotations
from typing import TYPE_CHECKING
import torch
import torch.nn as nn
from sglang.srt.layers.attention import AttentionBackend
from sglang.srt.managers.schedule_batch import global_server_args_dict
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
if TYPE_CHECKING:
from sglang.srt.model_executor.model_runner import ModelRunner
class DoubleSparseAttnBackend(AttentionBackend):
def __init__(self, model_runner: ModelRunner):
# Lazy import to avoid the initialization of cuda context
from sglang.srt.layers.attention.triton_ops.double_sparsity_attention import (
flash_decode_attention_fwd,
flash_decode_sparse_attention_fwd,
)
from sglang.srt.layers.attention.triton_ops.extend_attention import (
extend_attention_fwd,
)
super().__init__()
self.decode_attention_fwd = flash_decode_attention_fwd
self.decode_sparse_attention_fwd = flash_decode_sparse_attention_fwd
self.extend_attention_fwd = extend_attention_fwd
self.num_head = model_runner.model_config.num_attention_heads
self.head_dim = model_runner.model_config.hidden_size // self.num_head
self.heavy_token_num = model_runner.server_args.ds_heavy_token_num
self.sorted_channels = model_runner.sorted_channels
self.sparse_decode_thresold = (
model_runner.server_args.ds_sparse_decode_threshold
)
self.att_out_approx: torch.Tensor = None
self.mid_out: torch.Tensor = None
self.mid_o_logexpsum: torch.Tensor = None
# TODO: Change the hard-coded block_seq_num
self.BLOCK_SEQ = 128
if global_server_args_dict.get("triton_attention_reduce_in_fp32", False):
self.reduce_dtype = torch.float32
else:
self.reduce_dtype = torch.float16
self.forward_metadata = None
self.cuda_graph_max_seq_len = model_runner.model_config.context_len
def init_forward_metadata(self, forward_batch: ForwardBatch):
"""Init auxiliary variables for triton attention backend."""
if forward_batch.forward_mode.is_decode():
start_loc = torch.zeros_like(forward_batch.seq_lens, dtype=torch.int32)
start_loc[1:] = torch.cumsum(forward_batch.seq_lens[:-1], dim=0)
total_num_tokens = torch.sum(forward_batch.seq_lens).item()
attn_logits = torch.empty(
(self.num_head, total_num_tokens),
dtype=self.reduce_dtype,
device="cuda",
)
max_seq_len = torch.max(forward_batch.seq_lens).item()
min_seq_len = torch.min(forward_batch.seq_lens).item()
max_extend_len = None
# NOTE: Align sequence order with req_to_token order
ds_req_to_token = forward_batch.req_to_token_pool.req_to_token[
forward_batch.req_pool_indices
]
bsz = forward_batch.seq_lens.shape[0]
att_out_approx = torch.empty(
[self.num_head, bsz, max_seq_len],
dtype=self.reduce_dtype,
device="cuda",
)
block_seq_num = (
self.heavy_token_num + self.BLOCK_SEQ - 1
) // self.BLOCK_SEQ
mid_out = torch.empty(
[bsz, self.num_head, block_seq_num, self.head_dim],
dtype=torch.float32,
device="cuda",
)
mid_o_logexpsum = torch.empty(
[bsz, self.num_head, block_seq_num], dtype=torch.float32, device="cuda"
)
self.att_out_approx = att_out_approx
self.mid_out = mid_out
self.mid_o_logexpsum = mid_o_logexpsum
else:
start_loc = attn_logits = max_seq_len = min_seq_len = None
prefix_lens = forward_batch.extend_prefix_lens
max_extend_len = torch.max(forward_batch.seq_lens - prefix_lens).item()
ds_req_to_token = None
self.forward_metadata = (
start_loc,
attn_logits,
max_seq_len,
min_seq_len,
max_extend_len,
ds_req_to_token,
)
def init_cuda_graph_state(self, max_bs: int):
# TODO(Andy): Support CUDA graph for double sparse attention
raise ValueError(
"Double sparse attention does not support CUDA graph for now. Please --disable-cuda-graph"
)
self.cuda_graph_max_total_num_tokens = max_bs * self.cuda_graph_max_seq_len
self.cuda_graph_start_loc = torch.zeros(
(max_bs,), dtype=torch.int32, device="cuda"
)
self.cuda_graph_attn_logits = torch.empty(
(
self.num_head,
self.cuda_graph_max_total_num_tokens,
),
dtype=self.reduce_dtype,
device="cuda",
)
def init_forward_metadata_capture_cuda_graph(
self, bs: int, req_pool_indices, seq_lens
):
self.forward_metadata = (
self.cuda_graph_start_loc,
self.cuda_graph_attn_logits,
self.cuda_graph_max_seq_len,
None,
)
def init_forward_metadata_replay_cuda_graph(
self, bs: int, req_pool_indices, seq_lens
):
self.cuda_graph_start_loc.zero_()
self.cuda_graph_start_loc[1:bs] = torch.cumsum(seq_lens[: bs - 1], dim=0)
def get_cuda_graph_seq_len_fill_value(self):
return 1
def forward_extend(self, q, k, v, layer: nn.Module, forward_batch: ForwardBatch):
# TODO: reuse the buffer across layers
if layer.qk_head_dim != layer.v_head_dim:
o = q.new_empty((q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
else:
o = torch.empty_like(q)
k_label = torch.gather(
k,
2,
self.sorted_channels[layer.layer_id]
.unsqueeze(0)
.expand(k.shape[0], -1, -1),
)
forward_batch.token_to_kv_pool.set_kv_buffer(
layer.layer_id, forward_batch.out_cache_loc, k, v, k_label
)
(
start_loc,
attn_logits,
max_seq_len,
min_seq_len,
max_extend_len,
ds_req_to_token,
) = self.forward_metadata
self.extend_attention_fwd(
q.view(-1, layer.tp_q_head_num, layer.qk_head_dim),
k.contiguous(),
v.contiguous(),
o.view(-1, layer.tp_q_head_num, layer.v_head_dim),
forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id),
forward_batch.token_to_kv_pool.get_value_buffer(layer.layer_id),
forward_batch.req_to_token_pool.req_to_token,
forward_batch.req_pool_indices,
forward_batch.seq_lens,
forward_batch.extend_seq_lens,
forward_batch.extend_start_loc,
max_extend_len,
layer.scaling,
layer.logit_cap,
)
return o
def forward_decode(self, q, k, v, layer: nn.Module, forward_batch: ForwardBatch):
# During torch.compile, there is a bug in rotary_emb that causes the
# output value to have a 3D tensor shape. This reshapes the output correctly.
q = q.reshape(-1, layer.tp_q_head_num * layer.qk_head_dim)
# TODO: reuse the buffer across layers
if layer.qk_head_dim != layer.v_head_dim:
o = q.new_empty((q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
else:
o = torch.empty_like(q)
# TODO: Add min seqlen
(
start_loc,
attn_logits,
max_seq_len,
min_seq_len,
max_extend_len,
ds_req_to_token,
) = self.forward_metadata
k_label = torch.gather(
k,
2,
self.sorted_channels[layer.layer_id]
.unsqueeze(0)
.expand(k.shape[0], -1, -1),
)
forward_batch.token_to_kv_pool.set_kv_buffer(
layer.layer_id, forward_batch.out_cache_loc, k, v, k_label
)
# NOTE(Andy) shouldn't be used when max_len_in_batch < heavy_token_num
# and set a minimum value for sparse_decode
if (
min_seq_len < self.heavy_token_num
or max_seq_len < self.sparse_decode_thresold
):
self.decode_attention_fwd(
q.view(-1, layer.tp_q_head_num, layer.qk_head_dim),
forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id),
forward_batch.token_to_kv_pool.get_value_buffer(layer.layer_id),
o.view(-1, layer.tp_q_head_num, layer.v_head_dim),
forward_batch.req_to_token_pool.req_to_token,
forward_batch.req_pool_indices,
start_loc,
forward_batch.seq_lens,
attn_logits,
max_seq_len,
layer.scaling,
layer.logit_cap,
)
else:
# TODO(Andy): indexing with torch.gather or torch.index_select or customized kernel
q_label = torch.gather(
q.view(-1, layer.tp_q_head_num, layer.qk_head_dim),
2,
self.sorted_channels[layer.layer_id]
.unsqueeze(0)
.expand(q.shape[0], -1, -1),
)
self.decode_sparse_attention_fwd(
q.view(-1, layer.tp_q_head_num, layer.qk_head_dim),
forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id),
forward_batch.token_to_kv_pool.get_value_buffer(layer.layer_id),
o.view(-1, layer.tp_q_head_num, layer.qk_head_dim),
q_label,
forward_batch.token_to_kv_pool.get_label_buffer(layer.layer_id),
ds_req_to_token,
forward_batch.seq_lens,
max_seq_len,
layer.scaling,
layer.logit_cap,
self.heavy_token_num,
self.att_out_approx,
self.mid_out,
self.mid_o_logexpsum,
self.BLOCK_SEQ,
)
return o
......@@ -231,3 +231,61 @@ class MLATokenToKVPool(BaseTokenToKVPool):
self.kv_buffer[layer_id][loc] = cache_k.view(self.store_dtype)
else:
self.kv_buffer[layer_id][loc] = cache_k
class DoubleSparseTokenToKVPool(BaseTokenToKVPool):
def __init__(
self,
size: int,
dtype: torch.dtype,
head_num: int,
head_dim: int,
layer_num: int,
device: str,
heavy_channel_num: int,
):
super().__init__(size, dtype, device)
# [size, head_num, head_dim] for each layer
self.k_buffer = [
torch.empty((size + 1, head_num, head_dim), dtype=dtype, device=device)
for _ in range(layer_num)
]
self.v_buffer = [
torch.empty((size + 1, head_num, head_dim), dtype=dtype, device=device)
for _ in range(layer_num)
]
# [size, head_num, heavy_channel_num] for each layer
self.label_buffer = [
torch.empty(
(size + 1, head_num, heavy_channel_num), dtype=dtype, device=device
)
for _ in range(layer_num)
]
def get_key_buffer(self, layer_id: int):
return self.k_buffer[layer_id]
def get_value_buffer(self, layer_id: int):
return self.v_buffer[layer_id]
def get_label_buffer(self, layer_id: int):
return self.label_buffer[layer_id]
def get_kv_buffer(self, layer_id: int):
return self.k_buffer[layer_id], self.v_buffer[layer_id]
def set_kv_buffer(
self,
layer_id: int,
loc: torch.Tensor,
cache_k: torch.Tensor,
cache_v: torch.Tensor,
cache_label: torch.Tensor,
):
# NOTE(Andy): ignore the dtype check
self.k_buffer[layer_id][loc] = cache_k
self.v_buffer[layer_id][loc] = cache_v
self.label_buffer[layer_id][loc] = cache_label
......@@ -18,6 +18,7 @@ limitations under the License.
import gc
import importlib
import importlib.resources
import json
import logging
import pkgutil
from functools import lru_cache
......@@ -39,6 +40,7 @@ from vllm.model_executor.models import ModelRegistry
from sglang.srt.configs.model_config import AttentionArch, ModelConfig
from sglang.srt.constrained import disable_cache
from sglang.srt.layers.attention.double_sparsity_backend import DoubleSparseAttnBackend
from sglang.srt.layers.attention.flashinfer_backend import FlashInferAttnBackend
from sglang.srt.layers.attention.triton_backend import TritonAttnBackend
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
......@@ -46,6 +48,7 @@ from sglang.srt.layers.sampler import Sampler
from sglang.srt.lora.lora_manager import LoRAManager
from sglang.srt.managers.schedule_batch import global_server_args_dict
from sglang.srt.mem_cache.memory_pool import (
DoubleSparseTokenToKVPool,
MHATokenToKVPool,
MLATokenToKVPool,
ReqToTokenPool,
......@@ -99,6 +102,20 @@ class ModelRunner:
logger.info("MLA optimization is turned on. Use triton backend.")
self.server_args.attention_backend = "triton"
if self.server_args.enable_double_sparsity:
logger.info(
"Double sparsity optimization is turned on. Use triton backend without CUDA graph."
)
self.server_args.attention_backend = "triton"
self.server_args.disable_cuda_graph = True
if self.server_args.ds_heavy_channel_type is None:
raise ValueError(
"Please specify the heavy channel type for double sparsity optimization."
)
self.init_double_sparsity_channel_config(
self.server_args.ds_heavy_channel_type
)
if self.is_multimodal_model:
logger.info(
"Automatically turn off --chunked-prefill-size and adjust --mem-fraction-static for multimodal models."
......@@ -439,6 +456,16 @@ class ModelRunner:
layer_num=self.model_config.num_hidden_layers,
device=self.device,
)
elif self.server_args.enable_double_sparsity:
self.token_to_kv_pool = DoubleSparseTokenToKVPool(
self.max_total_num_tokens,
dtype=self.kv_cache_dtype,
head_num=self.model_config.get_num_kv_heads(self.tp_size),
head_dim=self.model_config.head_dim,
layer_num=self.model_config.num_hidden_layers,
device=self.device,
heavy_channel_num=self.server_args.ds_heavy_channel_num,
)
else:
self.token_to_kv_pool = MHATokenToKVPool(
self.max_total_num_tokens,
......@@ -475,12 +502,33 @@ class ModelRunner:
"Cross attention is not supported in the triton attention backend. "
"Please use `--attention-backend flashinfer`."
)
self.attn_backend = TritonAttnBackend(self)
if self.server_args.enable_double_sparsity:
self.attn_backend = DoubleSparseAttnBackend(self)
else:
self.attn_backend = TritonAttnBackend(self)
else:
raise ValueError(
f"Invalid attention backend: {self.server_args.attention_backend}"
)
def init_double_sparsity_channel_config(self, selected_channel):
selected_channel = "." + selected_channel + "_proj"
self.sorted_channels = []
# load channel config
with open(self.server_args.ds_channel_config_path, "r") as f:
channel_config = json.load(f)
for i in range(self.model_config.num_hidden_layers):
key = "model.layers." + str(i) + ".self_attn" + selected_channel
self.sorted_channels.append(
torch.tensor(channel_config[key])[
:, : self.server_args.ds_heavy_channel_num
]
.contiguous()
.cuda()
)
def init_cuda_graphs(self):
"""Capture cuda graphs."""
from sglang.srt.model_executor.cuda_graph_runner import CudaGraphRunner
......
......@@ -86,6 +86,14 @@ class ServerArgs:
# Model override args in JSON
json_model_override_args: str = "{}"
# Double Sparsity
enable_double_sparsity: bool = False
ds_channel_config_path: str = None
ds_heavy_channel_num: int = 32
ds_heavy_token_num: int = 256
ds_heavy_channel_type: str = "qk"
ds_sparse_decode_threshold: int = 4096
# LoRA
lora_paths: Optional[List[str]] = None
max_loras_per_batch: int = 8
......@@ -443,6 +451,43 @@ class ServerArgs:
default=ServerArgs.json_model_override_args,
)
# Double Sparsity
parser.add_argument(
"--enable-double-sparsity",
action="store_true",
help="Enable double sparsity attention",
)
parser.add_argument(
"--ds-channel-config-path",
type=str,
default=ServerArgs.ds_channel_config_path,
help="The path of the double sparsity channel config",
)
parser.add_argument(
"--ds-heavy-channel-num",
type=int,
default=ServerArgs.ds_heavy_channel_num,
help="The number of heavy channels in double sparsity attention",
)
parser.add_argument(
"--ds-heavy-token-num",
type=int,
default=ServerArgs.ds_heavy_token_num,
help="The number of heavy tokens in double sparsity attention",
)
parser.add_argument(
"--ds-heavy-channel-type",
type=str,
default=ServerArgs.ds_heavy_channel_type,
help="The type of heavy channels in double sparsity attention",
)
parser.add_argument(
"--ds-sparse-decode-threshold",
type=int,
default=ServerArgs.ds_sparse_decode_threshold,
help="The type of heavy channels in double sparsity attention",
)
# LoRA
parser.add_argument(
"--lora-paths",
......
This diff is collapsed.
......@@ -11,6 +11,7 @@ suites = {
"models/test_reward_models.py",
"sampling/penaltylib",
"test_chunked_prefill.py",
"test_double_sparsity.py",
"test_embedding_openai_server.py",
"test_eval_accuracy_mini.py",
"test_json_constrained.py",
......
import os
import unittest
from types import SimpleNamespace
from sglang.srt.utils import kill_child_process
from sglang.test.run_eval import run_eval
from sglang.test.test_utils import (
DEFAULT_MODEL_NAME_FOR_TEST,
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
DEFAULT_URL_FOR_TEST,
popen_launch_server,
)
class TestDoubleSparsity(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model = DEFAULT_MODEL_NAME_FOR_TEST
cls.base_url = DEFAULT_URL_FOR_TEST
dirpath = os.path.dirname(__file__)
config_file = os.path.join(dirpath, "Llama-3.1-8B-Instruct.json")
# NOTE: Generate the config file by running https://github.com/andy-yang-1/DoubleSparse/blob/main/evaluation/group_channel_config.py
cls.process = popen_launch_server(
cls.model,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=[
"--enable-double-sparsity",
"--ds-channel-config-path",
config_file,
"--ds-heavy-channel-num",
"32",
"--ds-heavy-channel-type",
"k",
"--ds-heavy-token-num",
"512",
"--ds-sparse-decode-threshold",
"0",
"--max-total-tokens",
"200000",
],
)
@classmethod
def tearDownClass(cls):
kill_child_process(cls.process.pid)
def test_mmlu(self):
args = SimpleNamespace(
base_url=self.base_url,
model=self.model,
eval_name="mmlu",
num_examples=64,
num_threads=32,
)
metrics = run_eval(args)
assert metrics["score"] >= 0.65
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment