sgl_kernel_ops.h 25.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
/* Copyright 2025 SGLang Team. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

16
#pragma once
17

18
19
#include <ATen/ATen.h>
#include <ATen/Tensor.h>
20
#include <Python.h>
21
#include <torch/all.h>
22
23
#include <torch/library.h>
#include <torch/torch.h>
24

25
#include <tuple>
26
27
#include <vector>

28
29
#include "scalar_type.hpp"

30
31
32
33
34
35
36
37
38
39
40
41
42
43
#define _CONCAT(A, B) A##B
#define CONCAT(A, B) _CONCAT(A, B)

#define _STRINGIFY(A) #A
#define STRINGIFY(A) _STRINGIFY(A)

#define TORCH_LIBRARY_EXPAND(NAME, MODULE) TORCH_LIBRARY(NAME, MODULE)

#define REGISTER_EXTENSION(NAME)                                                                      \
  PyMODINIT_FUNC CONCAT(PyInit_, NAME)() {                                                            \
    static struct PyModuleDef module = {PyModuleDef_HEAD_INIT, STRINGIFY(NAME), nullptr, 0, nullptr}; \
    return PyModule_Create(&module);                                                                  \
  }

Ke Bao's avatar
Ke Bao committed
44
using fptr_t = int64_t;
45
46
47
48

/*
 * From csrc/allreduce
 */
49
#ifdef USE_ROCM
50
// ROCM custom allreduce
51
52
53
54
55
56
57
fptr_t init_custom_ar(
    torch::Tensor& meta,
    torch::Tensor& rank_data,
    const std::vector<std::string>& handles,
    const std::vector<int64_t>& offsets,
    int64_t rank,
    bool full_nvlink);
58
59
60
61
void all_reduce_reg(fptr_t _fa, torch::Tensor& inp, torch::Tensor& out);
void all_reduce_unreg(fptr_t _fa, torch::Tensor& inp, torch::Tensor& reg_buffer, torch::Tensor& out);
void dispose(fptr_t _fa);
int64_t meta_size();
62
63
void register_buffer(
    fptr_t _fa, torch::Tensor& t, const std::vector<std::string>& handles, const std::vector<int64_t>& offsets);
64
std::tuple<torch::Tensor, std::vector<int64_t>> get_graph_buffer_ipc_meta(fptr_t _fa);
65
66
void register_graph_buffers(
    fptr_t _fa, const std::vector<std::string>& handles, const std::vector<std::vector<int64_t>>& offsets);
67
68
torch::Tensor allocate_meta_buffer(int64_t size);
torch::Tensor get_meta_buffer_ipc_handle(torch::Tensor& inp);
69
70
71
72
73
74
75
// quick allreduce
fptr_t init_custom_qr(int64_t rank, int64_t world_size, std::optional<int64_t> qr_max_size = std::nullopt);
void qr_destroy(fptr_t _fa);
torch::Tensor qr_get_handle(fptr_t _fa);
void qr_open_handles(fptr_t _fa, const std::vector<torch::Tensor>& handles);
void qr_all_reduce(fptr_t _fa, torch::Tensor& inp, torch::Tensor& out, int64_t quant_level, bool cast_bf2half = false);
int64_t qr_max_size();
76
#else
77
78
79
// custom allreduce
fptr_t
init_custom_ar(const std::vector<fptr_t>& fake_ipc_ptrs, torch::Tensor& rank_data, int64_t rank, bool full_nvlink);
Ke Bao's avatar
Ke Bao committed
80
void dispose(fptr_t _fa);
81
82
int64_t meta_size();
void all_reduce(fptr_t _fa, torch::Tensor& inp, torch::Tensor& out, fptr_t _reg_buffer, int64_t reg_buffer_sz_bytes);
83
std::tuple<std::vector<int64_t>, std::vector<int64_t>> get_graph_buffer_ipc_meta(fptr_t _fa);
84
void register_buffer(fptr_t _fa, const std::vector<fptr_t>& fake_ipc_ptrs);
85
86
void register_graph_buffers(
    fptr_t _fa, const std::vector<std::vector<int64_t>>& handles, const std::vector<std::vector<int64_t>>& offsets);
87
88

// mscclpp
89
90
91
92
93
94
95
96
97
98
99
100
torch::Tensor mscclpp_generate_unique_id();
fptr_t mscclpp_init_context(
    const torch::Tensor& unique_id,
    const int64_t rank,
    const int64_t world_size,
    torch::Tensor& scratch,
    torch::Tensor& put_buffer,
    const int64_t nranks_per_node,
    const std::vector<int64_t>& rank_to_node,
    const std::vector<int64_t>& rank_to_ib,
    const int64_t context_selection);
void mscclpp_allreduce(fptr_t _context, torch::Tensor& inp, torch::Tensor& out, int64_t nthreads, int64_t nblocks);
101
#endif
Ke Bao's avatar
Ke Bao committed
102

103
104
105
106
107
108
109
110
111
112
113
/*
 * From csrc/attention
 */
void lightning_attention_decode(
    const torch::Tensor& q,
    const torch::Tensor& k,
    const torch::Tensor& v,
    const torch::Tensor& past_kv,
    const torch::Tensor& slope,
    torch::Tensor output,
    torch::Tensor new_kv);
Yineng Zhang's avatar
Yineng Zhang committed
114
115
void merge_state(
    at::Tensor v_a, at::Tensor s_a, at::Tensor v_b, at::Tensor s_b, at::Tensor v_merged, at::Tensor s_merged);
116
117
void merge_state_v2(
    at::Tensor v_a, at::Tensor s_a, at::Tensor v_b, at::Tensor s_b, at::Tensor v_merged, at::Tensor s_merged);
118
119
void cutlass_mla_decode(
    torch::Tensor const& out,
120
121
    torch::Tensor const& q_nope,
    torch::Tensor const& q_pe,
122
123
124
    torch::Tensor const& kv_c_and_k_pe_cache,
    torch::Tensor const& seq_lens,
    torch::Tensor const& page_table,
125
    torch::Tensor const& workspace,
126
127
    double sm_scale,
    int64_t num_kv_splits = 1 /* Set to 1 to avoid cuda_graph issue by default. */);
128
int64_t cutlass_mla_get_workspace_size(
129
130
131
132
    int64_t max_seq_len,
    int64_t num_batches,
    int64_t sm_count = 0,
    int64_t num_kv_splits = 1 /* Set to 1 to avoid cuda_graph issue by default. */);
133

134
135
136
/*
 * From csrc/elementwise
 */
137
138
139
140
141
void rmsnorm(at::Tensor& output, at::Tensor& input, at::Tensor& weight, double eps, bool enable_pdl);
void sgl_fused_add_rmsnorm(
    torch::Tensor input, torch::Tensor residual, torch::Tensor weight, double eps, bool enable_pdl);
void gemma_rmsnorm(at::Tensor& output, at::Tensor& input, at::Tensor& weight, double eps, bool enable_pdl);
void gemma_fused_add_rmsnorm(at::Tensor& input, at::Tensor& residual, at::Tensor& weight, double eps, bool enable_pdl);
142
143
144
145
void silu_and_mul(at::Tensor& out, at::Tensor& input);
void gelu_tanh_and_mul(at::Tensor& out, at::Tensor& input);
void gelu_and_mul(at::Tensor& out, at::Tensor& input);

146
147
148
149
150
151
152
153
void apply_rope_pos_ids_cos_sin_cache(
    at::Tensor q,
    at::Tensor k,
    at::Tensor q_rope,
    at::Tensor k_rope,
    at::Tensor cos_sin_cache,
    at::Tensor pos_ids,
    bool interleave,
154
    bool enable_pdl,
155
156
157
158
159
    int64_t cuda_stream,
    const std::optional<at::Tensor>& v,
    const std::optional<at::Tensor>& k_buffer,
    const std::optional<at::Tensor>& v_buffer,
    const std::optional<at::Tensor>& kv_cache_loc);
160

161
162
163
164
165
166
167
168
169
170
171
172
void downcast_fp8(
    at::Tensor& k,
    at::Tensor& v,
    at::Tensor& k_out,
    at::Tensor& v_out,
    at::Tensor& k_scale,
    at::Tensor& v_scale,
    at::Tensor& loc,
    int64_t mult,
    int64_t offset,
    int64_t cuda_stream);

173
174
void copy_to_gpu_no_ce(const at::Tensor& input, at::Tensor& output);
void concat_mla_k(torch::Tensor k, torch::Tensor k_nope, torch::Tensor k_rope);
175
void concat_mla_absorb_q(at::Tensor a, at::Tensor b, at::Tensor out);
176

177
178
179
#ifdef USE_ROCM
void gelu_quick(at::Tensor& out, const at::Tensor& input);
#endif
180

181
182
183
/*
 * From csrc/gemm
 */
184
torch::Tensor awq_dequantize(torch::Tensor qweight, torch::Tensor scales, torch::Tensor qzeros);
Trevor Morris's avatar
Trevor Morris committed
185
186
187
188
189
190
191
void cutlass_scaled_fp4_mm(
    torch::Tensor& D,
    torch::Tensor const& A,
    torch::Tensor const& B,
    torch::Tensor const& A_sf,
    torch::Tensor const& B_sf,
    torch::Tensor const& alpha);
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
torch::Tensor int8_scaled_mm(
    const torch::Tensor& mat_a,
    const torch::Tensor& mat_b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const torch::Dtype& out_dtype,
    const c10::optional<torch::Tensor>& bias);
torch::Tensor fp8_scaled_mm(
    const torch::Tensor& mat_a,
    const torch::Tensor& mat_b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const torch::Dtype& out_dtype,
    const c10::optional<torch::Tensor>& bias);
torch::Tensor fp8_blockwise_scaled_mm(
    const torch::Tensor& mat_a,
    const torch::Tensor& mat_b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const torch::Dtype& out_dtype);
Trevor Morris's avatar
Trevor Morris committed
212
213
void scaled_fp4_quant(
    torch::Tensor& output, torch::Tensor const& input, torch::Tensor& output_scale, torch::Tensor const& input_scale);
214
void sgl_per_token_group_quant_fp8(
215
216
217
218
219
    at::Tensor input,
    at::Tensor output_q,
    at::Tensor output_s,
    int64_t group_size,
    double eps,
220
221
222
223
224
225
226
227
228
229
230
    double fp8_min,
    double fp8_max,
    bool scale_ue8m0);
void sgl_per_token_group_quant_int8(
    at::Tensor input,
    at::Tensor output_q,
    at::Tensor output_s,
    int64_t group_size,
    double eps,
    double int8_min,
    double int8_max);
231
void sgl_per_tensor_quant_fp8(at::Tensor input, at::Tensor output_q, at::Tensor output_s, bool is_static);
232
void sgl_per_token_quant_fp8(at::Tensor input, at::Tensor output_q, at::Tensor output_s);
233
234
235
236
237
238
239
240
241
void bmm_fp8(
    at::Tensor A,
    at::Tensor B,
    at::Tensor D,
    at::Tensor A_scale,
    at::Tensor B_scale,
    at::Tensor workspace_buffer,
    int64_t cublas_handle,
    int64_t cuda_stream);
242
void dsv3_router_gemm(torch::Tensor& output, const torch::Tensor& mat_a, const torch::Tensor& mat_b);
243
244
void dsv3_fused_a_gemm(torch::Tensor& output, torch::Tensor const& mat_a, torch::Tensor const& mat_b);

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
torch::Tensor gptq_marlin_gemm(
    torch::Tensor& a,
    std::optional<torch::Tensor> c_or_none,
    torch::Tensor& b_q_weight,
    torch::Tensor& b_scales,
    std::optional<torch::Tensor> const& global_scale_or_none,
    std::optional<torch::Tensor> const& b_zeros_or_none,
    std::optional<torch::Tensor> const& g_idx_or_none,
    std::optional<torch::Tensor> const& perm_or_none,
    torch::Tensor& workspace,
    sglang::ScalarTypeId const& b_q_type_id,
    int64_t size_m,
    int64_t size_n,
    int64_t size_k,
    bool is_k_full,
    bool use_atomic_add,
    bool use_fp32_reduce,
    bool is_zp_float);

torch::Tensor gptq_gemm(
    torch::Tensor a,
    torch::Tensor b_q_weight,
    torch::Tensor b_gptq_qzeros,
    torch::Tensor b_gptq_scales,
    torch::Tensor b_g_idx,
    bool use_shuffle,
    int64_t bit);

void gptq_shuffle(torch::Tensor q_weight, torch::Tensor q_perm, int64_t bit);

torch::Tensor
gptq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm, int64_t size_k, int64_t size_n, int64_t num_bits);

torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, int64_t size_k, int64_t size_n, int64_t num_bits);
279

280
281
282
/*
 * From csrc/moe
 */
283
284
285
286
287
288
289
void moe_align_block_size(
    torch::Tensor topk_ids,
    int64_t num_experts,
    int64_t block_size,
    torch::Tensor sorted_token_ids,
    torch::Tensor experts_ids,
    torch::Tensor num_tokens_post_pad,
290
291
    torch::Tensor cumsum_buffer,
    bool pad_sorted_token_ids);
292

293
void topk_softmax(
294
    torch::Tensor& topk_weights, torch::Tensor& topk_indices, torch::Tensor& gating_output, bool renormalize);
295

296
297
298
299
300
301
std::vector<at::Tensor> moe_fused_gate(
    at::Tensor& input,
    at::Tensor& bias,
    int64_t num_expert_group,
    int64_t topk_group,
    int64_t topk,
302
    int64_t num_fused_shared_experts,
303
304
    double routed_scaling_factor,
    bool apply_routed_scaling_factor_on_output);
305

306
307
void fp8_blockwise_scaled_grouped_mm(
    torch::Tensor& output,
308
309
310
311
312
    torch::Tensor& a_ptrs,
    torch::Tensor& b_ptrs,
    torch::Tensor& out_ptrs,
    torch::Tensor& a_scales_ptrs,
    torch::Tensor& b_scales_ptrs,
313
314
315
316
317
318
319
320
321
322
    const torch::Tensor& a,
    const torch::Tensor& b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const torch::Tensor& stride_a,
    const torch::Tensor& stride_b,
    const torch::Tensor& stride_c,
    const torch::Tensor& layout_sfa,
    const torch::Tensor& layout_sfb,
    const torch::Tensor& problem_sizes,
323
324
325
326
327
328
    const torch::Tensor& expert_offsets,
    const torch::Tensor& workspace);

void prepare_moe_input(
    const torch::Tensor& topk_ids,
    torch::Tensor& expert_offsets,
329
    const std::optional<torch::Tensor>& blockscale_offsets,
330
331
332
333
334
335
336
    torch::Tensor& problem_sizes1,
    torch::Tensor& problem_sizes2,
    torch::Tensor& input_permutation,
    torch::Tensor& output_permutation,
    const int64_t num_experts,
    const int64_t n,
    const int64_t k);
337

338
339
void shuffle_rows(const torch::Tensor& input_tensor, const torch::Tensor& dst2src_map, torch::Tensor& output_tensor);

340
341
342
343
344
345
void apply_shuffle_mul_sum(
    const torch::Tensor& input,
    torch::Tensor& output,
    const torch::Tensor& permutation,
    const std::optional<torch::Tensor>& factors);

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
void cutlass_fp4_group_mm(
    torch::Tensor& output,
    const torch::Tensor& a,
    const torch::Tensor& b,
    const torch::Tensor& a_blockscale,
    const torch::Tensor& b_blockscales,
    const torch::Tensor& alphas,
    const torch::Tensor& ab_strides,
    const torch::Tensor& c_strides,
    const torch::Tensor& problem_sizes,
    const torch::Tensor& expert_offsets,
    const torch::Tensor& sf_offsets);

void scaled_fp4_experts_quant(
    torch::Tensor& output,
    torch::Tensor& output_scale,
    torch::Tensor const& input,
    torch::Tensor const& input_global_scale,
    torch::Tensor const& input_offset_by_experts,
    torch::Tensor const& output_scale_offset_by_experts);

367
368
369
370
371
void silu_and_mul_scaled_fp4_experts_quant(
    torch::Tensor& output,
    torch::Tensor& output_scale,
    torch::Tensor const& input,
    torch::Tensor const& input_global_scale,
372
373
    torch::Tensor const& mask,
    bool use_silu_and_mul);
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
/*
 * From csrc/moe/cutlass_moe/w4a8
 */
void get_cutlass_w4a8_moe_mm_data(
    const torch::Tensor& topk_ids,
    torch::Tensor& expert_offsets,
    torch::Tensor& problem_sizes1,
    torch::Tensor& problem_sizes2,
    torch::Tensor& input_permutation,
    torch::Tensor& output_permutation,
    const int64_t num_experts,
    const int64_t n,
    const int64_t k);

void cutlass_w4a8_moe_mm(
    torch::Tensor& d_tensors,
    torch::Tensor const& a_tensors,
    torch::Tensor const& b_tensors,
    torch::Tensor const& a_scales,
    torch::Tensor const& b_scales,
    torch::Tensor const& expert_offsets,
    torch::Tensor const& problem_sizes,
    torch::Tensor const& a_strides,
    torch::Tensor const& b_strides,
    torch::Tensor const& d_strides,
    torch::Tensor const& s_strides,
    int64_t chunk_size,
    int64_t topk);

torch::Tensor moe_wna16_marlin_gemm(
    torch::Tensor& a,
    std::optional<torch::Tensor> const& c_or_none,
    torch::Tensor& b_q_weight,
    torch::Tensor& b_scales,
    std::optional<torch::Tensor> const& b_zeros_or_none,
    std::optional<torch::Tensor> const& g_idx_or_none,
    std::optional<torch::Tensor> const& perm_or_none,
    torch::Tensor& workspace,
    torch::Tensor& sorted_token_ids,
    torch::Tensor& expert_ids,
    torch::Tensor& num_tokens_past_padded,
    torch::Tensor& topk_weights,
    int64_t moe_block_size,
    int64_t top_k,
    bool mul_topk_weights,
    bool is_ep,
    sglang::ScalarTypeId const& b_q_type_id,
    int64_t size_m,
    int64_t size_n,
    int64_t size_k,
    bool is_k_full,
    bool use_atomic_add,
    bool use_fp32_reduce,
    bool is_zp_float);

429
430
431
/*
 * From csrc/speculative
 */
432
void tree_speculative_sampling_target_only(
433
434
    at::Tensor predicts,          // mutable
    at::Tensor accept_index,      // mutable
435
436
437
438
439
440
    at::Tensor accept_token_num,  // mutable
    at::Tensor candidates,
    at::Tensor retrive_index,
    at::Tensor retrive_next_token,
    at::Tensor retrive_next_sibling,
    at::Tensor uniform_samples,
441
    at::Tensor uniform_samples_for_final_sampling,
442
443
    at::Tensor target_probs,
    at::Tensor draft_probs,
444
445
    double threshold_single = 1,
    double threshold_acc = 1,
446
447
448
    bool deterministic = true,
    int64_t cuda_stream = 0);

449
450
451
452
453
void verify_tree_greedy(
    at::Tensor predicts,          // mutable
    at::Tensor accept_index,      // mutable
    at::Tensor accept_token_num,  // mutable
    at::Tensor candidates,
454
455
456
    at::Tensor retrive_index,
    at::Tensor retrive_next_token,
    at::Tensor retrive_next_sibling,
457
458
    at::Tensor target_predict,
    int64_t cuda_stream = 0);
459

460
461
462
463
464
465
466
467
468
469
void reconstruct_indices_from_tree_mask(
    at::Tensor tree_mask,
    at::Tensor verified_seq_len,
    at::Tensor positions,             // mutable
    at::Tensor retrive_index,         // mutable
    at::Tensor retrive_next_token,    // mutable
    at::Tensor retrive_next_sibling,  // mutable
    int64_t batch_size,
    int64_t draft_token_num);

470
void build_tree_kernel_efficient(
471
472
473
474
475
476
    at::Tensor parent_list,
    at::Tensor selected_index,
    at::Tensor verified_seq_len,
    at::Tensor tree_mask,
    at::Tensor positions,
    at::Tensor retrive_index,
477
478
    at::Tensor retrive_next_token,
    at::Tensor retrive_next_sibling,
479
480
    int64_t topk,
    int64_t depth,
481
482
    int64_t draft_token_num,
    int64_t tree_mask_mode);
483

484
void segment_packbits(
485
486
487
488
489
490
    at::Tensor x,
    at::Tensor input_indptr,
    at::Tensor output_indptr,
    at::Tensor y,
    int64_t batch_size,
    int64_t cuda_stream = 0);
491

492
493
494
495
496
497
498
499
500
501
502
503
504
505
/*
 * From csrc/kvcacheio
 */
void transfer_kv_per_layer(
    const at::Tensor src_k,
    at::Tensor dst_k,
    const at::Tensor src_v,
    at::Tensor dst_v,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
    int64_t item_size,
    int64_t block_quota,
    int64_t num_warps_per_block);

506
void transfer_kv_per_layer_pf_lf(
507
508
509
510
511
512
    const at::Tensor src_k,
    at::Tensor dst_k,
    const at::Tensor src_v,
    at::Tensor dst_v,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
513
    int64_t layer_id,
514
515
516
517
    int64_t item_size,
    int64_t src_layout_dim,
    int64_t block_quota,
    int64_t num_warps_per_block);
518
519

void transfer_kv_all_layer(
520
521
522
523
    const at::Tensor src_k_layers,
    const at::Tensor dst_k_layers,
    const at::Tensor src_v_layers,
    const at::Tensor dst_v_layers,
524
525
526
527
528
529
530
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
    int64_t item_size,
    int64_t num_layers,
    int64_t block_quota,
    int64_t num_warps_per_block);

531
532
void transfer_kv_all_layer_lf_pf(
    const at::Tensor src_k_layers,
533
    at::Tensor dst_k,
534
    const at::Tensor src_v_layers,
535
536
537
    at::Tensor dst_v,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
538
539
540
541
542
    int64_t item_size,
    int64_t dst_layout_dim,
    int64_t num_layers,
    int64_t block_quota,
    int64_t num_warps_per_block);
543
544
545
546
547
548
549
550
551
552

void transfer_kv_per_layer_mla(
    const at::Tensor src,
    at::Tensor dst,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
    int64_t item_size,
    int64_t block_quota,
    int64_t num_warps_per_block);

553
void transfer_kv_per_layer_mla_pf_lf(
554
555
556
557
    const at::Tensor src,
    at::Tensor dst,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
558
    int64_t layer_id,
559
560
561
562
    int64_t item_size,
    int64_t src_layout_dim,
    int64_t block_quota,
    int64_t num_warps_per_block);
563
564

void transfer_kv_all_layer_mla(
565
566
    const at::Tensor src_layers,
    const at::Tensor dst_layers,
567
568
569
570
571
572
573
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
    int64_t item_size,
    int64_t num_layers,
    int64_t block_quota,
    int64_t num_warps_per_block);

574
575
void transfer_kv_all_layer_mla_lf_pf(
    const at::Tensor src_layers,
576
577
578
    at::Tensor dst,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
579
580
581
582
583
584
585
586
587
588
589
590
    int64_t item_size,
    int64_t dst_layout_dim,
    int64_t num_layers,
    int64_t block_quota,
    int64_t num_warps_per_block);

void transfer_kv_direct(
    const std::vector<at::Tensor>& src_layers,
    std::vector<at::Tensor> dst_layers,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
    int64_t page_size);
591

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
void transfer_kv_per_layer_direct_pf_lf(
    const std::vector<at::Tensor>& src_ptrs,
    std::vector<at::Tensor> dst_ptrs,
    const at::Tensor& src_indices,
    const at::Tensor& dst_indices,
    int64_t layer_id,
    int64_t page_size);

void transfer_kv_all_layer_direct_lf_pf(
    const std::vector<at::Tensor>& src_ptrs,
    std::vector<at::Tensor> dst_ptrs,
    const at::Tensor& src_indices,
    const at::Tensor& dst_indices,
    int64_t page_size);

607
608
609
/*
 * From FlashInfer
 */
610
611
void min_p_sampling_from_probs(
    at::Tensor probs,
612
613
    at::Tensor output,
    std::optional<at::Tensor> maybe_indices,
614
615
616
    std::optional<at::Tensor> maybe_min_p_arr,
    double min_p_val,
    bool deterministic,
617
    std::optional<at::Generator> gen);
618

619
void top_k_renorm_probs(
620
    at::Tensor probs, at::Tensor renorm_probs, std::optional<at::Tensor> maybe_top_k_arr, int64_t top_k_val);
621

622
void top_p_renorm_probs(
623
    at::Tensor probs, at::Tensor renorm_probs, std::optional<at::Tensor> maybe_top_p_arr, double top_p_val);
624

625
626
void top_k_top_p_sampling_from_probs(
    at::Tensor probs,
627
628
    at::Tensor output,
    std::optional<at::Tensor> maybe_indices,
629
630
631
632
633
    std::optional<at::Tensor> maybe_top_k_arr,
    double top_k_val,
    std::optional<at::Tensor> maybe_top_p_arr,
    double top_p_val,
    bool deterministic,
634
    std::optional<at::Generator> gen);
635

636
637
void top_p_sampling_from_probs(
    at::Tensor probs,
638
639
    at::Tensor output,
    std::optional<at::Tensor> maybe_indices,
640
641
642
    std::optional<at::Tensor> maybe_top_p_arr,
    double top_p_val,
    bool deterministic,
643
    std::optional<at::Generator> gen);
644
645
646
647

void top_k_mask_logits(
    at::Tensor logits, at::Tensor mask_logits, std::optional<at::Tensor> maybe_top_k_arr, int64_t top_k_val);

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
namespace flash {
/*
 * From fa2 sparse
 */
std::vector<at::Tensor> mha_fwd_sparse(
    at::Tensor& q,        // batch_size x seqlen_q x num_heads x head_size
    const at::Tensor& k,  // batch_size x seqlen_k x num_heads_k x head_size
    const at::Tensor& v,  // batch_size x seqlen_k x num_heads_k x head_size
    const at::Tensor& block_count,
    const at::Tensor& block_offset,
    const at::Tensor& column_count,
    const at::Tensor& column_index,
    const std::optional<at::Tensor>& out_,           // batch_size x seqlen_q x num_heads x head_size
    const std::optional<at::Tensor>& alibi_slopes_,  // num_heads or batch_size x num_heads
    const double p_dropout,
    const double softmax_scale,
    bool is_causal,
    const double softcap,
    const bool return_softmax,
    std::optional<at::Generator> gen_);

std::vector<at::Tensor> mha_varlen_fwd_sparse(
    at::Tensor& q,        // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
    const at::Tensor& k,  // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i.
    const at::Tensor& v,  // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i.
    const at::Tensor& block_count,
    const at::Tensor& block_offset,
    const at::Tensor& column_count,
    const at::Tensor& column_index,
    const c10::optional<at::Tensor>& out_,  // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
    const at::Tensor& cu_seqlens_q,         // b+1
    const at::Tensor& cu_seqlens_k,         // b+1
    const c10::optional<at::Tensor>&
        seqused_k,  // b. If given, only this many elements of each batch element's keys are used.
    const c10::optional<at::Tensor>& alibi_slopes_,  // num_heads or b x num_heads
    int64_t max_seqlen_q,
    const int64_t max_seqlen_k,
    const double p_dropout,
    const double softmax_scale,
    const bool zero_tensors,
    bool is_causal,
    const double softcap,
    const bool return_softmax,
    c10::optional<at::Generator> gen_);
}  // namespace flash
693

694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
void convert_vertical_slash_indexes(
    torch::Tensor& block_count,      // [BATCH, N_HEADS, NUM_ROWS]
    torch::Tensor& block_offset,     // [BATCH, N_HEADS, NUM_ROWS, NNZ_S]
    torch::Tensor& column_count,     // [BATCH, N_HEADS, NUM_ROWS]
    torch::Tensor& column_index,     // [BATCH, N_HEADS, NUM_ROWS, NNZ_V]
    torch::Tensor q_seqlens,         // [BATCH, ]
    torch::Tensor kv_seqlens,        // [BATCH, ]
    torch::Tensor vertical_indexes,  // [BATCH, N_HEADS, NNZ_V]
    torch::Tensor slash_indexes,     // [BATCH, N_HEADS, NNZ_S]
    int64_t context_size,
    int64_t block_size_M,
    int64_t block_size_N,
    bool causal);

void convert_vertical_slash_indexes_mergehead(
    torch::Tensor& block_count,            // [BATCH, N_HEADS, NUM_ROWS]
    torch::Tensor& block_offset,           // [BATCH, N_HEADS, NUM_ROWS, NNZ_S]
    torch::Tensor& column_count,           // [BATCH, N_HEADS, NUM_ROWS]
    torch::Tensor& column_index,           // [BATCH, N_HEADS, NUM_ROWS, NNZ_V]
    torch::Tensor q_seqlens,               // [BATCH, ]
    torch::Tensor kv_seqlens,              // [BATCH, ]
    torch::Tensor vertical_indexes,        // [BATCH, N_HEADS, NNZ_V]
    torch::Tensor slash_indexes,           // [BATCH, N_HEADS, NNZ_S]
    torch::Tensor vertical_indices_count,  // [N_HEADS, ]
    torch::Tensor slash_indices_count,
    int64_t context_size,
    int64_t block_size_M,
    int64_t block_size_N,
    bool causal);

724
725
726
727
/*
 * From XGrammar
 */
void ApplyTokenBitmaskInplace(at::Tensor logits, at::Tensor bitmask, at::optional<at::Tensor> indices = at::nullopt);
HandH1998's avatar
HandH1998 committed
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748

/*
 * From QServe
 */
void qserve_w4a8_per_chn_gemm(
    const torch::Tensor& _in_feats,
    const torch::Tensor& _kernel,
    const torch::Tensor& _wscales,
    const torch::Tensor& _ascales,
    const torch::Tensor& _w_szs,
    const torch::Tensor& _a_ssums,
    torch::Tensor& _out_feats);

void qserve_w4a8_per_group_gemm(
    const torch::Tensor& _in_feats,
    const torch::Tensor& _kernel,
    const torch::Tensor& _zeros,
    const torch::Tensor& _scales_i8,
    const torch::Tensor& _wscales,
    const torch::Tensor& _ascales,
    torch::Tensor& _out_feats);
749
750
751
752
753

/*
 * From csrc/spatial
 */
std::vector<int64_t> create_greenctx_stream_by_value(int64_t smA, int64_t smB, int64_t device);
754
755
756
757
758

/*
 * From csrc/memory
 */
void store_kv_cache(at::Tensor k_cache, at::Tensor v_cache, at::Tensor out_loc, at::Tensor k, at::Tensor v);
759

Yi Zhang's avatar
Yi Zhang committed
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
/*
 * From csrc/mamba
 */
void causal_conv1d_update(
    const at::Tensor& x,
    const at::Tensor& conv_state,
    const at::Tensor& weight,
    const std::optional<at::Tensor>& bias_,
    bool silu_activation,
    const std::optional<at::Tensor>& cache_seqlens_,
    const std::optional<at::Tensor>& conv_state_indices_,
    int64_t pad_slot_id);

void causal_conv1d_fwd(
    const at::Tensor& x,
    const at::Tensor& weight,
    const std::optional<at::Tensor>& bias_,
    const std::optional<at::Tensor>& conv_states,
    const std::optional<at::Tensor>& query_start_loc,
    const std::optional<at::Tensor>& cache_indices,
    const std::optional<at::Tensor>& has_initial_state,
    bool silu_activation,
    int64_t pad_slot_id);