"vscode:/vscode.git/clone" did not exist on "a3541eb2eceafcfb707a78607f9d883b929344c7"
Unverified Commit eb06dbcb authored by Lianmin Zheng's avatar Lianmin Zheng Committed by GitHub
Browse files

Move rope and bmm into sgl-kernel (#4241)

parent 9dfafa74
/*
* Copyright (c) 2024 by FlashInfer team.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <flashinfer/pos_enc.cuh>
#include "pytorch_extension_utils.h"
using namespace flashinfer;
void apply_rope_pos_ids_cos_sin_cache(
at::Tensor q,
at::Tensor k,
at::Tensor q_rope,
at::Tensor k_rope,
at::Tensor cos_sin_cache,
at::Tensor pos_ids,
bool interleave,
int64_t cuda_stream) {
CHECK_LAST_DIM_CONTIGUOUS(q);
CHECK_LAST_DIM_CONTIGUOUS(k);
CHECK_INPUT(cos_sin_cache);
CHECK_INPUT(pos_ids);
auto device = q.device();
CHECK_EQ(k.device(), device);
CHECK_EQ(cos_sin_cache.device(), device);
CHECK_EQ(pos_ids.device(), device);
CHECK_DIM(3, q); // q: (nnz, H_Q, D)
CHECK_DIM(3, k); // k: (nnz, H_K, D)
// cos_sin_cache: (max_seq_len, R)
// First half of R is cos, second half is sin
CHECK_DIM(2, cos_sin_cache);
CHECK_EQ(q.size(0), k.size(0));
CHECK_EQ(q.size(2), k.size(2));
unsigned int rotary_dim = cos_sin_cache.size(1);
unsigned int num_qo_heads = q.size(1);
unsigned int num_kv_heads = k.size(1);
unsigned int head_dim = q.size(2);
unsigned int nnz = q.size(0);
size_t q_stride_n = q.stride(0);
size_t q_stride_h = q.stride(1);
size_t k_stride_n = k.stride(0);
size_t k_stride_h = k.stride(1);
size_t q_rope_stride_n = q_rope.stride(0);
size_t q_rope_stride_h = q_rope.stride(1);
size_t k_rope_stride_n = k_rope.stride(0);
size_t k_rope_stride_h = k_rope.stride(1);
cudaStream_t stream = reinterpret_cast<cudaStream_t>(cuda_stream);
DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP16(q.scalar_type(), c_type, [&] {
cudaError_t status = BatchQKApplyRotaryPosIdsCosSinCache(
static_cast<c_type*>(q.data_ptr()),
static_cast<c_type*>(k.data_ptr()),
static_cast<c_type*>(q_rope.data_ptr()),
static_cast<c_type*>(k_rope.data_ptr()),
static_cast<float*>(cos_sin_cache.data_ptr()),
static_cast<int32_t*>(pos_ids.data_ptr()),
nnz,
num_qo_heads,
num_kv_heads,
rotary_dim,
head_dim,
q_stride_n,
q_stride_h,
k_stride_n,
k_stride_h,
q_rope_stride_n,
q_rope_stride_h,
k_rope_stride_n,
k_rope_stride_h,
interleave,
stream);
TORCH_CHECK(
status == cudaSuccess,
"BatchQKApplyRotaryPosIdsCosSinCache failed with error code " + std::string(cudaGetErrorString(status)));
return true;
});
}
/*
* Copyright (c) 2024 by FlashInfer team.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <driver_types.h>
#include <flashinfer/gemm/bmm_fp8.cuh>
#include "pytorch_extension_utils.h"
void bmm_fp8(
at::Tensor A,
at::Tensor B,
at::Tensor D,
at::Tensor A_scale,
at::Tensor B_scale,
at::Tensor workspace_buffer,
int64_t cublas_handle,
int64_t cuda_stream) {
TORCH_CHECK(A.is_cuda(), "A must be a CUDA tensor");
TORCH_CHECK(B.is_cuda(), "B must be a CUDA tensor");
TORCH_CHECK(D.is_cuda(), "D must be a CUDA tensor");
TORCH_CHECK(A.dim() == 3, "Expected 3D tensor for A");
TORCH_CHECK(B.dim() == 3, "Expected 3D tensor for B");
TORCH_CHECK(D.dim() == 3, "Expected 3D tensor for D");
TORCH_CHECK(A.size(0) == B.size(0) && A.size(0) == D.size(0), "Batch sizes must match");
TORCH_CHECK(A.size(2) == B.size(1), "Incompatible matrix sizes");
TORCH_CHECK(A.size(1) == D.size(1) && B.size(2) == D.size(2), "Result tensor has incorrect shape");
// PyTorch is row major by default. cuBLASLt is column major by default.
// We need row major D as expected.
// A ^ T * B = D, so D ^ T = B ^ T * A
DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP8(B.scalar_type(), b_type, [&] {
return DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP8(A.scalar_type(), a_type, [&] {
return DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP16(D.scalar_type(), d_type, [&] {
auto batch_size = A.size(0);
auto m = A.size(1);
auto k = A.size(2);
auto n = B.size(2);
auto lt_handle = reinterpret_cast<cublasLtHandle_t>(cublas_handle);
auto stream = reinterpret_cast<cudaStream_t>(cuda_stream);
auto status = flashinfer::bmm_fp8::bmm_fp8_internal_cublaslt(
workspace_buffer.data_ptr(),
workspace_buffer.numel(),
static_cast<b_type*>(B.data_ptr()),
static_cast<a_type*>(A.data_ptr()),
static_cast<d_type*>(D.data_ptr()),
batch_size,
n,
m,
k,
static_cast<float*>(B_scale.data_ptr()),
static_cast<float*>(A_scale.data_ptr()),
lt_handle,
stream);
TORCH_CHECK(
status == CUBLAS_STATUS_SUCCESS, "bmm_fp8_internal_cublaslt failed: ", cublasGetStatusString(status));
return true;
});
});
});
}
...@@ -140,6 +140,15 @@ void cublas_grouped_gemm( ...@@ -140,6 +140,15 @@ void cublas_grouped_gemm(
const torch::Dtype& out_dtype, const torch::Dtype& out_dtype,
int64_t cublas_handle, int64_t cublas_handle,
int64_t cuda_stream); int64_t cuda_stream);
void bmm_fp8(
at::Tensor A,
at::Tensor B,
at::Tensor D,
at::Tensor A_scale,
at::Tensor B_scale,
at::Tensor workspace_buffer,
int64_t cublas_handle,
int64_t cuda_stream);
/* /*
* From csrc/moe * From csrc/moe
...@@ -198,15 +207,6 @@ void build_tree_kernel( ...@@ -198,15 +207,6 @@ void build_tree_kernel(
/* /*
* From FlashInfer * From FlashInfer
*/ */
void bmm_fp8(
at::Tensor A,
at::Tensor B,
at::Tensor D,
at::Tensor A_scale,
at::Tensor B_scale,
at::Tensor workspace_buffer,
int64_t cublas_handle,
int64_t cuda_stream);
void min_p_sampling_from_probs( void min_p_sampling_from_probs(
at::Tensor probs, at::Tensor probs,
at::Tensor uniform_samples, at::Tensor uniform_samples,
......
[build-system] [build-system]
requires = ["setuptools>=61.0", "wheel", "torch"] requires = [
"setuptools>=61.0",
"scikit-build-core>=0.10",
"torch==2.5.1",
"wheel",
]
build-backend = "setuptools.build_meta" build-backend = "setuptools.build_meta"
[project] [project]
......
...@@ -97,6 +97,8 @@ sources = [ ...@@ -97,6 +97,8 @@ sources = [
"csrc/allreduce/trt_reduce_kernel.cu", "csrc/allreduce/trt_reduce_kernel.cu",
"csrc/attention/lightning_attention_decode_kernel.cu", "csrc/attention/lightning_attention_decode_kernel.cu",
"csrc/elementwise/fused_add_rms_norm_kernel.cu", "csrc/elementwise/fused_add_rms_norm_kernel.cu",
"csrc/elementwise/rope.cu",
"csrc/gemm/bmm_fp8.cu",
"csrc/gemm/cublas_grouped_gemm.cu", "csrc/gemm/cublas_grouped_gemm.cu",
"csrc/gemm/fp8_gemm_kernel.cu", "csrc/gemm/fp8_gemm_kernel.cu",
"csrc/gemm/fp8_blockwise_gemm_kernel.cu", "csrc/gemm/fp8_blockwise_gemm_kernel.cu",
...@@ -109,11 +111,9 @@ sources = [ ...@@ -109,11 +111,9 @@ sources = [
"csrc/speculative/speculative_sampling.cu", "csrc/speculative/speculative_sampling.cu",
"csrc/torch_extension.cc", "csrc/torch_extension.cc",
"3rdparty/flashinfer/csrc/activation.cu", "3rdparty/flashinfer/csrc/activation.cu",
"3rdparty/flashinfer/csrc/bmm_fp8.cu",
"3rdparty/flashinfer/csrc/norm.cu", "3rdparty/flashinfer/csrc/norm.cu",
"3rdparty/flashinfer/csrc/sampling.cu",
"3rdparty/flashinfer/csrc/renorm.cu", "3rdparty/flashinfer/csrc/renorm.cu",
"3rdparty/flashinfer/csrc/rope.cu", "3rdparty/flashinfer/csrc/sampling.cu",
] ]
enable_bf16 = os.getenv("SGL_KERNEL_ENABLE_BF16", "0") == "1" enable_bf16 = os.getenv("SGL_KERNEL_ENABLE_BF16", "0") == "1"
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment