sgl_kernel_ops.h 19.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
/* Copyright 2025 SGLang Team. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

16
#pragma once
17

18
19
#include <ATen/ATen.h>
#include <ATen/Tensor.h>
20
#include <Python.h>
21
22
#include <torch/library.h>
#include <torch/torch.h>
23

24
#include <tuple>
25
26
#include <vector>

27
28
29
30
31
32
33
34
35
36
37
38
39
40
#define _CONCAT(A, B) A##B
#define CONCAT(A, B) _CONCAT(A, B)

#define _STRINGIFY(A) #A
#define STRINGIFY(A) _STRINGIFY(A)

#define TORCH_LIBRARY_EXPAND(NAME, MODULE) TORCH_LIBRARY(NAME, MODULE)

#define REGISTER_EXTENSION(NAME)                                                                      \
  PyMODINIT_FUNC CONCAT(PyInit_, NAME)() {                                                            \
    static struct PyModuleDef module = {PyModuleDef_HEAD_INIT, STRINGIFY(NAME), nullptr, 0, nullptr}; \
    return PyModule_Create(&module);                                                                  \
  }

Ke Bao's avatar
Ke Bao committed
41
using fptr_t = int64_t;
42
43
44
45

/*
 * From csrc/allreduce
 */
46
#ifdef USE_ROCM
47
// ROCM custom allreduce
48
49
50
51
52
53
54
fptr_t init_custom_ar(
    torch::Tensor& meta,
    torch::Tensor& rank_data,
    const std::vector<std::string>& handles,
    const std::vector<int64_t>& offsets,
    int64_t rank,
    bool full_nvlink);
55
56
57
58
void all_reduce_reg(fptr_t _fa, torch::Tensor& inp, torch::Tensor& out);
void all_reduce_unreg(fptr_t _fa, torch::Tensor& inp, torch::Tensor& reg_buffer, torch::Tensor& out);
void dispose(fptr_t _fa);
int64_t meta_size();
59
60
void register_buffer(
    fptr_t _fa, torch::Tensor& t, const std::vector<std::string>& handles, const std::vector<int64_t>& offsets);
61
std::tuple<torch::Tensor, std::vector<int64_t>> get_graph_buffer_ipc_meta(fptr_t _fa);
62
63
void register_graph_buffers(
    fptr_t _fa, const std::vector<std::string>& handles, const std::vector<std::vector<int64_t>>& offsets);
64
65
66
torch::Tensor allocate_meta_buffer(int64_t size);
torch::Tensor get_meta_buffer_ipc_handle(torch::Tensor& inp);
#else
67
68
69
// custom allreduce
fptr_t
init_custom_ar(const std::vector<fptr_t>& fake_ipc_ptrs, torch::Tensor& rank_data, int64_t rank, bool full_nvlink);
Ke Bao's avatar
Ke Bao committed
70
void dispose(fptr_t _fa);
71
72
int64_t meta_size();
void all_reduce(fptr_t _fa, torch::Tensor& inp, torch::Tensor& out, fptr_t _reg_buffer, int64_t reg_buffer_sz_bytes);
73
std::tuple<std::vector<int64_t>, std::vector<int64_t>> get_graph_buffer_ipc_meta(fptr_t _fa);
74
void register_buffer(fptr_t _fa, const std::vector<fptr_t>& fake_ipc_ptrs);
75
76
void register_graph_buffers(
    fptr_t _fa, const std::vector<std::vector<int64_t>>& handles, const std::vector<std::vector<int64_t>>& offsets);
77
78
79
80
81
82
83
84
85
86
87
88
torch::Tensor mscclpp_generate_unique_id();
fptr_t mscclpp_init_context(
    const torch::Tensor& unique_id,
    const int64_t rank,
    const int64_t world_size,
    torch::Tensor& scratch,
    torch::Tensor& put_buffer,
    const int64_t nranks_per_node,
    const std::vector<int64_t>& rank_to_node,
    const std::vector<int64_t>& rank_to_ib,
    const int64_t context_selection);
void mscclpp_allreduce(fptr_t _context, torch::Tensor& inp, torch::Tensor& out, int64_t nthreads, int64_t nblocks);
89
#endif
Ke Bao's avatar
Ke Bao committed
90

91
92
93
94
95
96
97
98
99
100
101
/*
 * From csrc/attention
 */
void lightning_attention_decode(
    const torch::Tensor& q,
    const torch::Tensor& k,
    const torch::Tensor& v,
    const torch::Tensor& past_kv,
    const torch::Tensor& slope,
    torch::Tensor output,
    torch::Tensor new_kv);
Yineng Zhang's avatar
Yineng Zhang committed
102
103
void merge_state(
    at::Tensor v_a, at::Tensor s_a, at::Tensor v_b, at::Tensor s_b, at::Tensor v_merged, at::Tensor s_merged);
104
105
void merge_state_v2(
    at::Tensor v_a, at::Tensor s_a, at::Tensor v_b, at::Tensor s_b, at::Tensor v_merged, at::Tensor s_merged);
106
107
void cutlass_mla_decode(
    torch::Tensor const& out,
108
109
    torch::Tensor const& q_nope,
    torch::Tensor const& q_pe,
110
111
112
    torch::Tensor const& kv_c_and_k_pe_cache,
    torch::Tensor const& seq_lens,
    torch::Tensor const& page_table,
113
    torch::Tensor const& workspace,
114
115
    double sm_scale,
    int64_t num_kv_splits = 1 /* Set to 1 to avoid cuda_graph issue by default. */);
116
int64_t cutlass_mla_get_workspace_size(
117
118
119
120
    int64_t max_seq_len,
    int64_t num_batches,
    int64_t sm_count = 0,
    int64_t num_kv_splits = 1 /* Set to 1 to avoid cuda_graph issue by default. */);
121
122
123
/*
 * From csrc/elementwise
 */
124
125
126
127
128
void rmsnorm(at::Tensor& output, at::Tensor& input, at::Tensor& weight, double eps, bool enable_pdl);
void sgl_fused_add_rmsnorm(
    torch::Tensor input, torch::Tensor residual, torch::Tensor weight, double eps, bool enable_pdl);
void gemma_rmsnorm(at::Tensor& output, at::Tensor& input, at::Tensor& weight, double eps, bool enable_pdl);
void gemma_fused_add_rmsnorm(at::Tensor& input, at::Tensor& residual, at::Tensor& weight, double eps, bool enable_pdl);
129
130
131
void silu_and_mul(at::Tensor& out, at::Tensor& input, int64_t cuda_stream);
void gelu_tanh_and_mul(at::Tensor& out, at::Tensor& input, int64_t cuda_stream);
void gelu_and_mul(at::Tensor& out, at::Tensor& input, int64_t cuda_stream);
132
133
134
135
136
137
138
139
140
void apply_rope_pos_ids_cos_sin_cache(
    at::Tensor q,
    at::Tensor k,
    at::Tensor q_rope,
    at::Tensor k_rope,
    at::Tensor cos_sin_cache,
    at::Tensor pos_ids,
    bool interleave,
    int64_t cuda_stream);
141

142
143
144
/*
 * From csrc/gemm
 */
145
torch::Tensor awq_dequantize(torch::Tensor qweight, torch::Tensor scales, torch::Tensor qzeros);
Trevor Morris's avatar
Trevor Morris committed
146
147
148
149
150
151
152
void cutlass_scaled_fp4_mm(
    torch::Tensor& D,
    torch::Tensor const& A,
    torch::Tensor const& B,
    torch::Tensor const& A_sf,
    torch::Tensor const& B_sf,
    torch::Tensor const& alpha);
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
torch::Tensor int8_scaled_mm(
    const torch::Tensor& mat_a,
    const torch::Tensor& mat_b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const torch::Dtype& out_dtype,
    const c10::optional<torch::Tensor>& bias);
torch::Tensor fp8_scaled_mm(
    const torch::Tensor& mat_a,
    const torch::Tensor& mat_b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const torch::Dtype& out_dtype,
    const c10::optional<torch::Tensor>& bias);
torch::Tensor fp8_blockwise_scaled_mm(
    const torch::Tensor& mat_a,
    const torch::Tensor& mat_b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const torch::Dtype& out_dtype);
Trevor Morris's avatar
Trevor Morris committed
173
174
void scaled_fp4_quant(
    torch::Tensor& output, torch::Tensor const& input, torch::Tensor& output_scale, torch::Tensor const& input_scale);
175
176
177
178
179
180
181
void sgl_per_token_group_quant_fp8(
    at::Tensor input,
    at::Tensor output_q,
    at::Tensor output_s,
    int64_t group_size,
    double eps,
    double fp8_min,
182
183
    double fp8_max,
    bool scale_ue8m0);
184
185
186
187
188
189
190
191
void sgl_per_token_group_quant_int8(
    at::Tensor input,
    at::Tensor output_q,
    at::Tensor output_s,
    int64_t group_size,
    double eps,
    double int8_min,
    double int8_max);
192
void sgl_per_tensor_quant_fp8(at::Tensor input, at::Tensor output_q, at::Tensor output_s, bool is_static);
193
void sgl_per_token_quant_fp8(at::Tensor input, at::Tensor output_q, at::Tensor output_s);
194
195
196
197
198
199
200
201
202
void bmm_fp8(
    at::Tensor A,
    at::Tensor B,
    at::Tensor D,
    at::Tensor A_scale,
    at::Tensor B_scale,
    at::Tensor workspace_buffer,
    int64_t cublas_handle,
    int64_t cuda_stream);
203

204
205
void dsv3_fused_a_gemm(torch::Tensor& output, torch::Tensor const& mat_a, torch::Tensor const& mat_b);

206
207
208
/*
 * From csrc/moe
 */
209
210
211
212
213
214
215
216
void moe_align_block_size(
    torch::Tensor topk_ids,
    int64_t num_experts,
    int64_t block_size,
    torch::Tensor sorted_token_ids,
    torch::Tensor experts_ids,
    torch::Tensor num_tokens_post_pad,
    torch::Tensor token_cnts_buffer,
217
218
    torch::Tensor cumsum_buffer,
    bool pad_sorted_token_ids);
219

220
221
222
223
224
225
void topk_softmax(
    torch::Tensor& topk_weights,
    torch::Tensor& topk_indices,
    torch::Tensor& token_expert_indices,
    torch::Tensor& gating_output);

226
227
228
229
230
231
std::vector<at::Tensor> moe_fused_gate(
    at::Tensor& input,
    at::Tensor& bias,
    int64_t num_expert_group,
    int64_t topk_group,
    int64_t topk,
232
    int64_t num_fused_shared_experts,
233
    double routed_scaling_factor);
234

235
236
void fp8_blockwise_scaled_grouped_mm(
    torch::Tensor& output,
237
238
239
240
241
    torch::Tensor& a_ptrs,
    torch::Tensor& b_ptrs,
    torch::Tensor& out_ptrs,
    torch::Tensor& a_scales_ptrs,
    torch::Tensor& b_scales_ptrs,
242
243
244
245
246
247
248
249
250
251
    const torch::Tensor& a,
    const torch::Tensor& b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const torch::Tensor& stride_a,
    const torch::Tensor& stride_b,
    const torch::Tensor& stride_c,
    const torch::Tensor& layout_sfa,
    const torch::Tensor& layout_sfb,
    const torch::Tensor& problem_sizes,
252
253
254
255
256
257
    const torch::Tensor& expert_offsets,
    const torch::Tensor& workspace);

void prepare_moe_input(
    const torch::Tensor& topk_ids,
    torch::Tensor& expert_offsets,
258
    const std::optional<torch::Tensor>& blockscale_offsets,
259
260
261
262
263
264
265
    torch::Tensor& problem_sizes1,
    torch::Tensor& problem_sizes2,
    torch::Tensor& input_permutation,
    torch::Tensor& output_permutation,
    const int64_t num_experts,
    const int64_t n,
    const int64_t k);
266

267
268
269
270
271
272
273
274
275
276
277
void ep_moe_pre_reorder(
    torch::Tensor input,
    torch::Tensor gateup_input,
    torch::Tensor src2dst,
    torch::Tensor topk_ids,
    torch::Tensor a1_scales,
    int64_t start_expert_id,
    int64_t end_expert_id,
    int64_t topk,
    bool use_per_token_if_dynamic);

278
279
280
281
282
283
284
285
void ep_moe_silu_and_mul(
    torch::Tensor gateup_output,
    torch::Tensor down_input,
    torch::Tensor reorder_topk_ids,
    torch::Tensor scales,
    int64_t start_expert_id,
    int64_t end_expert_id);

286
287
288
289
290
291
292
293
294
295
void ep_moe_post_reorder(
    torch::Tensor down_output,
    torch::Tensor output,
    torch::Tensor src2dst,
    torch::Tensor topk_ids,
    torch::Tensor topk_weights,
    int64_t start_expert_id,
    int64_t end_expert_id,
    int64_t topk);

296
297
void shuffle_rows(const torch::Tensor& input_tensor, const torch::Tensor& dst2src_map, torch::Tensor& output_tensor);

298
299
300
301
302
303
void apply_shuffle_mul_sum(
    const torch::Tensor& input,
    torch::Tensor& output,
    const torch::Tensor& permutation,
    const std::optional<torch::Tensor>& factors);

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
void cutlass_fp4_group_mm(
    torch::Tensor& output,
    const torch::Tensor& a,
    const torch::Tensor& b,
    const torch::Tensor& a_blockscale,
    const torch::Tensor& b_blockscales,
    const torch::Tensor& alphas,
    const torch::Tensor& ab_strides,
    const torch::Tensor& c_strides,
    const torch::Tensor& problem_sizes,
    const torch::Tensor& expert_offsets,
    const torch::Tensor& sf_offsets);

void scaled_fp4_experts_quant(
    torch::Tensor& output,
    torch::Tensor& output_scale,
    torch::Tensor const& input,
    torch::Tensor const& input_global_scale,
    torch::Tensor const& input_offset_by_experts,
    torch::Tensor const& output_scale_offset_by_experts);

325
326
327
/*
 * From csrc/speculative
 */
328
void tree_speculative_sampling_target_only(
329
330
    at::Tensor predicts,          // mutable
    at::Tensor accept_index,      // mutable
331
332
333
334
335
336
    at::Tensor accept_token_num,  // mutable
    at::Tensor candidates,
    at::Tensor retrive_index,
    at::Tensor retrive_next_token,
    at::Tensor retrive_next_sibling,
    at::Tensor uniform_samples,
337
    at::Tensor uniform_samples_for_final_sampling,
338
339
    at::Tensor target_probs,
    at::Tensor draft_probs,
340
341
    double threshold_single = 1,
    double threshold_acc = 1,
342
343
344
    bool deterministic = true,
    int64_t cuda_stream = 0);

345
346
347
348
349
void verify_tree_greedy(
    at::Tensor predicts,          // mutable
    at::Tensor accept_index,      // mutable
    at::Tensor accept_token_num,  // mutable
    at::Tensor candidates,
350
351
352
    at::Tensor retrive_index,
    at::Tensor retrive_next_token,
    at::Tensor retrive_next_sibling,
353
354
    at::Tensor target_predict,
    int64_t cuda_stream = 0);
355

356
void build_tree_kernel_efficient(
357
358
359
360
361
362
    at::Tensor parent_list,
    at::Tensor selected_index,
    at::Tensor verified_seq_len,
    at::Tensor tree_mask,
    at::Tensor positions,
    at::Tensor retrive_index,
363
364
    at::Tensor retrive_next_token,
    at::Tensor retrive_next_sibling,
365
366
367
    int64_t topk,
    int64_t depth,
    int64_t draft_token_num);
368

369
void segment_packbits(
370
371
372
373
374
375
    at::Tensor x,
    at::Tensor input_indptr,
    at::Tensor output_indptr,
    at::Tensor y,
    int64_t batch_size,
    int64_t cuda_stream = 0);
376

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
/*
 * From csrc/kvcacheio
 */
void transfer_kv_per_layer(
    const at::Tensor src_k,
    at::Tensor dst_k,
    const at::Tensor src_v,
    at::Tensor dst_v,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
    int64_t item_size,
    int64_t block_quota,
    int64_t num_warps_per_block);

void transfer_kv_per_layer_direct(
    const at::Tensor src_k,
    at::Tensor dst_k,
    const at::Tensor src_v,
    at::Tensor dst_v,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
    int64_t page_size);

void transfer_kv_all_layer(
    const at::Tensor src_k,
    at::Tensor dst_k,
    const at::Tensor src_v,
    at::Tensor dst_v,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
    int64_t item_size,
    int64_t num_layers,
    int64_t src_layer_offset,
    int64_t dst_layer_offset,
    int64_t block_quota,
    int64_t num_warps_per_block);

void transfer_kv_all_layer_direct(
    const at::Tensor src_k,
    at::Tensor dst_k,
    const at::Tensor src_v,
    at::Tensor dst_v,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
    int64_t page_size,
    int64_t num_layers);

void transfer_kv_per_layer_mla(
    const at::Tensor src,
    at::Tensor dst,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
    int64_t item_size,
    int64_t block_quota,
    int64_t num_warps_per_block);

void transfer_kv_per_layer_mla_direct(
    const at::Tensor src,
    at::Tensor dst,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
    int64_t page_size);

void transfer_kv_all_layer_mla(
    const at::Tensor src,
    at::Tensor dst,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
    int64_t item_size,
    int64_t num_layers,
    int64_t src_layer_offset,
    int64_t dst_layer_offset,
    int64_t block_quota,
    int64_t num_warps_per_block);

void transfer_kv_all_layer_mla_direct(
    const at::Tensor src,
    at::Tensor dst,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
    int64_t page_size,
    int64_t num_layers);

460
461
462
/*
 * From FlashInfer
 */
463
464
void min_p_sampling_from_probs(
    at::Tensor probs,
465
466
    at::Tensor output,
    std::optional<at::Tensor> maybe_indices,
467
468
469
    std::optional<at::Tensor> maybe_min_p_arr,
    double min_p_val,
    bool deterministic,
470
    std::optional<at::Generator> gen);
471

472
void top_k_renorm_probs(
473
    at::Tensor probs, at::Tensor renorm_probs, std::optional<at::Tensor> maybe_top_k_arr, int64_t top_k_val);
474

475
void top_p_renorm_probs(
476
    at::Tensor probs, at::Tensor renorm_probs, std::optional<at::Tensor> maybe_top_p_arr, double top_p_val);
477

478
479
void top_k_top_p_sampling_from_probs(
    at::Tensor probs,
480
481
    at::Tensor output,
    std::optional<at::Tensor> maybe_indices,
482
483
484
485
486
    std::optional<at::Tensor> maybe_top_k_arr,
    double top_k_val,
    std::optional<at::Tensor> maybe_top_p_arr,
    double top_p_val,
    bool deterministic,
487
    std::optional<at::Generator> gen);
488

489
490
void top_p_sampling_from_probs(
    at::Tensor probs,
491
492
    at::Tensor output,
    std::optional<at::Tensor> maybe_indices,
493
494
495
    std::optional<at::Tensor> maybe_top_p_arr,
    double top_p_val,
    bool deterministic,
496
    std::optional<at::Generator> gen);
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542

namespace flash {
/*
 * From fa2 sparse
 */
std::vector<at::Tensor> mha_fwd_sparse(
    at::Tensor& q,        // batch_size x seqlen_q x num_heads x head_size
    const at::Tensor& k,  // batch_size x seqlen_k x num_heads_k x head_size
    const at::Tensor& v,  // batch_size x seqlen_k x num_heads_k x head_size
    const at::Tensor& block_count,
    const at::Tensor& block_offset,
    const at::Tensor& column_count,
    const at::Tensor& column_index,
    const std::optional<at::Tensor>& out_,           // batch_size x seqlen_q x num_heads x head_size
    const std::optional<at::Tensor>& alibi_slopes_,  // num_heads or batch_size x num_heads
    const double p_dropout,
    const double softmax_scale,
    bool is_causal,
    const double softcap,
    const bool return_softmax,
    std::optional<at::Generator> gen_);

std::vector<at::Tensor> mha_varlen_fwd_sparse(
    at::Tensor& q,        // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
    const at::Tensor& k,  // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i.
    const at::Tensor& v,  // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i.
    const at::Tensor& block_count,
    const at::Tensor& block_offset,
    const at::Tensor& column_count,
    const at::Tensor& column_index,
    const c10::optional<at::Tensor>& out_,  // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
    const at::Tensor& cu_seqlens_q,         // b+1
    const at::Tensor& cu_seqlens_k,         // b+1
    const c10::optional<at::Tensor>&
        seqused_k,  // b. If given, only this many elements of each batch element's keys are used.
    const c10::optional<at::Tensor>& alibi_slopes_,  // num_heads or b x num_heads
    int64_t max_seqlen_q,
    const int64_t max_seqlen_k,
    const double p_dropout,
    const double softmax_scale,
    const bool zero_tensors,
    bool is_causal,
    const double softcap,
    const bool return_softmax,
    c10::optional<at::Generator> gen_);
}  // namespace flash
543

544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
void convert_vertical_slash_indexes(
    torch::Tensor& block_count,      // [BATCH, N_HEADS, NUM_ROWS]
    torch::Tensor& block_offset,     // [BATCH, N_HEADS, NUM_ROWS, NNZ_S]
    torch::Tensor& column_count,     // [BATCH, N_HEADS, NUM_ROWS]
    torch::Tensor& column_index,     // [BATCH, N_HEADS, NUM_ROWS, NNZ_V]
    torch::Tensor q_seqlens,         // [BATCH, ]
    torch::Tensor kv_seqlens,        // [BATCH, ]
    torch::Tensor vertical_indexes,  // [BATCH, N_HEADS, NNZ_V]
    torch::Tensor slash_indexes,     // [BATCH, N_HEADS, NNZ_S]
    int64_t context_size,
    int64_t block_size_M,
    int64_t block_size_N,
    bool causal);

void convert_vertical_slash_indexes_mergehead(
    torch::Tensor& block_count,            // [BATCH, N_HEADS, NUM_ROWS]
    torch::Tensor& block_offset,           // [BATCH, N_HEADS, NUM_ROWS, NNZ_S]
    torch::Tensor& column_count,           // [BATCH, N_HEADS, NUM_ROWS]
    torch::Tensor& column_index,           // [BATCH, N_HEADS, NUM_ROWS, NNZ_V]
    torch::Tensor q_seqlens,               // [BATCH, ]
    torch::Tensor kv_seqlens,              // [BATCH, ]
    torch::Tensor vertical_indexes,        // [BATCH, N_HEADS, NNZ_V]
    torch::Tensor slash_indexes,           // [BATCH, N_HEADS, NNZ_S]
    torch::Tensor vertical_indices_count,  // [N_HEADS, ]
    torch::Tensor slash_indices_count,
    int64_t context_size,
    int64_t block_size_M,
    int64_t block_size_N,
    bool causal);

574
575
576
577
/*
 * From XGrammar
 */
void ApplyTokenBitmaskInplace(at::Tensor logits, at::Tensor bitmask, at::optional<at::Tensor> indices = at::nullopt);
HandH1998's avatar
HandH1998 committed
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

/*
 * From QServe
 */
void qserve_w4a8_per_chn_gemm(
    const torch::Tensor& _in_feats,
    const torch::Tensor& _kernel,
    const torch::Tensor& _wscales,
    const torch::Tensor& _ascales,
    const torch::Tensor& _w_szs,
    const torch::Tensor& _a_ssums,
    torch::Tensor& _out_feats);

void qserve_w4a8_per_group_gemm(
    const torch::Tensor& _in_feats,
    const torch::Tensor& _kernel,
    const torch::Tensor& _zeros,
    const torch::Tensor& _scales_i8,
    const torch::Tensor& _wscales,
    const torch::Tensor& _ascales,
    torch::Tensor& _out_feats);