sgl_kernel_ops.h 8.64 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
/* Copyright 2025 SGLang Team. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

16
#pragma once
17

18
19
20
#include <Python.h>
#include <torch/extension.h>

21
22
#include <vector>

23
24
25
26
27
28
29
30
31
32
33
34
35
36
#define _CONCAT(A, B) A##B
#define CONCAT(A, B) _CONCAT(A, B)

#define _STRINGIFY(A) #A
#define STRINGIFY(A) _STRINGIFY(A)

#define TORCH_LIBRARY_EXPAND(NAME, MODULE) TORCH_LIBRARY(NAME, MODULE)

#define REGISTER_EXTENSION(NAME)                                                                      \
  PyMODINIT_FUNC CONCAT(PyInit_, NAME)() {                                                            \
    static struct PyModuleDef module = {PyModuleDef_HEAD_INIT, STRINGIFY(NAME), nullptr, 0, nullptr}; \
    return PyModule_Create(&module);                                                                  \
  }

Ke Bao's avatar
Ke Bao committed
37
using fptr_t = int64_t;
38
39
40
41

/*
 * From csrc/allreduce
 */
42
#ifdef USE_ROCM
43
// ROCM custom allreduce
44
45
46
47
48
49
50
fptr_t init_custom_ar(
    torch::Tensor& meta,
    torch::Tensor& rank_data,
    const std::vector<std::string>& handles,
    const std::vector<int64_t>& offsets,
    int64_t rank,
    bool full_nvlink);
51
52
53
54
void all_reduce_reg(fptr_t _fa, torch::Tensor& inp, torch::Tensor& out);
void all_reduce_unreg(fptr_t _fa, torch::Tensor& inp, torch::Tensor& reg_buffer, torch::Tensor& out);
void dispose(fptr_t _fa);
int64_t meta_size();
55
56
void register_buffer(
    fptr_t _fa, torch::Tensor& t, const std::vector<std::string>& handles, const std::vector<int64_t>& offsets);
57
std::tuple<torch::Tensor, std::vector<int64_t>> get_graph_buffer_ipc_meta(fptr_t _fa);
58
59
void register_graph_buffers(
    fptr_t _fa, const std::vector<std::string>& handles, const std::vector<std::vector<int64_t>>& offsets);
60
61
62
torch::Tensor allocate_meta_buffer(int64_t size);
torch::Tensor get_meta_buffer_ipc_handle(torch::Tensor& inp);
#else
63
// TRTLLM custom allreduce
64
65
66
67
68
69
70
71
fptr_t init_custom_ar(
    int64_t rank_id,
    int64_t world_size,
    torch::Tensor& rank_data,
    const std::vector<fptr_t>& buffers,
    const std::vector<fptr_t>& tmp_result_buffers,
    const std::vector<fptr_t>& barrier_in,
    const std::vector<fptr_t>& barrier_out);
Ke Bao's avatar
Ke Bao committed
72
73
void dispose(fptr_t _fa);
void all_reduce(fptr_t _fa, torch::Tensor& inp, torch::Tensor& out);
74
std::tuple<std::vector<int64_t>, std::vector<int64_t>> get_graph_buffer_ipc_meta(fptr_t _fa);
75
76
void register_graph_buffers(
    fptr_t _fa, const std::vector<std::vector<int64_t>>& handles, const std::vector<std::vector<int64_t>>& offsets);
77
#endif
Ke Bao's avatar
Ke Bao committed
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
/*
 * From csrc/attention
 */
void lightning_attention_decode(
    const torch::Tensor& q,
    const torch::Tensor& k,
    const torch::Tensor& v,
    const torch::Tensor& past_kv,
    const torch::Tensor& slope,
    torch::Tensor output,
    torch::Tensor new_kv);

/*
 * From csrc/elementwise
 */
void rmsnorm(at::Tensor& output, at::Tensor& input, at::Tensor& weight, double eps, int64_t cuda_stream);
void sgl_fused_add_rmsnorm(torch::Tensor input, torch::Tensor residual, torch::Tensor weight, double eps);
void gemma_rmsnorm(at::Tensor& output, at::Tensor& input, at::Tensor& weight, double eps, int64_t cuda_stream);
void gemma_fused_add_rmsnorm(
    at::Tensor& input, at::Tensor& residual, at::Tensor& weight, double eps, int64_t cuda_stream);
void silu_and_mul(at::Tensor& out, at::Tensor& input, int64_t cuda_stream);
void gelu_tanh_and_mul(at::Tensor& out, at::Tensor& input, int64_t cuda_stream);
void gelu_and_mul(at::Tensor& out, at::Tensor& input, int64_t cuda_stream);
102
103
104
105
106
107
108
109
110
void apply_rope_pos_ids_cos_sin_cache(
    at::Tensor q,
    at::Tensor k,
    at::Tensor q_rope,
    at::Tensor k_rope,
    at::Tensor cos_sin_cache,
    at::Tensor pos_ids,
    bool interleave,
    int64_t cuda_stream);
111

112
113
114
/*
 * From csrc/gemm
 */
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
torch::Tensor int8_scaled_mm(
    const torch::Tensor& mat_a,
    const torch::Tensor& mat_b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const torch::Dtype& out_dtype,
    const c10::optional<torch::Tensor>& bias);
torch::Tensor fp8_scaled_mm(
    const torch::Tensor& mat_a,
    const torch::Tensor& mat_b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const torch::Dtype& out_dtype,
    const c10::optional<torch::Tensor>& bias);
torch::Tensor fp8_blockwise_scaled_mm(
    const torch::Tensor& mat_a,
    const torch::Tensor& mat_b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const torch::Dtype& out_dtype);
void sgl_per_token_group_quant_fp8(
    at::Tensor input,
    at::Tensor output_q,
    at::Tensor output_s,
    int64_t group_size,
    double eps,
    double fp8_min,
    double fp8_max);
143
void sgl_per_tensor_quant_fp8(at::Tensor input, at::Tensor output_q, at::Tensor output_s, bool is_static);
144
void sgl_per_token_quant_fp8(at::Tensor input, at::Tensor output_q, at::Tensor output_s);
145
146
147
148
149
150
151
void cublas_grouped_gemm(
    const std::vector<torch::Tensor>& inputs,
    const std::vector<torch::Tensor>& weights,
    const std::vector<torch::Tensor>& outputs,
    const torch::Dtype& out_dtype,
    int64_t cublas_handle,
    int64_t cuda_stream);
152
153
154
155
156
157
158
159
160
void bmm_fp8(
    at::Tensor A,
    at::Tensor B,
    at::Tensor D,
    at::Tensor A_scale,
    at::Tensor B_scale,
    at::Tensor workspace_buffer,
    int64_t cublas_handle,
    int64_t cuda_stream);
161

162
163
164
/*
 * From csrc/moe
 */
165
166
167
168
169
170
171
172
173
void moe_align_block_size(
    torch::Tensor topk_ids,
    int64_t num_experts,
    int64_t block_size,
    torch::Tensor sorted_token_ids,
    torch::Tensor experts_ids,
    torch::Tensor num_tokens_post_pad,
    torch::Tensor token_cnts_buffer,
    torch::Tensor cumsum_buffer);
174

175
176
177
/*
 * From csrc/speculative
 */
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
void tree_speculative_sampling_target_only(
    at::Tensor predicts,
    at::Tensor accept_index,
    at::Tensor accept_token_num,  // mutable
    at::Tensor candidates,
    at::Tensor retrive_index,
    at::Tensor retrive_next_token,
    at::Tensor retrive_next_sibling,
    at::Tensor uniform_samples,
    at::Tensor target_probs,
    at::Tensor draft_probs,
    bool deterministic = true,
    int64_t cuda_stream = 0);

void build_tree_kernel_efficient(
    at::Tensor parent_list,
    at::Tensor selected_index,
    at::Tensor verified_seq_len,
    at::Tensor tree_mask,
    at::Tensor positions,
    at::Tensor retrive_index,
    at::Tensor retrive_next_token,
    at::Tensor retrive_next_sibling,
    int64_t topk,
    int64_t depth,
    int64_t draft_token_num);

void build_tree_kernel(
    at::Tensor parent_list,
    at::Tensor selected_index,
    at::Tensor verified_seq_len,
    at::Tensor tree_mask,
    at::Tensor positions,
    at::Tensor retrive_index,
    int64_t topk,
    int64_t depth,
    int64_t draft_token_num);
215

216
217
218
/*
 * From FlashInfer
 */
219
220
221
222
223
224
225
226
void min_p_sampling_from_probs(
    at::Tensor probs,
    at::Tensor uniform_samples,
    at::Tensor samples,
    std::optional<at::Tensor> maybe_min_p_arr,
    double min_p_val,
    bool deterministic,
    int64_t cuda_stream);
227
// top k renorm probs
228
// patch here, cause flashinfer use unsigned int. but torch must use int64_t for extension.
229
230
231
232
233
234
void top_k_renorm_probs(
    at::Tensor probs,
    at::Tensor renorm_probs,
    std::optional<at::Tensor> maybe_top_k_arr,
    unsigned int top_k_val,
    int64_t cuda_stream);
235
// patch here, cause flashinfer use unsigned int. but torch must use int64_t for extension.
236
237
238
239
240
241
inline void top_k_renorm_probs_wrapper(
    at::Tensor probs,
    at::Tensor renorm_probs,
    std::optional<at::Tensor> maybe_top_k_arr,
    int64_t top_k_val,
    int64_t cuda_stream) {
242
243
  top_k_renorm_probs(probs, renorm_probs, maybe_top_k_arr, static_cast<unsigned int>(top_k_val), cuda_stream);
}
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
void top_p_renorm_probs(
    at::Tensor probs,
    at::Tensor renorm_probs,
    std::optional<at::Tensor> maybe_top_p_arr,
    double top_p_val,
    int64_t cuda_stream);
void top_k_top_p_sampling_from_probs(
    at::Tensor probs,
    at::Tensor uniform_samples,
    at::Tensor samples,
    at::Tensor success,
    std::optional<at::Tensor> maybe_top_k_arr,
    double top_k_val,
    std::optional<at::Tensor> maybe_top_p_arr,
    double top_p_val,
    bool deterministic,
    int64_t cuda_stream);
void top_p_sampling_from_probs(
    at::Tensor probs,
    at::Tensor uniform_samples,
    at::Tensor samples,
    at::Tensor success,
    std::optional<at::Tensor> maybe_top_p_arr,
    double top_p_val,
    bool deterministic,
    int64_t cuda_stream);