router.rs 65.1 KB
Newer Older
1
2
// gRPC Router Implementation

3
use std::collections::HashMap;
4
5
6
7
8
9
10
11
use std::sync::Arc;

use async_trait::async_trait;
use axum::{
    body::Body,
    extract::Request,
    http::{HeaderMap, StatusCode},
    response::{IntoResponse, Response},
12
    Json,
13
14
15
};
use tracing::{debug, error, info, warn};

16
use crate::config::types::RetryConfig;
17
use crate::core::{ConnectionMode, Worker, WorkerRegistry, WorkerType};
18
use crate::grpc_client::{proto, SglangSchedulerClient};
19
use crate::metrics::RouterMetrics;
20
use crate::policies::PolicyRegistry;
21
22
use crate::protocols::spec::ChatMessage;
use crate::protocols::spec::{
23
    ChatChoice, ChatCompletionMessage, ChatCompletionRequest, ChatCompletionResponse,
24
25
26
    CompletionRequest, EmbeddingRequest, FunctionCallResponse, GenerateRequest, RerankRequest,
    ResponsesGetParams, ResponsesRequest, StringOrArray, Tool, ToolCall, ToolChoice,
    ToolChoiceValue, Usage,
27
};
28
use crate::reasoning_parser::ParserFactory;
29
use crate::routers::RouterTrait;
30
31
use crate::server::AppContext;
use crate::tokenizer::chat_template::{ChatTemplateContentFormat, ChatTemplateParams};
32
33
34
use crate::tokenizer::stop::{
    SequenceDecoderOutput, StopSequenceDecoder, StopSequenceDecoderBuilder,
};
35
use crate::tokenizer::traits::Tokenizer;
36
use crate::tokenizer::HuggingFaceTokenizer;
37
use crate::tool_parser::ParserRegistry;
38
use proto::generate_response::Response::{Chunk, Complete, Error};
39
use serde_json::{json, Map, Value};
40
use std::time::{Instant, SystemTime, UNIX_EPOCH};
41
use tokio_stream::StreamExt;
42
use uuid::Uuid;
43

44
45
46
47
48
49
50
// Data structures for processing
#[derive(Debug)]
pub struct ProcessedMessages {
    pub text: String,
    pub multimodal_inputs: Option<proto::MultimodalInputs>,
    pub stop_sequences: Option<StringOrArray>,
}
51

52
/// gRPC router implementation for SGLang
53
#[allow(dead_code)]
54
pub struct GrpcRouter {
55
56
    worker_registry: Arc<WorkerRegistry>,
    policy_registry: Arc<PolicyRegistry>,
57
58
59
60
61
62
63
    tokenizer: Arc<dyn Tokenizer>,
    reasoning_parser_factory: ParserFactory,
    tool_parser_registry: &'static ParserRegistry,
    dp_aware: bool,
    api_key: Option<String>,
    retry_config: RetryConfig,
}
64
65

impl GrpcRouter {
66
    /// Create a new gRPC router
67
    pub async fn new(ctx: &Arc<AppContext>) -> Result<Self, String> {
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        // Extract necessary components from context
        let tokenizer = ctx
            .tokenizer
            .as_ref()
            .ok_or_else(|| "gRPC router requires tokenizer".to_string())?
            .clone();
        let reasoning_parser_factory = ctx
            .reasoning_parser_factory
            .as_ref()
            .ok_or_else(|| "gRPC router requires reasoning parser factory".to_string())?
            .clone();
        let tool_parser_registry = ctx
            .tool_parser_registry
            .ok_or_else(|| "gRPC router requires tool parser registry".to_string())?;

83
84
        let worker_registry = ctx.worker_registry.clone();
        let policy_registry = ctx.policy_registry.clone();
Chang Su's avatar
Chang Su committed
85

86
        let workers = worker_registry.get_workers_filtered(
87
            None,
88
            Some(WorkerType::Regular),
89
            Some(ConnectionMode::Grpc { port: None }),
90
            false,
91
92
        );

93
94
        RouterMetrics::set_active_workers(workers.len());
        info!("gRPC router found {} workers in registry", workers.len());
95
96

        Ok(GrpcRouter {
97
98
            worker_registry,
            policy_registry,
99
100
101
            tokenizer,
            reasoning_parser_factory,
            tool_parser_registry,
102
103
104
            dp_aware: ctx.router_config.dp_aware,
            api_key: ctx.router_config.api_key.clone(),
            retry_config: ctx.router_config.effective_retry_config(),
105
106
        })
    }
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

    /// Main route_chat implementation
    async fn route_chat_impl(
        &self,
        _headers: Option<&HeaderMap>,
        body: &ChatCompletionRequest,
        model_id: Option<&str>,
    ) -> Response {
        debug!(
            "Processing chat completion request for model: {:?}",
            model_id
        );

        // Step 1: Select worker (fail fast if no workers available)
        let worker = match self.select_worker_for_request(model_id, None) {
            Some(w) => w,
            None => {
                warn!("No available workers for model: {:?}", model_id);
                return (StatusCode::SERVICE_UNAVAILABLE, "No available workers").into_response();
            }
        };

        debug!("Selected worker: {}", worker.url());

131
        // Step 2: Get gRPC client from worker
132
133
134
        let client = match Self::get_grpc_client_from_worker(&worker).await {
            Ok(client) => client,
            Err(response) => return response,
135
136
        };

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        // Step 3: Filter tools if needed for allowed_tools or specific function
        // Only clone body if we need to modify tools
        let mut body_with_filtered_tools;
        let body_ref = match &body.tool_choice {
            Some(ToolChoice::AllowedTools { tools: allowed, .. }) if body.tools.is_some() => {
                body_with_filtered_tools = body.clone();
                let all_tools = body_with_filtered_tools.tools.as_ref().unwrap();
                let allowed_names: std::collections::HashSet<&str> =
                    allowed.iter().map(|t| t.name.as_str()).collect();
                let filtered_tools: Vec<Tool> = all_tools
                    .iter()
                    .filter(|t| allowed_names.contains(t.function.name.as_str()))
                    .cloned()
                    .collect();
                body_with_filtered_tools.tools = Some(filtered_tools);
                &body_with_filtered_tools
            }
            Some(ToolChoice::Function { function, .. }) if body.tools.is_some() => {
                body_with_filtered_tools = body.clone();
                let all_tools = body_with_filtered_tools.tools.as_ref().unwrap();
                let filtered_tools: Vec<Tool> = all_tools
                    .iter()
                    .filter(|t| t.function.name == function.name)
                    .cloned()
                    .collect();
                body_with_filtered_tools.tools = Some(filtered_tools);
                &body_with_filtered_tools
            }
            _ => body, // No filtering needed, use original
        };

        // Step 4: Process messages and apply chat template
        let processed_messages = match self.process_chat_messages(body_ref) {
170
171
172
173
174
175
176
            Ok(msgs) => msgs,
            Err(e) => {
                error!("Failed to process chat messages: {}", e);
                return (StatusCode::BAD_REQUEST, e.to_string()).into_response();
            }
        };

177
        // Step 5: Tokenize the processed text
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        let encoding = match self.tokenizer.encode(&processed_messages.text) {
            Ok(encoding) => encoding,
            Err(e) => {
                error!("Tokenization failed: {}", e);
                return (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    format!("Tokenization failed: {}", e),
                )
                    .into_response();
            }
        };

        let token_ids = encoding.token_ids().to_vec();
        debug!("Tokenized {} tokens from input", token_ids.len());

193
194
195
        // Step 6: Build tool constraints if needed
        // body_ref already has filtered tools if needed
        let tool_call_constraint = body_ref.tools.as_ref().and_then(|tools| {
196
            self.generate_tool_constraints(tools, &body.tool_choice, &body.model)
197
        });
198

199
        // Step 7: Build the base gRPC request (use body_ref with filtered tools if applicable)
200
        let request_id = format!("chatcmpl-{}", Uuid::new_v4());
201
        let request = match client.build_generate_request(
202
            request_id,
203
            body_ref,
204
            processed_messages.text.clone(),
205
            token_ids,
206
207
208
209
            processed_messages.multimodal_inputs,
            tool_call_constraint, // Pass the full tuple (type, value)
        ) {
            Ok(request) => request,
210
            Err(e) => {
211
                error!("Failed to build gRPC request: {}", e);
212
213
                return (
                    StatusCode::BAD_REQUEST,
214
                    format!("Invalid request parameters: {}", e),
215
216
217
218
219
                )
                    .into_response();
            }
        };

220
        // Step 7: Handle streaming vs non-streaming
221
        if body.stream {
222
            self.handle_streaming_chat(client, request, body).await
223
        } else {
224
            self.handle_non_streaming_chat(client, request, body).await
225
226
227
        }
    }

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    /// Main route_generate implementation
    async fn route_generate_impl(
        &self,
        _headers: Option<&HeaderMap>,
        body: &GenerateRequest,
        model_id: Option<&str>,
    ) -> Response {
        debug!("Processing generate request for model: {:?}", model_id);

        // Step 1: Resolve input (text, prompt, or input_ids)
        let (original_text, token_ids) = match self.resolve_generate_input(body) {
            Ok(res) => res,
            Err(msg) => {
                error!("Invalid generate request: {}", msg);
                return (StatusCode::BAD_REQUEST, msg).into_response();
            }
        };

        debug!("Resolved input with {} tokens", token_ids.len());

        // Step 2: Select worker (fail fast if no workers available)
        let worker = match self.select_worker_for_request(model_id, original_text.as_deref()) {
            Some(w) => w,
            None => {
                warn!("No available workers for model: {:?}", model_id);
                return (StatusCode::SERVICE_UNAVAILABLE, "No available workers").into_response();
            }
        };

        debug!("Selected worker: {}", worker.url());

        // Step 3: Get gRPC client from worker
        let client = match Self::get_grpc_client_from_worker(&worker).await {
            Ok(client) => client,
            Err(response) => return response,
        };

        // Step 4: Build the gRPC request
        let request_id = body
            .rid
            .clone()
            .unwrap_or_else(|| format!("gen-{}", Uuid::new_v4()));

        let request = match client.build_plain_generate_request(
            request_id.clone(),
            body,
            original_text.clone(),
            token_ids,
        ) {
            Ok(req) => req,
            Err(e) => {
                error!("Failed to build generate request: {}", e);
                return (StatusCode::BAD_REQUEST, e).into_response();
            }
        };

        // Step 5: Get weight version for response metadata
        let weight_version = worker
            .metadata()
            .labels
            .get("weight_version")
            .cloned()
            .unwrap_or_else(|| "default".to_string());

        // Step 6: Handle streaming vs non-streaming
        if body.stream {
            // TODO: Implement streaming support for generate endpoint
            return (
                StatusCode::NOT_IMPLEMENTED,
                "Streaming generate over gRPC is not supported yet",
            )
                .into_response();
        }

        self.handle_non_streaming_generate(client, request, body, request_id, weight_version)
            .await
    }

    /// Get gRPC client from worker, returning appropriate error response on failure
    async fn get_grpc_client_from_worker(
        worker: &Arc<dyn Worker>,
    ) -> Result<SglangSchedulerClient, Response> {
        let client_arc = worker
            .get_grpc_client()
            .await
            .map_err(|e| {
                error!("Failed to get gRPC client from worker: {}", e);
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    format!("Failed to get gRPC client: {}", e),
                )
                    .into_response()
            })?
            .ok_or_else(|| {
                error!("Selected worker is not a gRPC worker");
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    "Selected worker is not configured for gRPC",
                )
                    .into_response()
            })?;

        let client = client_arc.lock().await.clone();
        Ok(client)
    }

334
335
336
337
338
    /// Select a worker for the request
    fn select_worker_for_request(
        &self,
        model_id: Option<&str>,
        text: Option<&str>,
339
    ) -> Option<Arc<dyn Worker>> {
340
341
342
343
        // Get workers for the specified model, filtered by connection mode
        let workers = self.worker_registry.get_workers_filtered(
            model_id,
            Some(WorkerType::Regular),
344
            Some(ConnectionMode::Grpc { port: None }),
345
346
347
348
            false, // get all workers, we'll filter by is_available() next
        );

        // Filter by availability (health + circuit breaker)
349
        let available: Vec<Arc<dyn Worker>> = workers
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
            .iter()
            .filter(|w| w.is_available())
            .cloned()
            .collect();

        if available.is_empty() {
            return None;
        }

        // Get the appropriate policy for this model
        let policy = match model_id {
            Some(model) => self.policy_registry.get_policy_or_default(model),
            None => self.policy_registry.get_default_policy(),
        };

        // Select worker using the policy
        let idx = policy.select_worker(&available, text)?;
        Some(available[idx].clone())
    }
369
370
371
372
373
374
375

    /// Process chat messages and apply template
    fn process_chat_messages(
        &self,
        request: &ChatCompletionRequest,
    ) -> Result<ProcessedMessages, String> {
        // Use the tokenizer's chat template - we require HuggingFace tokenizer for gRPC
376
377
378
379
        let formatted_text = if let Some(hf_tokenizer) = self
            .tokenizer
            .as_any()
            .downcast_ref::<HuggingFaceTokenizer>()
380
        {
381
382
            // Get content format and transform messages accordingly
            let content_format = hf_tokenizer.chat_template_content_format();
383
384
385
386
387
388
389
            let mut transformed_messages =
                Self::process_content_format(&request.messages, content_format)?;

            // Process tool call arguments in assistant messages
            Self::process_tool_call_arguments(&mut transformed_messages)?;

            // Convert tools to JSON values for template processing
390
            let tools_json: Option<Vec<Value>> = request
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
                .tools
                .as_ref()
                .map(|tools| {
                    tools
                        .iter()
                        .map(serde_json::to_value)
                        .collect::<Result<Vec<_>, _>>()
                })
                .transpose()
                .map_err(|e| format!("Failed to serialize tools: {}", e))?;

            // Build template kwargs, merging reasoning_effort if present
            let mut combined_template_kwargs = std::collections::HashMap::new();

            // Add reasoning_effort if present (like Python does)
            if let Some(reasoning_effort) = &request.reasoning_effort {
                combined_template_kwargs.insert(
                    "reasoning_effort".to_string(),
409
                    Value::String(reasoning_effort.clone()),
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
                );
            }

            // Add any additional template kwargs from request
            if let Some(template_kwargs) = &request.chat_template_kwargs {
                for (key, value) in template_kwargs {
                    combined_template_kwargs.insert(key.clone(), value.clone());
                }
            }

            let final_template_kwargs = if combined_template_kwargs.is_empty() {
                None
            } else {
                Some(&combined_template_kwargs)
            };

            let params = ChatTemplateParams {
                add_generation_prompt: true,
                continue_final_message: request.continue_final_message,
                tools: tools_json.as_deref(),
                template_kwargs: final_template_kwargs,
                ..Default::default()
            };

            // Handle assistant prefix for continue_final_message
            let assistant_prefix = if request.continue_final_message
                && !transformed_messages.is_empty()
                && transformed_messages
                    .last()
                    .and_then(|msg| msg.get("role"))
                    .and_then(|v| v.as_str())
                    == Some("assistant")
            {
                // Pop the last message to handle it separately
                let last_msg = transformed_messages.pop().unwrap();
                last_msg
                    .get("content")
                    .and_then(|v| v.as_str())
                    .map(|s| s.to_string())
            } else {
                None
            };

            // Apply chat template with the (now possibly shorter) list of messages
            let rendered = hf_tokenizer
                .apply_chat_template(&transformed_messages, params)
                .map_err(|e| format!("Failed to apply chat template: {}", e))?;
457

458
459
460
461
462
463
            // Append assistant prefix if we have one
            if let Some(prefix) = assistant_prefix {
                format!("{}{}", rendered, prefix)
            } else {
                rendered
            }
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
        } else {
            return Err(
                "gRPC router requires HuggingFace tokenizer with chat template support".to_string(),
            );
        };

        // Placeholder for multimodal inputs
        let multimodal_inputs = None;

        Ok(ProcessedMessages {
            text: formatted_text,
            multimodal_inputs,
            stop_sequences: request.stop.clone(),
        })
    }

480
481
    /// Process messages based on content format for ANY message type
    fn process_content_format(
482
483
484
        messages: &[ChatMessage],
        content_format: ChatTemplateContentFormat,
    ) -> Result<Vec<Value>, String> {
485
486
487
488
489
490
491
492
493
494
        messages
            .iter()
            .map(|message| {
                let mut message_json = serde_json::to_value(message)
                    .map_err(|e| format!("Failed to serialize message: {}", e))?;

                if let Some(obj) = message_json.as_object_mut() {
                    if let Some(content_value) = obj.get_mut("content") {
                        Self::transform_content_field(content_value, content_format);
                    }
495
                }
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527

                Ok(message_json)
            })
            .collect()
    }

    /// Transform a single content field based on content format
    fn transform_content_field(
        content_value: &mut Value,
        content_format: ChatTemplateContentFormat,
    ) {
        let Some(content_array) = content_value.as_array() else {
            return; // Not multimodal, keep as-is
        };

        match content_format {
            ChatTemplateContentFormat::String => {
                // Extract and join text parts only
                let text_parts: Vec<String> = content_array
                    .iter()
                    .filter_map(|part| {
                        part.as_object()?
                            .get("type")?
                            .as_str()
                            .filter(|&t| t == "text")
                            .and_then(|_| part.as_object()?.get("text")?.as_str())
                            .map(String::from)
                    })
                    .collect();

                if !text_parts.is_empty() {
                    *content_value = Value::String(text_parts.join(" "));
528
                }
529
530
531
532
533
534
535
536
537
            }
            ChatTemplateContentFormat::OpenAI => {
                // Replace media URLs with simple type placeholders
                let processed_parts: Vec<Value> = content_array
                    .iter()
                    .map(|part| {
                        part.as_object()
                            .and_then(|obj| obj.get("type")?.as_str())
                            .and_then(|type_str| match type_str {
538
539
540
                                "image_url" => Some(json!({"type": "image"})),
                                "video_url" => Some(json!({"type": "video"})),
                                "audio_url" => Some(json!({"type": "audio"})),
541
542
543
544
545
                                _ => None,
                            })
                            .unwrap_or_else(|| part.clone())
                    })
                    .collect();
546

547
548
549
                *content_value = Value::Array(processed_parts);
            }
        }
550
551
    }

552
553
    /// Process tool call arguments in messages
    /// Per Transformers docs, tool call arguments in assistant messages should be dicts
554
    fn process_tool_call_arguments(messages: &mut [Value]) -> Result<(), String> {
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
        for msg in messages {
            // Early return if not assistant message
            let role = msg.get("role").and_then(|v| v.as_str());
            if role != Some("assistant") {
                continue;
            }

            // Early return if no tool_calls
            let Some(tool_calls) = msg.get_mut("tool_calls").and_then(|tc| tc.as_array_mut())
            else {
                continue;
            };

            // Process each tool call's arguments
            for call in tool_calls {
                let Some(function) = call.get_mut("function") else {
                    continue;
                };
                let Some(args) = function.get_mut("arguments") else {
                    continue;
                };
                let Some(args_str) = args.as_str() else {
                    continue;
                };

                // Parse JSON string to object (like Python json.loads)
581
                match serde_json::from_str::<Value>(args_str) {
582
583
584
585
586
587
588
589
590
591
592
593
594
                    Ok(parsed) => *args = parsed,
                    Err(e) => {
                        return Err(format!(
                            "Failed to parse tool call arguments as JSON: '{}'. Error: {}",
                            args_str, e
                        ))
                    }
                }
            }
        }
        Ok(())
    }

595
    /// Generate tool constraints for structured generation
596
    /// Note: tools should already be filtered if needed (by allowed_tools or specific function)
597
598
    fn generate_tool_constraints(
        &self,
599
600
601
        tools: &[Tool],
        tool_choice: &Option<ToolChoice>,
        _model: &str,
602
    ) -> Option<(String, String)> {
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
        let choice = tool_choice.as_ref()?;

        match choice {
            // Specific function: Return parameters schema directly
            // tools should already be filtered to contain only the specific function
            ToolChoice::Function { .. } => {
                if tools.is_empty() {
                    return None;
                }
                let tool = &tools[0];

                // Return the tool's parameters schema directly (not wrapped in array)
                let params_schema = serde_json::to_string(&tool.function.parameters).ok()?;
                Some(("json_schema".to_string(), params_schema))
            }

            // Required: Array of tool calls with minItems: 1
            ToolChoice::Value(ToolChoiceValue::Required) => {
                let schema = self.build_required_array_schema(tools)?;
                Some(("json_schema".to_string(), schema))
            }

            // AllowedTools with required mode: tools are already filtered
            ToolChoice::AllowedTools { mode, .. } => {
                if mode == "required" {
                    if tools.is_empty() {
                        return None;
                    }
                    let schema = self.build_required_array_schema(tools)?;
                    Some(("json_schema".to_string(), schema))
                } else {
                    // "auto" mode - no constraint needed
                    None
                }
            }

            // "auto" or "none" - no constraint
            _ => None,
        }
    }

    /// Build JSON schema for required tool calls (array with minItems: 1)
    /// Includes $defs consolidation from all tools (matching Python's behavior)
    fn build_required_array_schema(&self, tools: &[Tool]) -> Option<String> {
        // Build anyOf schemas for each tool
        let mut any_of_schemas = Vec::new();
        for tool in tools {
            let tool_schema = json!({
                "properties": {
                    "name": {
                        "type": "string",
                        "enum": [tool.function.name]
                    },
                    "parameters": tool.function.parameters
                },
                "required": ["name", "parameters"]
            });
            any_of_schemas.push(tool_schema);
        }

        // Consolidate $defs from all tools (matching Python's _get_tool_schema_defs)
        let mut all_defs: HashMap<String, Value> = HashMap::new();
        for tool in tools {
            if let Value::Object(params) = &tool.function.parameters {
                if let Some(Value::Object(defs)) = params.get("$defs") {
                    for (def_name, def_schema) in defs {
                        if let Some(existing) = all_defs.get(def_name) {
                            // Check for conflicts
                            if existing != def_schema {
                                error!(
                                    "Tool definition '{}' has multiple schemas, which is not supported",
                                    def_name
                                );
                                return None;
                            }
                        } else {
                            all_defs.insert(def_name.clone(), def_schema.clone());
                        }
                    }
                }
            }
        }

        // Build the full array schema
        let mut array_schema = json!({
            "type": "array",
            "minItems": 1,
            "items": {
                "type": "object",
                "anyOf": any_of_schemas
            }
        });

        // Add $defs if any were found (matching Python's behavior)
        if !all_defs.is_empty() {
            if let Value::Object(ref mut schema_obj) = array_schema {
                let defs_value =
                    Value::Object(all_defs.into_iter().collect::<Map<String, Value>>());
                schema_obj.insert("$defs".to_string(), defs_value);
            }
        }

        serde_json::to_string(&array_schema).ok()
    }

    /// Parse tool calls from JSON schema constrained response
    fn parse_json_schema_response(
        &self,
        processed_text: &str,
        tool_choice: &Option<ToolChoice>,
    ) -> (Option<Vec<ToolCall>>, String) {
        match tool_choice {
            Some(ToolChoice::Function { function, .. }) => {
                // Specific function: Parse parameters directly
                match serde_json::from_str::<Value>(processed_text) {
                    Ok(params) => {
                        let tool_call = ToolCall {
                            id: format!("call_{}", uuid::Uuid::new_v4()),
                            tool_type: "function".to_string(),
                            function: FunctionCallResponse {
                                name: function.name.clone(),
                                arguments: Some(
                                    serde_json::to_string(&params)
                                        .unwrap_or_else(|_| "{}".to_string()),
                                ),
                            },
                        };
                        (Some(vec![tool_call]), String::new())
                    }
                    Err(e) => {
                        error!("Failed to parse specific function parameters: {}", e);
                        (None, processed_text.to_string())
                    }
                }
            }
            Some(ToolChoice::Value(ToolChoiceValue::Required))
            | Some(ToolChoice::AllowedTools { .. }) => {
                // Required mode: Parse array of tool calls
                match serde_json::from_str::<Vec<Value>>(processed_text) {
                    Ok(parsed_array) => {
                        let spec_tool_calls: Vec<ToolCall> = parsed_array
                            .into_iter()
                            .enumerate()
                            .filter_map(|(i, item)| {
                                let obj = item.as_object()?;
                                let name = obj.get("name")?.as_str()?.to_string();
                                let parameters = obj.get("parameters")?;

                                Some(ToolCall {
                                    id: format!("call_{}_{}", i, uuid::Uuid::new_v4()),
                                    tool_type: "function".to_string(),
                                    function: FunctionCallResponse {
                                        name,
                                        arguments: Some(
                                            serde_json::to_string(parameters)
                                                .unwrap_or_else(|_| "{}".to_string()),
                                        ),
                                    },
                                })
                            })
                            .collect();
                        (Some(spec_tool_calls), String::new())
                    }
                    Err(e) => {
                        error!("Failed to parse required tool call array: {}", e);
                        (None, processed_text.to_string())
                    }
                }
            }
            _ => (None, processed_text.to_string()),
        }
    }

    /// Parse tool calls using model-specific parser
    async fn parse_with_model_parser(
        &self,
        processed_text: &str,
        model: &str,
    ) -> (Option<Vec<ToolCall>>, String) {
        let Some(parser) = self.tool_parser_registry.get_parser(model) else {
            return (None, processed_text.to_string());
        };

        if !parser.detect_format(processed_text) {
            return (None, processed_text.to_string());
        }

        match parser.parse_complete(processed_text).await {
            Ok((normal_text, parsed_tool_calls)) => {
                if parsed_tool_calls.is_empty() {
                    return (None, normal_text);
                }

                let spec_tool_calls = parsed_tool_calls
                    .into_iter()
                    .map(|tc| ToolCall {
                        id: tc.id,
                        tool_type: "function".to_string(),
                        function: FunctionCallResponse {
                            name: tc.function.name,
                            arguments: Some(
                                serde_json::to_string(&tc.function.arguments)
                                    .unwrap_or_else(|_| "{}".to_string()),
                            ),
                        },
                    })
                    .collect();
                (Some(spec_tool_calls), normal_text)
            }
            Err(e) => {
                error!("Tool call parsing error: {}", e);
                (None, processed_text.to_string())
            }
        }
817
818
    }

819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
    /// Resolve the generate input into optional original text and token IDs
    fn resolve_generate_input(
        &self,
        request: &GenerateRequest,
    ) -> Result<(Option<String>, Vec<u32>), String> {
        if let Some(text) = &request.text {
            return self
                .tokenize_single_text(text)
                .map(|(original, ids)| (Some(original), ids));
        }

        // Handle input_ids - validate and convert
        if let Some(input_ids) = &request.input_ids {
            return match input_ids {
                crate::protocols::spec::InputIds::Single(ids) => ids
                    .iter()
                    .map(|&id| u32::try_from(id))
                    .collect::<Result<Vec<u32>, _>>()
                    .map(|converted| (None, converted))
                    .map_err(|_| "input_ids must be non-negative".to_string()),
                crate::protocols::spec::InputIds::Batch(_) => {
                    Err("Batch input_ids are not supported over gRPC generate yet".to_string())
                }
            };
        }

        Err("Either `text` or `input_ids` must be provided".to_string())
    }

    fn tokenize_single_text(&self, text: &str) -> Result<(String, Vec<u32>), String> {
        let encoding = self
            .tokenizer
            .encode(text)
            .map_err(|e| format!("Tokenization failed: {}", e))?;
        Ok((text.to_string(), encoding.token_ids().to_vec()))
    }

    fn internal_error_static(msg: &'static str) -> Response {
        error!("{}", msg);
        (StatusCode::INTERNAL_SERVER_ERROR, msg).into_response()
    }

    fn internal_error_message(message: String) -> Response {
        error!("{}", message);
        (StatusCode::INTERNAL_SERVER_ERROR, message).into_response()
    }

    /// Create a StopSequenceDecoder from stop parameters
867
868
    fn create_stop_decoder(
        &self,
869
870
871
872
873
874
875
        stop: Option<&StringOrArray>,
        stop_token_ids: Option<&Vec<u32>>,
        skip_special_tokens: bool,
        no_stop_trim: bool,
    ) -> StopSequenceDecoder {
        // Extract stop sequences
        let stop_sequences: Vec<String> = match stop {
876
877
878
879
880
881
882
            Some(StringOrArray::String(s)) => vec![s.clone()],
            Some(StringOrArray::Array(arr)) => arr.clone(),
            None => vec![],
        };

        // Build stop sequence decoder
        let mut builder = StopSequenceDecoderBuilder::new(self.tokenizer.clone())
883
            .skip_special_tokens(skip_special_tokens);
884
885
886

        // Add stop sequences (visible if no_stop_trim is true, hidden otherwise)
        for seq in stop_sequences {
887
            builder = if no_stop_trim {
888
889
890
891
892
893
894
                builder.visible_stop_sequence(seq)
            } else {
                builder.stop_sequence(seq)
            };
        }

        // Add stop token IDs (visible if no_stop_trim is true, hidden otherwise)
895
896
897
        if let Some(token_ids) = stop_token_ids {
            for &token_id in token_ids {
                builder = if no_stop_trim {
898
899
900
901
902
903
904
905
906
907
908
909
                    builder.visible_stop_token(token_id)
                } else {
                    builder.stop_token(token_id)
                };
            }
        }

        builder.build()
    }

    /// Process a chunk of tokens through the stop decoder
    fn process_chunk_tokens(
910
        stop_decoder: &mut StopSequenceDecoder,
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
        token_ids: &[u32],
    ) -> (String, bool) {
        let mut chunk_text = String::new();

        for &token_id in token_ids {
            match stop_decoder.process_token(token_id).unwrap_or_else(|e| {
                debug!(
                    "Error processing token {}: {}. Treating as Held.",
                    token_id, e
                );
                SequenceDecoderOutput::Held
            }) {
                SequenceDecoderOutput::Text(text) => {
                    chunk_text.push_str(&text);
                }
                SequenceDecoderOutput::StoppedWithText(text) => {
                    chunk_text.push_str(&text);
                    return (chunk_text, true); // Return text and signal to stop
                }
                SequenceDecoderOutput::Stopped => {
                    return (chunk_text, true); // Return text and signal to stop
                }
                SequenceDecoderOutput::Held => {
                    // Text held for potential stop sequence match
                }
            }
        }
        (chunk_text, false) // Return text and continue processing
    }

    /// Submit request and handle streaming response for chat completions route
942
943
    async fn handle_streaming_chat(
        &self,
944
945
946
        mut client: SglangSchedulerClient,
        request: proto::GenerateRequest,
        original_request: &ChatCompletionRequest,
947
    ) -> Response {
948
949
950
951
952
953
        let mut stop_decoder = self.create_stop_decoder(
            original_request.stop.as_ref(),
            original_request.stop_token_ids.as_ref(),
            original_request.skip_special_tokens,
            original_request.no_stop_trim,
        );
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979

        // Process streaming tokens
        let mut grpc_stream = match client.generate(request).await {
            Ok(stream) => stream,
            Err(e) => {
                error!("Failed to start generation: {}", e);
                return (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    format!("Generation failed: {}", e),
                )
                    .into_response();
            }
        };

        let mut decoded_text = String::new();

        while let Some(response) = grpc_stream.next().await {
            let gen_response = match response {
                Ok(resp) => resp,
                Err(e) => {
                    error!("Stream error: {}", e);
                    break;
                }
            };

            match gen_response.response {
980
                Some(Chunk(chunk)) => {
981
982
983
984
985
986
987
988
989
                    // Process tokens and check if we should stop
                    let (chunk_text, should_stop) =
                        Self::process_chunk_tokens(&mut stop_decoder, &chunk.token_ids);
                    decoded_text.push_str(&chunk_text);
                    if should_stop {
                        break;
                    }
                    continue;
                }
990
                Some(Complete(_complete)) => {
991
992
993
994
995
996
997
998
999
                    // Flush any remaining text
                    if let SequenceDecoderOutput::Text(text) = stop_decoder.flush() {
                        if !text.is_empty() {
                            decoded_text.push_str(&text);
                            debug!("Flushed text: {}", text);
                        }
                    }
                    break;
                }
1000
                Some(Error(error)) => {
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
                    error!("Generation error: {}", error.message);
                    break;
                }
                None => continue,
            }
        }

        // TODO: Replace with proper SSE streaming response
        // For now, return the complete decoded text
        (StatusCode::OK, format!("Decoded text: {}", decoded_text)).into_response()
1011
1012
    }

1013
    /// Submit request and handle non-streaming response for chat completions route
1014
1015
    async fn handle_non_streaming_chat(
        &self,
1016
1017
1018
        mut client: SglangSchedulerClient,
        request: proto::GenerateRequest,
        original_request: &ChatCompletionRequest,
1019
    ) -> Response {
1020
1021
1022
1023
1024
1025
        let mut stop_decoder = self.create_stop_decoder(
            original_request.stop.as_ref(),
            original_request.stop_token_ids.as_ref(),
            original_request.skip_special_tokens,
            original_request.no_stop_trim,
        );
1026
1027
1028
1029

        // Start generation
        let mut stream = match client.generate(request).await {
            Ok(s) => s,
1030
1031
1032
            Err(e) => {
                return Self::internal_error_message(format!("Failed to start generation: {}", e))
            }
1033
1034
        };

1035
1036
1037
1038
1039
        // Collect all responses (for n>1 support)
        let mut all_responses = Vec::new();
        while let Some(response) = stream.next().await {
            match response {
                Ok(gen_response) => match gen_response.response {
1040
                    Some(Complete(complete)) => {
1041
1042
                        all_responses.push(complete);
                    }
1043
1044
1045
1046
1047
                    Some(Error(err)) => {
                        return Self::internal_error_message(format!(
                            "Generation failed: {}",
                            err.message
                        ));
1048
                    }
1049
1050
1051
1052
                    Some(Chunk(_)) => {
                        return Self::internal_error_static(
                            "Unexpected chunk response for non-streaming request",
                        )
1053
                    }
1054
                    None => return Self::internal_error_static("Empty response from server"),
1055
                },
1056
1057
1058
1059
1060
1061
                Err(e) => {
                    return Self::internal_error_message(format!(
                        "Failed to get GenerateResponse: {}",
                        e
                    ))
                }
1062
            }
1063
1064
1065
        }

        if all_responses.is_empty() {
1066
            return Self::internal_error_static("No responses from server");
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
        }

        // Process each response into a ChatChoice
        let mut choices = Vec::new();
        for (index, complete) in all_responses.iter().enumerate() {
            match self
                .process_single_choice(complete, index, original_request, &mut stop_decoder)
                .await
            {
                Ok(choice) => choices.push(choice),
                Err(e) => {
1078
1079
1080
1081
                    return Self::internal_error_message(format!(
                        "Failed to process choice {}: {}",
                        index, e
                    ));
1082
                }
1083
            }
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
        }

        // Aggregate usage information from all responses
        let total_prompt_tokens: u32 = all_responses.iter().map(|r| r.prompt_tokens as u32).sum();
        let total_completion_tokens: u32 = all_responses
            .iter()
            .map(|r| r.completion_tokens as u32)
            .sum();
        let usage = Usage {
            prompt_tokens: total_prompt_tokens,
            completion_tokens: total_completion_tokens,
            total_tokens: total_prompt_tokens + total_completion_tokens,
            completion_tokens_details: None,
1097
1098
        };

1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
        // Build final ChatCompletionResponse
        let response = ChatCompletionResponse {
            id: format!("chatcmpl-{}", Uuid::new_v4()),
            object: "chat.completion".to_string(),
            created: SystemTime::now()
                .duration_since(UNIX_EPOCH)
                .unwrap_or_default()
                .as_secs(),
            model: original_request.model.clone(),
            choices,
            usage: Some(usage),
            system_fingerprint: None,
1111
1112
        };

1113
1114
1115
1116
        // Serialize and return JSON response
        Json(response).into_response()
    }

1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
    /// Submit request and handle non-streaming response for the `/generate` endpoint
    async fn handle_non_streaming_generate(
        &self,
        mut client: SglangSchedulerClient,
        request: proto::GenerateRequest,
        original_request: &GenerateRequest,
        request_id: String,
        weight_version: String,
    ) -> Response {
        let start_time = Instant::now();

        let mut stream = match client.generate(request).await {
            Ok(stream) => stream,
            Err(e) => {
                return Self::internal_error_message(format!("Failed to start generation: {}", e))
            }
        };

        let mut final_completion: Option<proto::GenerateComplete> = None;

        while let Some(result) = stream.next().await {
            match result {
                Ok(gen_response) => match gen_response.response {
                    Some(Complete(complete)) => {
                        final_completion = Some(complete);
                        break;
                    }
                    Some(Error(err)) => {
                        return Self::internal_error_message(format!(
                            "Generation failed: {}",
                            err.message
                        ));
                    }
                    Some(Chunk(_)) | None => continue,
                },
                Err(e) => {
                    return Self::internal_error_message(format!(
                        "Failed to receive generate response: {}",
                        e
                    ))
                }
            }
        }

        let mut complete = match final_completion {
            Some(c) => c,
            None => {
                return Self::internal_error_static("No completion received from scheduler");
            }
        };

        // Create stop decoder from sampling params
        let params = original_request.sampling_params.as_ref();
        let mut stop_decoder = self.create_stop_decoder(
            params.and_then(|p| p.stop.as_ref()),
            params.and_then(|p| p.stop_token_ids.as_ref()),
            params.and_then(|p| p.skip_special_tokens).unwrap_or(true),
            params.and_then(|p| p.no_stop_trim).unwrap_or(false),
        );

        // Process tokens through stop decoder
        let outputs = match stop_decoder.process_tokens(&complete.output_ids) {
            Ok(outputs) => outputs,
            Err(e) => {
                return Self::internal_error_message(format!("Failed to process tokens: {}", e))
            }
        };

        // Accumulate text with early breaks
        let mut decoded_text = String::new();
        for output in outputs {
            match output {
                SequenceDecoderOutput::Text(t) => decoded_text.push_str(&t),
                SequenceDecoderOutput::StoppedWithText(t) => {
                    decoded_text.push_str(&t);
                    break;
                }
                SequenceDecoderOutput::Stopped => break,
                SequenceDecoderOutput::Held => {}
            }
        }

        // Flush remaining text
        if let SequenceDecoderOutput::Text(t) = stop_decoder.flush() {
            decoded_text.push_str(&t);
        }

        let output_ids = complete.output_ids.clone();

        // Build base meta_info using json! macro
        let mut meta_info = json!({
            "finish_reason": complete.finish_reason.clone(),
            "prompt_tokens": complete.prompt_tokens,
            "completion_tokens": complete.completion_tokens,
            "cached_tokens": complete.cached_tokens,
            "id": request_id,
            "weight_version": weight_version,
            "e2e_latency": start_time.elapsed().as_secs_f64(),
        });

        let meta_obj = meta_info.as_object_mut().unwrap();

        // Add matched_stop if present
        if let Some(matched) = complete.matched_stop.take() {
            use proto::generate_complete::MatchedStop;
            let matched_value = match matched {
                MatchedStop::MatchedTokenId(id) => json!(id),
                MatchedStop::MatchedStopStr(s) => json!(s),
            };
            meta_obj.insert("matched_stop".to_string(), matched_value);
        }

        let response_body = json!({
            "text": decoded_text,
            "output_ids": output_ids,
            "meta_info": meta_info,
        });

        Json(response_body).into_response()
    }

1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
    /// Convert proto LogProbs to OpenAI ChatLogProbs format
    /// Note: Always decodes with skip_special_tokens=false to show actual tokens generated
    fn convert_proto_to_openai_logprobs(
        &self,
        proto_logprobs: &proto::LogProbs,
    ) -> Result<crate::protocols::spec::ChatLogProbs, String> {
        let mut content_items = Vec::new();

        // Decode token IDs to text (always with skip_special_tokens=false for logprobs)
        let token_texts: Vec<String> = proto_logprobs
            .token_ids
            .iter()
            .map(|&token_id| {
                self.tokenizer
                    .decode(&[token_id as u32], false)
                    .unwrap_or_else(|_| format!("<token_{}>", token_id))
            })
            .collect();

        // Build ChatLogProbsContent for each token
        for (i, &logprob) in proto_logprobs.token_logprobs.iter().enumerate() {
            let token_text = token_texts.get(i).cloned().unwrap_or_default();
            let bytes = Some(token_text.as_bytes().to_vec());

            // Build top_logprobs for this position
            let mut top_logprobs = Vec::new();
            if let Some(top_logprobs_entry) = proto_logprobs.top_logprobs.get(i) {
                // Decode top token IDs (always with skip_special_tokens=false)
                let top_token_texts: Vec<String> = top_logprobs_entry
                    .token_ids
                    .iter()
                    .map(|&tid| {
                        self.tokenizer
                            .decode(&[tid as u32], false)
                            .unwrap_or_else(|_| format!("<token_{}>", tid))
                    })
                    .collect();

                for (j, (&top_logprob, &_top_token_id)) in top_logprobs_entry
                    .values
                    .iter()
                    .zip(top_logprobs_entry.token_ids.iter())
                    .enumerate()
                {
                    if let Some(top_token_text) = top_token_texts.get(j) {
                        top_logprobs.push(crate::protocols::spec::TopLogProb {
                            token: top_token_text.clone(),
                            logprob: top_logprob,
                            bytes: Some(top_token_text.as_bytes().to_vec()),
                        });
                    }
                }
            }

            content_items.push(crate::protocols::spec::ChatLogProbsContent {
                token: token_text,
                logprob,
                bytes,
                top_logprobs,
            });
        }

        Ok(crate::protocols::spec::ChatLogProbs::Detailed {
            content: (!content_items.is_empty()).then_some(content_items),
        })
    }

1305
1306
1307
1308
1309
1310
    /// Process a single GenerateComplete response into a ChatChoice
    async fn process_single_choice(
        &self,
        complete: &proto::GenerateComplete,
        index: usize,
        original_request: &ChatCompletionRequest,
1311
        stop_decoder: &mut StopSequenceDecoder,
1312
1313
1314
1315
1316
1317
1318
    ) -> Result<ChatChoice, String> {
        stop_decoder.reset();
        // Decode tokens
        let outputs = stop_decoder
            .process_tokens(&complete.output_ids)
            .map_err(|e| format!("Failed to process tokens: {}", e))?;

1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
        // Accumulate text with early breaks
        let mut final_text = String::new();
        for output in outputs {
            match output {
                SequenceDecoderOutput::Text(t) => final_text.push_str(&t),
                SequenceDecoderOutput::StoppedWithText(t) => {
                    final_text.push_str(&t);
                    break;
                }
                SequenceDecoderOutput::Stopped => break,
                SequenceDecoderOutput::Held => {}
            }
        }

        // Flush remaining text
        if let SequenceDecoderOutput::Text(t) = stop_decoder.flush() {
            final_text.push_str(&t);
        }

1338
1339
1340
1341
1342
1343
        // Step 1: Handle reasoning content parsing
        let mut reasoning_text: Option<String> = None;
        let mut processed_text = final_text;

        // Check if reasoning parsing is enabled and separate_reasoning is requested
        if original_request.separate_reasoning {
1344
            let pooled_parser = self
1345
                .reasoning_parser_factory
1346
1347
1348
1349
1350
1351
1352
1353
1354
                .get_pooled(&original_request.model);

            let mut parser = pooled_parser
                .lock()
                .map_err(|e| format!("Failed to acquire reasoning parser lock: {}", e))?;
            match parser.detect_and_parse_reasoning(&processed_text) {
                Ok(result) => {
                    if !result.reasoning_text.is_empty() {
                        reasoning_text = Some(result.reasoning_text);
1355
                    }
1356
1357
1358
1359
                    processed_text = result.normal_text;
                }
                Err(e) => {
                    return Err(format!("Reasoning parsing error: {}", e));
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
                }
            }
        }

        // Step 2: Handle tool call parsing
        let mut tool_calls: Option<Vec<crate::protocols::spec::ToolCall>> = None;

        // Check if tool calls should be processed
        let tool_choice_enabled = !matches!(
            &original_request.tool_choice,
            Some(ToolChoice::Value(
                crate::protocols::spec::ToolChoiceValue::None
            ))
        );

        if tool_choice_enabled && original_request.tools.is_some() {
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
            // Check if JSON schema constraint was used (specific function or required mode)
            let used_json_schema = match &original_request.tool_choice {
                Some(ToolChoice::Function { .. }) => true,
                Some(ToolChoice::Value(crate::protocols::spec::ToolChoiceValue::Required)) => true,
                Some(ToolChoice::AllowedTools { mode, .. }) => mode == "required",
                _ => false,
            };

            if used_json_schema {
                (tool_calls, processed_text) =
                    self.parse_json_schema_response(&processed_text, &original_request.tool_choice);
            } else {
                (tool_calls, processed_text) = self
                    .parse_with_model_parser(&processed_text, &original_request.model)
                    .await;
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
            }
        }

        // Step 3: Use finish reason directly from proto (already OpenAI-compatible string)
        let finish_reason_str = &complete.finish_reason;

        // Override finish reason if we have tool calls
        let final_finish_reason_str = if tool_calls.is_some() {
            "tool_calls"
        } else {
            finish_reason_str
        };

        // Extract matched_stop information from proto
        let matched_stop = match &complete.matched_stop {
            Some(proto::generate_complete::MatchedStop::MatchedTokenId(token_id)) => Some(
                serde_json::Value::Number(serde_json::Number::from(*token_id)),
            ),
            Some(proto::generate_complete::MatchedStop::MatchedStopStr(stop_str)) => {
                Some(serde_json::Value::String(stop_str.clone()))
            }
            None => None,
        };

1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
        // Step 4: Convert output logprobs if present
        // Note: complete.input_logprobs exists in proto but is not used for chat completions
        //       (input logprobs are only used in /v1/completions endpoint with echo=true)
        let logprobs = if let Some(proto_logprobs) = &complete.output_logprobs {
            match self.convert_proto_to_openai_logprobs(proto_logprobs) {
                Ok(logprobs) => Some(logprobs),
                Err(e) => {
                    error!("Failed to convert logprobs: {}", e);
                    None
                }
            }
        } else {
            None
        };

        // Step 5: Build ChatCompletionMessage (proper response message type)
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
        let chat_message = ChatCompletionMessage {
            role: "assistant".to_string(),
            content: if processed_text.is_empty() {
                None
            } else {
                Some(processed_text)
            },
            tool_calls,
            reasoning_content: reasoning_text,
        };

1442
        // Step 6: Build ChatChoice
1443
1444
1445
        let choice = ChatChoice {
            index: index as u32,
            message: chat_message,
1446
            logprobs,
1447
1448
1449
1450
1451
1452
            finish_reason: Some(final_finish_reason_str.to_string()),
            matched_stop,
            hidden_states: None,
        };

        Ok(choice)
1453
    }
1454
1455
1456
1457
}

impl std::fmt::Debug for GrpcRouter {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
1458
        let stats = self.worker_registry.stats();
1459
        f.debug_struct("GrpcRouter")
1460
            .field("workers_count", &stats.total_workers)
1461
1462
            .field("dp_aware", &self.dp_aware)
            .finish()
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
    }
}

#[async_trait]
impl RouterTrait for GrpcRouter {
    fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    async fn health_generate(&self, _req: Request<Body>) -> Response {
1473
1474
1475
1476
1477
1478
        // TODO: Implement actual generation test for gRPC
        (
            StatusCode::NOT_IMPLEMENTED,
            "Health generate not yet implemented for gRPC",
        )
            .into_response()
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
    }

    async fn get_server_info(&self, _req: Request<Body>) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn get_models(&self, _req: Request<Body>) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn get_model_info(&self, _req: Request<Body>) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn route_generate(
        &self,
1495
1496
1497
        headers: Option<&HeaderMap>,
        body: &GenerateRequest,
        model_id: Option<&str>,
1498
    ) -> Response {
1499
        self.route_generate_impl(headers, body, model_id).await
1500
1501
1502
1503
    }

    async fn route_chat(
        &self,
1504
        headers: Option<&HeaderMap>,
1505
        body: &ChatCompletionRequest,
1506
        model_id: Option<&str>,
1507
    ) -> Response {
1508
        self.route_chat_impl(headers, body, model_id).await
1509
1510
1511
1512
1513
    }

    async fn route_completion(
        &self,
        _headers: Option<&HeaderMap>,
1514
        _body: &CompletionRequest,
1515
        _model_id: Option<&str>,
1516
1517
1518
1519
    ) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

1520
1521
1522
    async fn route_responses(
        &self,
        _headers: Option<&HeaderMap>,
1523
        _body: &ResponsesRequest,
1524
        _model_id: Option<&str>,
1525
1526
1527
1528
    ) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

1529
1530
1531
1532
    async fn get_response(
        &self,
        _headers: Option<&HeaderMap>,
        _response_id: &str,
1533
        _params: &ResponsesGetParams,
1534
    ) -> Response {
1535
1536
1537
1538
1539
1540
1541
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn cancel_response(&self, _headers: Option<&HeaderMap>, _response_id: &str) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

1542
1543
1544
    async fn route_embeddings(
        &self,
        _headers: Option<&HeaderMap>,
1545
        _body: &EmbeddingRequest,
1546
1547
        _model_id: Option<&str>,
    ) -> Response {
1548
1549
1550
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

1551
1552
1553
    async fn route_rerank(
        &self,
        _headers: Option<&HeaderMap>,
1554
        _body: &RerankRequest,
1555
        _model_id: Option<&str>,
1556
    ) -> Response {
1557
1558
1559
1560
1561
1562
1563
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    fn router_type(&self) -> &'static str {
        "grpc"
    }
}
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592

#[cfg(test)]
mod tests {
    use super::*;
    use crate::protocols::spec::{ChatMessage, ContentPart, ImageUrl, UserMessageContent};
    use crate::tokenizer::chat_template::ChatTemplateContentFormat;
    use serde_json::json;

    #[test]
    fn test_transform_messages_string_format() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Parts(vec![
                ContentPart::Text {
                    text: "Hello".to_string(),
                },
                ContentPart::ImageUrl {
                    image_url: ImageUrl {
                        url: "https://example.com/image.jpg".to_string(),
                        detail: None,
                    },
                },
                ContentPart::Text {
                    text: "World".to_string(),
                },
            ]),
            name: None,
        }];

1593
1594
1595
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Should flatten multimodal content to text only
        assert_eq!(
            transformed_message["content"].as_str().unwrap(),
            "Hello World"
        );
        assert_eq!(transformed_message["role"].as_str().unwrap(), "user");
    }

    #[test]
    fn test_transform_messages_openai_format() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Parts(vec![
                ContentPart::Text {
                    text: "Describe this image:".to_string(),
                },
                ContentPart::ImageUrl {
                    image_url: ImageUrl {
                        url: "https://example.com/image.jpg".to_string(),
                        detail: Some("high".to_string()),
                    },
                },
            ]),
            name: None,
        }];

1626
1627
1628
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::OpenAI)
                .unwrap();
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Should replace media URLs with simple type placeholders
        let content_array = transformed_message["content"].as_array().unwrap();
        assert_eq!(content_array.len(), 2);

        // Text part should remain unchanged
        assert_eq!(content_array[0]["type"], "text");
        assert_eq!(content_array[0]["text"], "Describe this image:");

        // Image part should be replaced with simple type placeholder
        assert_eq!(content_array[1], json!({"type": "image"}));
    }

    #[test]
    fn test_transform_messages_simple_string_content() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Text("Simple text message".to_string()),
            name: None,
        }];

1653
1654
1655
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Simple string content should remain unchanged
        assert_eq!(
            transformed_message["content"].as_str().unwrap(),
            "Simple text message"
        );
    }

    #[test]
    fn test_transform_messages_assistant_message() {
        let messages = vec![ChatMessage::Assistant {
            role: "assistant".to_string(),
            content: Some("Assistant response".to_string()),
            name: None,
            tool_calls: None,
            function_call: None,
            reasoning_content: None,
        }];

1678
1679
1680
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        assert_eq!(transformed_message["role"].as_str().unwrap(), "assistant");
        assert_eq!(
            transformed_message["content"].as_str().unwrap(),
            "Assistant response"
        );
    }

    #[test]
    fn test_transform_messages_multiple_messages() {
        let messages = vec![
            ChatMessage::System {
                role: "system".to_string(),
                content: "System prompt".to_string(),
                name: None,
            },
            ChatMessage::User {
                role: "user".to_string(),
                content: UserMessageContent::Parts(vec![
                    ContentPart::Text {
                        text: "User message".to_string(),
                    },
                    ContentPart::ImageUrl {
                        image_url: ImageUrl {
                            url: "https://example.com/image.jpg".to_string(),
                            detail: None,
                        },
                    },
                ]),
                name: None,
            },
        ];

1717
1718
1719
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744

        assert_eq!(result.len(), 2);

        // System message should remain unchanged
        assert_eq!(result[0]["role"].as_str().unwrap(), "system");
        assert_eq!(result[0]["content"].as_str().unwrap(), "System prompt");

        // User message should be flattened to text only
        assert_eq!(result[1]["role"].as_str().unwrap(), "user");
        assert_eq!(result[1]["content"].as_str().unwrap(), "User message");
    }

    #[test]
    fn test_transform_messages_empty_text_parts() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Parts(vec![ContentPart::ImageUrl {
                image_url: ImageUrl {
                    url: "https://example.com/image.jpg".to_string(),
                    detail: None,
                },
            }]),
            name: None,
        }];

1745
1746
1747
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Should keep original multimodal content when no text parts exist
        assert!(transformed_message["content"].is_array());
    }

    #[test]
    fn test_transform_messages_mixed_content_types() {
        let messages = vec![
            ChatMessage::User {
                role: "user".to_string(),
                content: UserMessageContent::Text("Plain text".to_string()),
                name: None,
            },
            ChatMessage::User {
                role: "user".to_string(),
                content: UserMessageContent::Parts(vec![
                    ContentPart::Text {
                        text: "With image".to_string(),
                    },
                    ContentPart::ImageUrl {
                        image_url: ImageUrl {
                            url: "https://example.com/image.jpg".to_string(),
                            detail: Some("low".to_string()),
                        },
                    },
                ]),
                name: None,
            },
        ];

1781
1782
1783
        let result_string =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
1784
1785
1786
1787
1788

        assert_eq!(result_string.len(), 2);
        assert_eq!(result_string[0]["content"].as_str().unwrap(), "Plain text");
        assert_eq!(result_string[1]["content"].as_str().unwrap(), "With image");

1789
1790
1791
        let result_openai =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::OpenAI)
                .unwrap();
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801

        assert_eq!(result_openai.len(), 2);
        assert_eq!(result_openai[0]["content"].as_str().unwrap(), "Plain text");

        let content_array = result_openai[1]["content"].as_array().unwrap();
        assert_eq!(content_array.len(), 2);
        assert_eq!(content_array[0]["type"], "text");
        assert_eq!(content_array[1], json!({"type": "image"}));
    }
}