deepseek_v2.py 83.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14

Liangsheng Yin's avatar
Liangsheng Yin committed
15
16
17
# Adapted from:
# https://github.com/vllm-project/vllm/blob/fb6af8bc086328ca6659e72d11ffd4309ce4de22/vllm/model_executor/models/deepseek_v2.py
"""Inference-only DeepseekV2 model."""
18

19
import logging
20
import os
21
from enum import IntEnum, auto
Liangsheng Yin's avatar
Liangsheng Yin committed
22
23
24
from typing import Any, Dict, Iterable, Optional, Tuple

import torch
Ke Bao's avatar
Ke Bao committed
25
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
26
from torch import nn
27
from tqdm import tqdm
Liangsheng Yin's avatar
Liangsheng Yin committed
28
from transformers import PretrainedConfig
29
30

from sglang.srt.distributed import (
Liangsheng Yin's avatar
Liangsheng Yin committed
31
    get_tensor_model_parallel_world_size,
32
    parallel_state,
Liangsheng Yin's avatar
Liangsheng Yin committed
33
34
    tensor_model_parallel_all_reduce,
)
35
from sglang.srt.layers.activation import SiluAndMul
36
37
38
39
40
from sglang.srt.layers.communicator import (
    LayerCommunicator,
    LayerScatterModes,
    enable_moe_dense_fully_dp,
)
Lianmin Zheng's avatar
Lianmin Zheng committed
41
42
43
from sglang.srt.layers.dp_attention import (
    get_attention_tp_rank,
    get_attention_tp_size,
44
    get_local_attention_dp_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
45
)
46
from sglang.srt.layers.layernorm import RMSNorm
47
48
49
50
51
52
from sglang.srt.layers.linear import (
    ColumnParallelLinear,
    MergedColumnParallelLinear,
    ReplicatedLinear,
    RowParallelLinear,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
53
from sglang.srt.layers.logits_processor import LogitsProcessor
fzyzcjy's avatar
fzyzcjy committed
54
from sglang.srt.layers.moe.ep_moe.layer import get_moe_impl_class
Lianmin Zheng's avatar
Lianmin Zheng committed
55
from sglang.srt.layers.moe.ep_moe.token_dispatcher import DeepEPDispatcher
56
from sglang.srt.layers.moe.topk import select_experts
57
from sglang.srt.layers.quantization.base_config import QuantizationConfig
58
from sglang.srt.layers.quantization.deep_gemm import _ENABLE_JIT_DEEPGEMM
59
from sglang.srt.layers.quantization.fp8_kernel import (
60
    is_fp8_fnuz,
61
    per_tensor_quant_mla_fp8,
62
    per_token_group_quant_mla_deep_gemm_masked_fp8,
63
)
HandH1998's avatar
HandH1998 committed
64
from sglang.srt.layers.quantization.fp8_utils import (
65
    block_quant_dequant,
HandH1998's avatar
HandH1998 committed
66
    block_quant_to_tensor_quant,
67
    channel_quant_to_tensor_quant,
68
    normalize_e4m3fn_to_e4m3fnuz,
HandH1998's avatar
HandH1998 committed
69
)
70
71
72
from sglang.srt.layers.quantization.int8_utils import (
    block_dequant as int8_block_dequant,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
73
from sglang.srt.layers.radix_attention import RadixAttention
74
from sglang.srt.layers.rotary_embedding import get_rope
75
76
77
78
from sglang.srt.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
79
80
81
82
from sglang.srt.managers.expert_distribution import (
    get_global_expert_distribution_recorder,
)
from sglang.srt.managers.expert_location import ModelConfigForExpertLocation
83
from sglang.srt.managers.expert_location_dispatch import ExpertLocationDispatchInfo
84
from sglang.srt.managers.schedule_batch import global_server_args_dict
85
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
86
from sglang.srt.model_loader.weight_utils import default_weight_loader
87
88
89
90
from sglang.srt.two_batch_overlap import (
    MaybeTboDeepEPDispatcher,
    model_forward_maybe_tbo,
)
91
92
93
from sglang.srt.utils import (
    BumpAllocator,
    DeepEPMode,
94
    LazyValue,
95
    add_prefix,
96
    bind_or_assign,
97
98
99
100
    get_bool_env_var,
    get_int_env_var,
    is_cuda,
    is_hip,
101
    is_non_idle_and_non_empty,
102
    log_info_on_rank0,
103
)
104

105
_is_hip = is_hip()
Yineng Zhang's avatar
Yineng Zhang committed
106
_is_cuda = is_cuda()
107
_is_fp8_fnuz = is_fp8_fnuz()
108
_use_aiter = get_bool_env_var("SGLANG_USE_AITER") and _is_hip
109

Yineng Zhang's avatar
Yineng Zhang committed
110
if _is_cuda:
111
    from sgl_kernel import awq_dequantize, bmm_fp8, merge_state_v2
112
113
114
115

    from sglang.srt.layers.quantization.deep_gemm import (
        grouped_gemm_nt_f8f8bf16_masked as deep_gemm_grouped_gemm_nt_f8f8bf16_masked,
    )
Yineng Zhang's avatar
Yineng Zhang committed
116
else:
Lianmin Zheng's avatar
Lianmin Zheng committed
117
    from vllm._custom_ops import awq_dequantize
Liangsheng Yin's avatar
Liangsheng Yin committed
118

119
120
121
122
123
if _is_hip:
    from sglang.srt.layers.attention.triton_ops.rocm_mla_decode_rope import (
        decode_attention_fwd_grouped_rope,
    )

124
125
126
if _use_aiter:
    from aiter.rotary_embedding import get_rope

127
128
logger = logging.getLogger(__name__)

Liangsheng Yin's avatar
Liangsheng Yin committed
129

130
131
132
133
134
135
136
137
138
139
140
class AttnForwardMethod(IntEnum):
    # Use multi-head attention
    MHA = auto()

    # Use absorbed multi-latent attention
    MLA = auto()

    # Use multi-head attention, but with KV cache chunked.
    # This method can avoid OOM when prefix lengths are long.
    MHA_CHUNKED_KV = auto()

141
142
143
    # Use MLA but with fused RoPE
    MLA_FUSED_ROPE = auto()

144

Liangsheng Yin's avatar
Liangsheng Yin committed
145
146
147
148
149
150
151
152
class DeepseekV2MLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        reduce_results: bool = True,
153
        prefix: str = "",
154
155
        tp_rank: Optional[int] = None,
        tp_size: Optional[int] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
156
157
    ) -> None:
        super().__init__()
158
159
        self.tp_size = tp_size

Liangsheng Yin's avatar
Liangsheng Yin committed
160
        self.gate_up_proj = MergedColumnParallelLinear(
161
162
163
164
165
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("gate_up_proj", prefix),
166
167
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
168
169
170
171
172
173
174
        )
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
175
            prefix=add_prefix("down_proj", prefix),
176
177
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
178
179
180
181
182
183
184
185
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

186
187
188
189
    def forward(self, x, forward_batch=None):
        if (self.tp_size == 1) and x.shape[0] == 0:
            return x

Liangsheng Yin's avatar
Liangsheng Yin committed
190
191
192
193
194
195
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


Ke Bao's avatar
Ke Bao committed
196
class MoEGate(nn.Module):
197
198
199
200
201
    def __init__(
        self,
        config,
        prefix: str = "",
    ):
Ke Bao's avatar
Ke Bao committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        super().__init__()
        self.weight = nn.Parameter(
            torch.empty((config.n_routed_experts, config.hidden_size))
        )
        if config.topk_method == "noaux_tc":
            self.e_score_correction_bias = nn.Parameter(
                torch.empty((config.n_routed_experts))
            )
        else:
            self.e_score_correction_bias = None

    def forward(self, hidden_states):
        logits = F.linear(hidden_states, self.weight, None)
        return logits


Liangsheng Yin's avatar
Liangsheng Yin committed
218
219
220
221
222
class DeepseekV2MoE(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
fzyzcjy's avatar
fzyzcjy committed
223
        layer_id: int,
Liangsheng Yin's avatar
Liangsheng Yin committed
224
        quant_config: Optional[QuantizationConfig] = None,
225
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
226
227
228
229
230
    ):
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()
        self.routed_scaling_factor = config.routed_scaling_factor
        self.n_shared_experts = config.n_shared_experts
231
232
233
234
235
        self.num_fused_shared_experts = (
            0
            if global_server_args_dict["disable_shared_experts_fusion"]
            else config.n_shared_experts
        )
236
        self.config = config
fzyzcjy's avatar
fzyzcjy committed
237
        self.layer_id = layer_id
238

Liangsheng Yin's avatar
Liangsheng Yin committed
239
240
241
242
243
244
245
246
247
248
249
250
        if self.tp_size > config.n_routed_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {config.n_routed_experts}."
            )

        if config.hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {config.hidden_act}. "
                "Only silu is supported for now."
            )

251
        self.gate = MoEGate(config=config, prefix=add_prefix("gate", prefix))
Ke Bao's avatar
Ke Bao committed
252

253
        self.experts = get_moe_impl_class()(
254
            num_experts=config.n_routed_experts
255
            + self.num_fused_shared_experts
256
            + global_server_args_dict["ep_num_redundant_experts"],
257
            top_k=config.num_experts_per_tok + self.num_fused_shared_experts,
258
259
            hidden_size=config.hidden_size,
            intermediate_size=config.moe_intermediate_size,
fzyzcjy's avatar
fzyzcjy committed
260
            layer_id=self.layer_id,
261
262
263
264
            renormalize=config.norm_topk_prob,
            quant_config=quant_config,
            use_grouped_topk=True,
            num_expert_group=config.n_group,
265
            num_fused_shared_experts=self.num_fused_shared_experts,
266
267
            topk_group=config.topk_group,
            correction_bias=self.gate.e_score_correction_bias,
268
            routed_scaling_factor=self.routed_scaling_factor,
269
270
271
272
273
274
275
            prefix=add_prefix("experts", prefix),
            **(
                dict(deepep_mode=DeepEPMode[global_server_args_dict["deepep_mode"]])
                if global_server_args_dict["enable_deepep_moe"]
                else {}
            ),
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
276

277
        if config.n_shared_experts is not None and self.num_fused_shared_experts == 0:
Liangsheng Yin's avatar
Liangsheng Yin committed
278
            intermediate_size = config.moe_intermediate_size * config.n_shared_experts
279
            # disable tp for shared experts when enable deepep moe
280
281
282
283
284
285
286
287
288
289
290
291
292
            self.shared_experts = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                reduce_results=False,
                prefix=add_prefix("shared_experts", prefix),
                **(
                    dict(tp_rank=0, tp_size=1)
                    if global_server_args_dict["enable_deepep_moe"]
                    else {}
                ),
            )
293

294
295
        self.top_k = config.num_experts_per_tok

296
        if global_server_args_dict["enable_deepep_moe"]:
297
298
            # TODO: we will support tp < ep in the future
            self.ep_size = get_tensor_model_parallel_world_size()
299
300
301
302
            self.num_experts = (
                config.n_routed_experts
                + global_server_args_dict["ep_num_redundant_experts"]
            )
303
304
305
306
307
308
309
310
311
            self.renormalize = config.norm_topk_prob
            self.topk_group = config.topk_group
            self.num_expert_group = config.n_group
            self.correction_bias = (
                self.gate.e_score_correction_bias.data
                if self.gate.e_score_correction_bias is not None
                else None
            )

312
            self.deepep_dispatcher = MaybeTboDeepEPDispatcher(
313
314
315
                group=parallel_state.get_tp_group().device_group,
                router_topk=self.top_k,
                permute_fusion=True,
316
                num_experts=self.num_experts,
317
                num_local_experts=config.n_routed_experts // self.tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
318
                hidden_size=config.hidden_size,
319
                params_dtype=config.torch_dtype,
320
                deepep_mode=DeepEPMode[global_server_args_dict["deepep_mode"]],
321
                async_finish=True,
322
                return_recv_hook=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
323
324
            )

325
        self._enable_deepep_moe = global_server_args_dict["enable_deepep_moe"]
326

327
328
329
330
331
332
333
    def get_moe_weights(self):
        return [
            x.data
            for name, x in self.experts.named_parameters()
            if name not in ["correction_bias"]
        ]

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
    def forward(
        self, hidden_states: torch.Tensor, forward_batch: Optional[ForwardBatch] = None
    ) -> torch.Tensor:
        if not self._enable_deepep_moe:
            return self.forward_normal(hidden_states)
        else:
            return self.forward_deepep(hidden_states, forward_batch)

    def forward_normal(self, hidden_states: torch.Tensor) -> torch.Tensor:
        shared_output = self._forward_shared_experts(hidden_states)
        # router_logits: (num_tokens, n_experts)
        router_logits = self.gate(hidden_states)
        final_hidden_states = self.experts(
            hidden_states=hidden_states, router_logits=router_logits
        )
        final_hidden_states *= self.routed_scaling_factor
        if shared_output is not None:
            final_hidden_states = final_hidden_states + shared_output
        if self.tp_size > 1:
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
        return final_hidden_states

    def forward_deepep(
        self, hidden_states: torch.Tensor, forward_batch: ForwardBatch
    ) -> torch.Tensor:
        forward_mode = forward_batch.forward_mode
        shared_output = None
        if is_non_idle_and_non_empty(forward_mode, hidden_states):
            # router_logits: (num_tokens, n_experts)
            router_logits = self.gate(hidden_states)
            shared_output = self._forward_shared_experts(hidden_states)
            topk_weights, topk_idx = select_experts(
                hidden_states=hidden_states,
                router_logits=router_logits,
                top_k=self.top_k,
                use_grouped_topk=True,
                renormalize=self.renormalize,
                topk_group=self.topk_group,
                num_expert_group=self.num_expert_group,
373
                num_fused_shared_experts=self.num_fused_shared_experts,
374
375
376
                correction_bias=self.correction_bias,
                routed_scaling_factor=self.routed_scaling_factor,
                num_token_non_padded=forward_batch.num_token_non_padded,
377
378
379
                expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
                    layer_id=self.layer_id,
                ),
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
            )
        else:
            topk_idx = torch.full(
                (0, self.top_k), -1, dtype=torch.int, device=hidden_states.device
            )
            topk_weights = torch.empty(
                (0, self.top_k), dtype=torch.float32, device=hidden_states.device
            )
        if self.ep_size > 1:
            # TODO(ch-wan): allow users to set num_max_dispatch_tokens_per_rank value
            (
                hidden_states,
                topk_idx,
                topk_weights,
                reorder_topk_ids,
                num_recv_tokens_per_expert,
                seg_indptr,
                masked_m,
                expected_m,
            ) = self.deepep_dispatcher.dispatch(
                hidden_states=hidden_states,
                topk_idx=topk_idx,
                topk_weights=topk_weights,
                forward_mode=forward_mode,
            )
        final_hidden_states = self.experts(
            hidden_states=hidden_states,
            topk_idx=topk_idx,
            topk_weights=topk_weights,
            reorder_topk_ids=reorder_topk_ids,
            seg_indptr=seg_indptr,
            masked_m=masked_m,
            expected_m=expected_m,
            num_recv_tokens_per_expert=num_recv_tokens_per_expert,
            forward_mode=forward_mode,
        )
        if self.ep_size > 1:
            final_hidden_states = self.deepep_dispatcher.combine(
                hidden_states=final_hidden_states,
                topk_idx=topk_idx,
                topk_weights=topk_weights,
                forward_mode=forward_mode,
            )
        final_hidden_states *= self.routed_scaling_factor

        if shared_output is not None:
            final_hidden_states = final_hidden_states + shared_output

        return final_hidden_states

    def _forward_shared_experts(self, hidden_states):
431
        if self.num_fused_shared_experts == 0:
432
433
434
435
            return self.shared_experts(hidden_states)
        else:
            return None

436
    def op_gate(self, state):
437
        if is_non_idle_and_non_empty(
438
            state.forward_batch.forward_mode, state.hidden_states_mlp_input
439
        ):
440
            # router_logits: (num_tokens, n_experts)
441
            state.router_logits = self.gate(state.hidden_states_mlp_input)
442
        else:
443
            state.router_logits = None
444

445
    def op_shared_experts(self, state):
446
        hidden_states_mlp_input = state.pop("hidden_states_mlp_input")
447
        if (self.num_fused_shared_experts == 0) and is_non_idle_and_non_empty(
448
            state.forward_batch.forward_mode, hidden_states_mlp_input
449
        ):
450
            state.shared_output = self.shared_experts(hidden_states_mlp_input)
451
        else:
452
            state.shared_output = None
453

454
    def op_select_experts(self, state):
455
        router_logits = state.pop("router_logits")
456
457
        hidden_states = state.hidden_states_mlp_input

458
459
460
461
462
463
464
465
466
        if router_logits is not None:
            state.topk_weights_local, state.topk_idx_local = select_experts(
                hidden_states=hidden_states,
                router_logits=router_logits,
                top_k=self.top_k,
                use_grouped_topk=True,
                renormalize=self.renormalize,
                topk_group=self.topk_group,
                num_expert_group=self.num_expert_group,
467
                num_fused_shared_experts=self.num_fused_shared_experts,
468
469
                correction_bias=self.correction_bias,
                routed_scaling_factor=self.routed_scaling_factor,
470
                num_token_non_padded=state.forward_batch.num_token_non_padded,
471
472
473
474
475
476
477
478
479
480
481
                expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
                    layer_id=self.layer_id,
                ),
            )
        else:
            state.topk_idx_local = torch.full(
                (0, self.top_k), -1, dtype=torch.int, device=hidden_states.device
            )
            state.topk_weights_local = torch.empty(
                (0, self.top_k), dtype=torch.float32, device=hidden_states.device
            )
482

483
    def op_dispatch_a(self, state):
484
        if self.ep_size > 1:
485
            # TODO(ch-wan): allow users to set num_max_dispatch_tokens_per_rank value
486
            self.deepep_dispatcher.dispatch_a(
487
                hidden_states=state.hidden_states_mlp_input,
488
489
490
                topk_idx=state.pop("topk_idx_local"),
                topk_weights=state.pop("topk_weights_local"),
                forward_mode=state.forward_batch.forward_mode,
491
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
492
            )
493

494
    def op_dispatch_b(self, state):
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
        if self.ep_size > 1:
            with get_global_expert_distribution_recorder().with_current_layer(
                self.layer_id
            ):
                (
                    state.hidden_states_experts_input,
                    state.topk_idx_dispatched,
                    state.topk_weights_dispatched,
                    state.reorder_topk_ids,
                    state.num_recv_tokens_per_expert,
                    state.seg_indptr,
                    state.masked_m,
                    state.expected_m,
                ) = self.deepep_dispatcher.dispatch_b(
                    tbo_subbatch_index=state.get("tbo_subbatch_index"),
                )
511
512

    def op_experts(self, state):
513
514
515
516
517
518
519
520
521
522
523
        state.hidden_states_experts_output = self.experts(
            hidden_states=state.pop("hidden_states_experts_input"),
            topk_idx=state.topk_idx_dispatched,
            topk_weights=state.topk_weights_dispatched,
            reorder_topk_ids=state.pop("reorder_topk_ids"),
            seg_indptr=state.pop("seg_indptr"),
            masked_m=state.pop("masked_m"),
            expected_m=state.pop("expected_m"),
            num_recv_tokens_per_expert=state.pop("num_recv_tokens_per_expert"),
            forward_mode=state.forward_batch.forward_mode,
        )
524

525
    def op_combine_a(self, state):
526
        if self.ep_size > 1:
527
            self.deepep_dispatcher.combine_a(
528
                hidden_states=state.pop("hidden_states_experts_output"),
529
530
531
                topk_idx=state.pop("topk_idx_dispatched"),
                topk_weights=state.pop("topk_weights_dispatched"),
                forward_mode=state.forward_batch.forward_mode,
532
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
533
            )
534

535
    def op_combine_b(self, state):
536
537
538
539
        if self.ep_size > 1:
            state.hidden_states_after_combine = self.deepep_dispatcher.combine_b(
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
            )
540
541

    def op_output(self, state):
542
        final_hidden_states = state.pop("hidden_states_after_combine")
543
544
545
546
547
548
549

        if (shared_output := state.pop("shared_output")) is not None:
            x = shared_output
            x.add_(final_hidden_states, alpha=self.routed_scaling_factor)
            final_hidden_states = x
        else:
            final_hidden_states *= self.routed_scaling_factor
Liangsheng Yin's avatar
Liangsheng Yin committed
550

551
        state.hidden_states_mlp_output = final_hidden_states
552

Liangsheng Yin's avatar
Liangsheng Yin committed
553
554
555
556
557
558
559
560
561

def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
    import math

    if scale <= 1:
        return 1.0
    return 0.1 * mscale * math.log(scale) + 1.0


562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
class DeepseekV2AttentionMLA(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        hidden_size: int,
        num_heads: int,
        qk_nope_head_dim: int,
        qk_rope_head_dim: int,
        v_head_dim: int,
        q_lora_rank: int,
        kv_lora_rank: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        quant_config: Optional[QuantizationConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
578
579
        reduce_results: bool = True,
        layer_id: int = None,
580
        prefix: str = "",
581
        alt_stream: Optional[torch.cuda.Stream] = None,
582
583
584
585
586
587
588
589
590
591
    ) -> None:
        super().__init__()
        self.layer_id = layer_id
        self.hidden_size = hidden_size
        self.qk_nope_head_dim = qk_nope_head_dim
        self.qk_rope_head_dim = qk_rope_head_dim
        self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.q_lora_rank = q_lora_rank
        self.kv_lora_rank = kv_lora_rank
Lianmin Zheng's avatar
Lianmin Zheng committed
592
593
594
        attn_tp_rank = get_attention_tp_rank()
        attn_tp_size = get_attention_tp_size()

595
        self.num_heads = num_heads
Lianmin Zheng's avatar
Lianmin Zheng committed
596
597
        assert num_heads % attn_tp_size == 0
        self.num_local_heads = num_heads // attn_tp_size
598
599
600
601
        self.scaling = self.qk_head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

Lianmin Zheng's avatar
Lianmin Zheng committed
602
603
        # For tensor parallel attention
        if self.q_lora_rank is not None:
604
            self.fused_qkv_a_proj_with_mqa = ReplicatedLinear(
Ke Bao's avatar
Ke Bao committed
605
                self.hidden_size,
606
                self.q_lora_rank + self.kv_lora_rank + self.qk_rope_head_dim,
607
608
                bias=False,
                quant_config=quant_config,
609
                prefix=add_prefix("fused_qkv_a_proj_with_mqa", prefix),
610
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
611
612
613
614
            self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
            self.q_b_proj = ColumnParallelLinear(
                q_lora_rank,
                self.num_heads * self.qk_head_dim,
Ke Bao's avatar
Ke Bao committed
615
616
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
617
618
619
                prefix=add_prefix("q_b_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
Ke Bao's avatar
Ke Bao committed
620
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
621
622
        else:
            self.q_proj = ColumnParallelLinear(
623
                self.hidden_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
624
                self.num_heads * self.qk_head_dim,
625
626
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
627
628
629
                prefix=add_prefix("q_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
630
            )
631
632
633
634
635
636
637
638
            self.kv_a_proj_with_mqa = ReplicatedLinear(
                self.hidden_size,
                self.kv_lora_rank + self.qk_rope_head_dim,
                bias=False,
                quant_config=quant_config,
                prefix=add_prefix("kv_a_proj_with_mqa", prefix),
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
        self.kv_b_proj = ColumnParallelLinear(
            self.kv_lora_rank,
            self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("kv_b_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
        # O projection.
        self.o_proj = RowParallelLinear(
            self.num_heads * self.v_head_dim,
            self.hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
            prefix=add_prefix("o_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
659
        self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
Ke Bao's avatar
Ke Bao committed
660
661
662
663

        if rope_scaling:
            rope_scaling["rope_type"] = "deepseek_yarn"

664
        self.rotary_emb = get_rope(
665
666
667
668
669
670
671
672
673
674
675
676
677
            qk_rope_head_dim,
            rotary_dim=qk_rope_head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            is_neox_style=False,
        )

        if rope_scaling:
            mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
            scaling_factor = rope_scaling["factor"]
            mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
            self.scaling = self.scaling * mscale * mscale
Ke Bao's avatar
Ke Bao committed
678
679
        else:
            self.rotary_emb.forward = self.rotary_emb.forward_native
680

681
        self.attn_mqa = RadixAttention(
682
683
684
685
686
687
            self.num_local_heads,
            self.kv_lora_rank + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=1,
            layer_id=layer_id,
            v_head_dim=self.kv_lora_rank,
688
            quant_config=quant_config,
689
            prefix=add_prefix("attn_mqa", prefix),
690
691
        )

692
693
694
695
696
697
698
        self.attn_mha = RadixAttention(
            self.num_local_heads,
            self.qk_nope_head_dim + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=self.num_local_heads,
            layer_id=layer_id,
            v_head_dim=self.v_head_dim,
699
            quant_config=quant_config,
700
            prefix=add_prefix("attn_mha", prefix),
701
702
        )

703
        self.alt_stream = alt_stream
704
        self.attn_mha.kv_b_proj = None
705

Ke Bao's avatar
Ke Bao committed
706
707
        self.w_kc = None
        self.w_vc = None
708
        self.w_scale = 1.0
709

710
711
712
713
        self.w_scale_k = None
        self.w_scale_v = None
        self.use_deep_gemm_bmm = False

Lianmin Zheng's avatar
Lianmin Zheng committed
714
715
716
        self.flashinfer_mla_disable_ragged = global_server_args_dict[
            "flashinfer_mla_disable_ragged"
        ]
717
718
719
        self.disable_chunked_prefix_cache = global_server_args_dict[
            "disable_chunked_prefix_cache"
        ]
720
        self.attention_backend = global_server_args_dict["attention_backend"]
721
722
723
        self.rocm_fused_decode_mla = get_bool_env_var(
            "SGLANG_ROCM_FUSED_DECODE_MLA", "false"
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
724

725
        # TODO: Design a finer way to determine the threshold
726
727
728
        self.chunked_prefix_cache_threshold = get_int_env_var(
            "SGL_CHUNKED_PREFIX_CACHE_THRESHOLD", 8192
        )
729
730
731
732

    def dispatch_attn_forward_method(
        self, forward_batch: ForwardBatch
    ) -> AttnForwardMethod:
733
734
735
736
737
738
739
740
741
742
743
744
        def _dispatch_mla_subtype():
            if _is_hip:
                if (
                    self.rocm_fused_decode_mla
                    and forward_batch.forward_mode.is_decode()
                ):
                    return AttnForwardMethod.MLA_FUSED_ROPE
                else:
                    return AttnForwardMethod.MLA
            else:
                return AttnForwardMethod.MLA

745
        if self.attention_backend == "flashinfer":
Lianmin Zheng's avatar
Lianmin Zheng committed
746
            # Flashinfer MLA: Do not absorb when enabling ragged prefill
747
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
748
749
750
751
                not self.flashinfer_mla_disable_ragged
                and forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
752
                and sum(forward_batch.extend_prefix_lens_cpu) == 0
753
754
755
            ):
                return AttnForwardMethod.MHA
            else:
756
                return _dispatch_mla_subtype()
757
        elif self.attention_backend == "fa3":
758
            # Flash Attention: Use MHA with chunked KV cache when prefilling on long sequences.
759
760
            if forward_batch.extend_prefix_lens_cpu is not None:
                sum_extend_prefix_lens = sum(forward_batch.extend_prefix_lens_cpu)
761
762
763
764
765
            if (
                forward_batch.forward_mode.is_extend()
                and not self.disable_chunked_prefix_cache
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
766
767
768
769
                and (
                    sum_extend_prefix_lens >= self.chunked_prefix_cache_threshold
                    or sum_extend_prefix_lens == 0
                )
770
771
772
            ):
                return AttnForwardMethod.MHA_CHUNKED_KV
            else:
773
                return _dispatch_mla_subtype()
774
775
776
777
778
779
780
781
782
        elif self.attention_backend == "aiter":
            if (
                forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
            ):
                return AttnForwardMethod.MHA
            else:
                return AttnForwardMethod.MLA
Lianmin Zheng's avatar
Lianmin Zheng committed
783
784
        else:
            # Triton: Use normal computation for prefill and use weight absorption for extend/decode
785
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
786
787
788
                forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
789
                and sum(forward_batch.extend_prefix_lens_cpu) == 0
790
791
792
            ):
                return AttnForwardMethod.MHA
            else:
793
                return _dispatch_mla_subtype()
Lianmin Zheng's avatar
Lianmin Zheng committed
794

795
796
797
798
799
800
801
802
803
804
805
806
807
    def op_prepare(self, state):
        state.attn_intermediate_state = self.forward_prepare(
            positions=state.positions,
            hidden_states=state.pop("hidden_states_after_comm_pre_attn"),
            forward_batch=state.forward_batch,
            zero_allocator=state.zero_allocator,
        )

    def op_core(self, state):
        state.hidden_states_after_attn = self.forward_core(
            state.pop("attn_intermediate_state")
        )

808
809
810
811
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
812
        forward_batch: ForwardBatch,
813
        zero_allocator: BumpAllocator,
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
    ):
        s = self.forward_prepare(
            positions=positions,
            hidden_states=hidden_states,
            forward_batch=forward_batch,
            zero_allocator=zero_allocator,
        )
        return self.forward_core(s)

    def forward_prepare(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        zero_allocator: BumpAllocator,
    ):
830
831
832
        if self.attn_mha.kv_b_proj is None:
            self.attn_mha.kv_b_proj = self.kv_b_proj

Lianmin Zheng's avatar
Lianmin Zheng committed
833
834
835
836
        if hidden_states.shape[0] == 0:
            assert (
                not self.o_proj.reduce_results
            ), "short-circuiting allreduce will lead to hangs"
837
            return hidden_states, None, forward_batch, None
838

839
840
841
        attn_forward_method = self.dispatch_attn_forward_method(forward_batch)

        if attn_forward_method == AttnForwardMethod.MHA:
842
843
844
            inner_state = self.forward_normal_prepare(
                positions, hidden_states, forward_batch, zero_allocator
            )
845
        elif attn_forward_method == AttnForwardMethod.MHA_CHUNKED_KV:
846
847
            inner_state = self.forward_normal_chunked_kv_prepare(
                positions, hidden_states, forward_batch, zero_allocator
848
            )
849
        elif attn_forward_method == AttnForwardMethod.MLA:
850
            inner_state = self.forward_absorb_prepare(
851
852
853
                positions, hidden_states, forward_batch, zero_allocator
            )
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE:
854
855
            inner_state = self.forward_absorb_fused_mla_rope_prepare(
                positions, hidden_states, forward_batch, zero_allocator
856
            )
857
        else:
858
            raise NotImplementedError
859
        return None, attn_forward_method, forward_batch, inner_state
860

861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
    def forward_core(self, intermediate_state):
        hidden_states, attn_forward_method, forward_batch, inner_state = (
            intermediate_state
        )
        if inner_state is None:
            return hidden_states

        if attn_forward_method == AttnForwardMethod.MHA:
            return self.forward_normal_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MHA_CHUNKED_KV:
            return self.forward_normal_chunked_kv_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MLA:
            return self.forward_absorb_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE:
            return self.forward_absorb_fused_mla_rope_core(*inner_state)
        else:
            raise NotImplementedError

    def forward_normal_prepare(
880
881
882
883
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
884
885
        zero_allocator: BumpAllocator,
    ):
886
        if self.q_lora_rank is not None:
887
888
889
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
890
891
892
893
894
895
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
896
897
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]

898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a.contiguous())
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )
920
921
922
923

        return q, k, v, forward_batch

    def forward_normal_core(self, q, k, v, forward_batch):
924
925
926
927
928
        attn_output = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

929
    def forward_absorb_prepare(
930
931
932
933
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
934
        zero_allocator: BumpAllocator,
935
    ):
936
937
        from sglang.srt.model_executor.cuda_graph_runner import get_is_capture_mode

938
        if self.q_lora_rank is not None:
939
940
941
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
942
943
944
            k_nope = latent_cache[..., : self.kv_lora_rank]

            # overlap qk norm
945
            if self.alt_stream is not None and get_is_capture_mode():
946
947
948
949
950
951
952
953
954
955
956
                current_stream = torch.cuda.current_stream()
                self.alt_stream.wait_stream(current_stream)
                q = self.q_a_layernorm(q)
                with torch.cuda.stream(self.alt_stream):
                    k_nope = self.kv_a_layernorm(k_nope)
                current_stream.wait_stream(self.alt_stream)
            else:
                q = self.q_a_layernorm(q)
                k_nope = self.kv_a_layernorm(k_nope)

            k_nope = k_nope.unsqueeze(1)
957
958
959
960
961
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
962
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
963
964
965
            k_nope = latent_cache[..., : self.kv_lora_rank]
            k_nope = self.kv_a_layernorm(k_nope).unsqueeze(1)

966
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
967
        k_pe = latent_cache[..., self.kv_lora_rank :].unsqueeze(1)
968

969
970
        if self.use_deep_gemm_bmm:
            q_nope_val, q_nope_scale, masked_m, expected_m, aligned_m = (
971
                per_token_group_quant_mla_deep_gemm_masked_fp8(q_nope.transpose(0, 1))
972
973
974
975
            )
            q_nope_out = q_nope.new_empty(
                (self.num_local_heads, aligned_m, self.kv_lora_rank)
            )
976
            deep_gemm_grouped_gemm_nt_f8f8bf16_masked(
977
978
979
980
981
982
983
                (q_nope_val, q_nope_scale),
                (self.w_kc, self.w_scale_k),
                q_nope_out,
                masked_m,
                expected_m,
            )
            q_nope_out = q_nope_out[:, :expected_m, :]
984
985
        elif _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
986
987
988
989
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
990
        elif self.w_kc.dtype == torch.float8_e4m3fn:
991
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
Lianmin Zheng's avatar
Lianmin Zheng committed
992
                q_nope.transpose(0, 1),
993
                zero_allocator.allocate(1),
994
995
996
997
998
999
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
1000
1001

        q_nope_out = q_nope_out.transpose(0, 1)
1002
1003
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)

1004
1005
1006
1007
1008
        return q_pe, k_pe, q_nope_out, k_nope, forward_batch, zero_allocator

    def forward_absorb_core(
        self, q_pe, k_pe, q_nope_out, k_nope, forward_batch, zero_allocator
    ):
xu-yfei's avatar
xu-yfei committed
1009
        if self.attention_backend == "fa3" or self.attention_backend == "flashinfer":
1010
            attn_output = self.attn_mqa(
Ke Bao's avatar
Ke Bao committed
1011
                q_nope_out, k_nope, k_nope, forward_batch, q_rope=q_pe, k_rope=k_pe
1012
1013
1014
            )
        else:
            q = torch.cat([q_nope_out, q_pe], dim=-1)
Ke Bao's avatar
Ke Bao committed
1015
            k = torch.cat([k_nope, k_pe], dim=-1)
1016
            attn_output = self.attn_mqa(q, k, k_nope, forward_batch)
1017
1018
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

1019
1020
        if self.use_deep_gemm_bmm:
            attn_output_val, attn_output_scale, masked_m, expected_m, aligned_m = (
1021
1022
                per_token_group_quant_mla_deep_gemm_masked_fp8(
                    attn_output.transpose(0, 1)
1023
1024
1025
1026
1027
                )
            )
            attn_bmm_output = attn_output.new_empty(
                (self.num_local_heads, aligned_m, self.v_head_dim)
            )
1028
            deep_gemm_grouped_gemm_nt_f8f8bf16_masked(
1029
1030
1031
1032
1033
1034
1035
                (attn_output_val, attn_output_scale),
                (self.w_vc, self.w_scale_v),
                attn_bmm_output,
                masked_m,
                expected_m,
            )
            attn_bmm_output = attn_bmm_output[:, :expected_m, :]
1036
1037
        elif _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1038
1039
1040
1041
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
1042
        elif self.w_vc.dtype == torch.float8_e4m3fn:
1043
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
Lianmin Zheng's avatar
Lianmin Zheng committed
1044
                attn_output.transpose(0, 1),
1045
                zero_allocator.allocate(1),
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
        output, _ = self.o_proj(attn_output)

        return output

1061
    def forward_absorb_fused_mla_rope_prepare(
1062
1063
1064
1065
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1066
        zero_allocator: BumpAllocator,
1067
    ):
1068
1069
1070
1071
1072
1073
1074
1075
        enable_rope_fusion = (
            os.getenv("SGLANG_FUSED_MLA_ENABLE_ROPE_FUSION", "1") == "1"
        )
        q_len = hidden_states.shape[0]
        q_input = hidden_states.new_empty(
            q_len, self.num_local_heads, self.kv_lora_rank + self.qk_rope_head_dim
        )
        if self.q_lora_rank is not None:
1076
1077
1078
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1079
1080
1081
1082
1083
1084
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1085
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1086
1087
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)

1088
1089
        if _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1090
1091
1092
1093
1094
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_kc.dtype == torch.float8_e4m3fn:
1095
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
1096
1097
1098
                q_nope.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
        q_input[..., : self.kv_lora_rank] = q_nope_out.transpose(0, 1)
        v_input = latent_cache[..., : self.kv_lora_rank]
        v_input = self.kv_a_layernorm(v_input.contiguous()).unsqueeze(1)
        k_input = latent_cache.unsqueeze(1)
        k_input[..., : self.kv_lora_rank] = v_input

        if not enable_rope_fusion:
            k_pe = k_input[..., self.kv_lora_rank :]
            q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
            q_input[..., self.kv_lora_rank :] = q_pe
            k_input[..., self.kv_lora_rank :] = k_pe
            k_pe_output = None
        else:
            k_pe_output = torch.empty_like(k_input[..., self.kv_lora_rank :])

        q_input[..., self.kv_lora_rank :] = q_pe

        # attn_output = self.attn_mqa(q_input, k_input, v_input, forward_batch)
        # Use Fused ROPE with use_rope=OFF.
        attn_output = torch.empty(
            (q_len, self.num_local_heads, self.kv_lora_rank),
            dtype=q.dtype,
            device=q.device,
        )
        attn_logits, _, kv_indptr, kv_indices, _, _, _ = (
            forward_batch.attn_backend.forward_metadata
        )
        cos_sin_cache = self.rotary_emb.cos_sin_cache
        num_kv_split = forward_batch.attn_backend.num_kv_splits
        sm_scale = self.attn_mqa.scaling
        if attn_logits is None:
            attn_logits = torch.empty(
                (
                    forward_batch.batch_size,
                    self.num_local_heads,
                    num_kv_split,
                    self.kv_lora_rank + 1,
                ),
                dtype=torch.float32,
                device=q.device,
            )

        # save current latent cache.
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mqa, forward_batch.out_cache_loc, k_input, None
        )
        key_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
            self.attn_mqa.layer_id
        )
        val_cache_buf = key_cache_buf[..., : self.kv_lora_rank]

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
        return (
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            enable_rope_fusion,
            k_input,
            forward_batch,
            zero_allocator,
        )

    def forward_absorb_fused_mla_rope_core(
        self,
        q_input,
        key_cache_buf,
        val_cache_buf,
        attn_output,
        kv_indptr,
        kv_indices,
        k_pe_output,
        cos_sin_cache,
        positions,
        attn_logits,
        num_kv_split,
        sm_scale,
        enable_rope_fusion,
        k_input,
        forward_batch,
        zero_allocator,
    ):
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
        decode_attention_fwd_grouped_rope(
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            self.kv_lora_rank,
            self.rotary_emb.rotary_dim,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            logit_cap=self.attn_mqa.logit_cap,
            use_rope=enable_rope_fusion,
            is_neox_style=self.rotary_emb.is_neox_style,
        )

        if enable_rope_fusion:
            k_input[..., self.kv_lora_rank :] = k_pe_output
            forward_batch.token_to_kv_pool.set_kv_buffer(
                self.attn_mqa, forward_batch.out_cache_loc, k_input, None
            )

        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

1222
1223
        if _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1224
1225
1226
1227
1228
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_vc.dtype == torch.float8_e4m3fn:
1229
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
1230
1231
1232
                attn_output.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
1244
1245
1246
1247
        output, _ = self.o_proj(attn_output)

        return output

1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
    def _chunked_prefix_attn_mha(
        self,
        q: torch.Tensor,
        accum_output: torch.Tensor,
        accum_lse: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:

        assert forward_batch.num_prefix_chunks is not None
        for i in range(forward_batch.num_prefix_chunks):
            forward_batch.set_prefix_chunk_idx(i)

            # Fetch latent cache from memory pool with precomputed chunked kv indices
            latent_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
                self.attn_mha.layer_id
            )
            latent_cache = latent_cache_buf[
                forward_batch.prefix_chunk_kv_indices[i]
            ].contiguous()

            kv_a_normed, k_pe = latent_cache.split(
                [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
            )
            kv_a_normed = kv_a_normed.squeeze(1).contiguous()
            kv = self.kv_b_proj(kv_a_normed)[0]
            kv = kv.view(
                -1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim
            )
            v = kv[..., self.qk_nope_head_dim :]
            k_nope = kv[..., : self.qk_nope_head_dim]

            k = torch.empty(
                (
                    k_nope.shape[0],
                    self.num_local_heads,
                    self.qk_nope_head_dim + self.qk_rope_head_dim,
                ),
                dtype=v.dtype,
                device=v.device,
            )
            k[..., : self.qk_nope_head_dim] = k_nope
            k[..., self.qk_nope_head_dim :] = k_pe

            output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
            lse = torch.transpose(lse, 0, 1).contiguous()
            tmp_output = torch.empty_like(accum_output)
            tmp_lse = torch.empty_like(accum_lse)
            merge_state_v2(output, lse, accum_output, accum_lse, tmp_output, tmp_lse)
            accum_output, accum_lse = tmp_output, tmp_lse

        return accum_output

1300
    def forward_normal_chunked_kv_prepare(
1301
1302
1303
1304
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1305
1306
        zero_allocator: BumpAllocator,
    ):
1307
1308
1309
1310
1311
1312
1313
1314
        # In normal mha, the k and v tensors will become overly large when the prefix length is long.
        # To avoid this, we split the kv cache into chunks and process them one after another.
        # Since mha is compute friendly, the for loop induced here will not introduce significant overhead.
        # The top comments in https://github.com/vllm-project/vllm/blob/main/vllm/v1/attention/backends/mla/common.py
        # will be helpful for understanding the purpose of this function.

        # First do normal mha forward to get output for extended part
        if self.q_lora_rank is not None:
1315
1316
1317
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1318
1319
1320
1321
1322
1323
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1324
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a.contiguous())
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]

        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )

1349
1350
1351
        return q, k, v, forward_batch

    def forward_normal_chunked_kv_core(self, q, k, v, forward_batch):
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
        # Do mha for extended part without prefix
        forward_batch.set_attn_attend_prefix_cache(False)
        attn_output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        lse = torch.transpose(lse, 0, 1).contiguous()

        # Do mha attention with chunked prefix cache if there are any sequence with prefix
        if any(forward_batch.extend_prefix_lens_cpu):
            # Only initialize the info once
            if forward_batch.num_prefix_chunks is None:
                forward_batch.prepare_chunked_prefix_cache_info(q.device)

            forward_batch.set_attn_attend_prefix_cache(True)
            attn_output = self._chunked_prefix_attn_mha(
                q=q,
                accum_output=attn_output,
                accum_lse=lse,
                forward_batch=forward_batch,
            )

        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

1375

Liangsheng Yin's avatar
Liangsheng Yin committed
1376
1377
1378
1379
1380
1381
1382
class DeepseekV2DecoderLayer(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        layer_id: int,
        quant_config: Optional[QuantizationConfig] = None,
1383
        is_nextn: bool = False,
1384
        prefix: str = "",
1385
        alt_stream: Optional[torch.cuda.Stream] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1386
1387
1388
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
1389
        self.config = config
Liangsheng Yin's avatar
Liangsheng Yin committed
1390
1391
1392
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
Lianmin Zheng's avatar
Lianmin Zheng committed
1393
1394
        self.enable_dp_attention = global_server_args_dict["enable_dp_attention"]
        self.layer_id = layer_id
Baizhou Zhang's avatar
Baizhou Zhang committed
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
        self.self_attn = DeepseekV2AttentionMLA(
            config=config,
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            qk_nope_head_dim=config.qk_nope_head_dim,
            qk_rope_head_dim=config.qk_rope_head_dim,
            v_head_dim=config.v_head_dim,
            q_lora_rank=(
                config.q_lora_rank if hasattr(config, "q_lora_rank") else None
            ),
            kv_lora_rank=config.kv_lora_rank,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
            quant_config=quant_config,
            layer_id=layer_id,
            reduce_results=False,
            prefix=add_prefix("self_attn", prefix),
1413
            alt_stream=alt_stream,
Baizhou Zhang's avatar
Baizhou Zhang committed
1414
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1415

1416
1417
1418
1419
1420
1421
1422
1423
        self.is_layer_sparse = self._is_layer_sparse(layer_id, is_nextn=is_nextn)
        is_previous_layer_sparse = self._is_layer_sparse(layer_id - 1, is_nextn=False)

        self.layer_scatter_modes = LayerScatterModes.init_new(
            layer_id=layer_id,
            num_layers=config.num_hidden_layers,
            is_layer_sparse=self.is_layer_sparse,
            is_previous_layer_sparse=is_previous_layer_sparse,
1424
1425
        )

1426
        if self.is_layer_sparse:
1427
1428
1429
1430
            self.mlp = DeepseekV2MoE(
                config=config,
                quant_config=quant_config,
                prefix=add_prefix("mlp", prefix),
fzyzcjy's avatar
fzyzcjy committed
1431
                layer_id=self.layer_id,
1432
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
1433
        else:
1434
            if enable_moe_dense_fully_dp():
1435
1436
1437
                mlp_tp_rank, mlp_tp_size = 0, 1
            else:
                mlp_tp_rank, mlp_tp_size = None, None
Liangsheng Yin's avatar
Liangsheng Yin committed
1438
1439
1440
1441
1442
            self.mlp = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=config.intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
1443
                prefix=add_prefix("mlp", prefix),
1444
1445
                tp_rank=mlp_tp_rank,
                tp_size=mlp_tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
1446
            )
1447

Liangsheng Yin's avatar
Liangsheng Yin committed
1448
1449
1450
1451
1452
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

1453
1454
1455
1456
        self.layer_communicator = LayerCommunicator(
            layer_scatter_modes=self.layer_scatter_modes,
            input_layernorm=self.input_layernorm,
            post_attention_layernorm=self.post_attention_layernorm,
1457
        )
1458
1459
1460
1461
1462
1463

    def _is_layer_sparse(self, layer_id: int, is_nextn: bool) -> bool:
        return is_nextn or (
            self.config.n_routed_experts is not None
            and layer_id >= self.config.first_k_dense_replace
            and layer_id % self.config.moe_layer_freq == 0
1464
1465
        )

Liangsheng Yin's avatar
Liangsheng Yin committed
1466
1467
1468
1469
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
1470
        forward_batch: ForwardBatch,
Liangsheng Yin's avatar
Liangsheng Yin committed
1471
        residual: Optional[torch.Tensor],
1472
        zero_allocator: BumpAllocator,
Liangsheng Yin's avatar
Liangsheng Yin committed
1473
    ) -> torch.Tensor:
1474
1475
        hidden_states, residual = self.layer_communicator.prepare_attn(
            hidden_states, residual, forward_batch
1476
1477
        )

1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            forward_batch=forward_batch,
            zero_allocator=zero_allocator,
        )

        hidden_states, residual = self.layer_communicator.prepare_mlp(
            hidden_states, residual, forward_batch
        )

        hidden_states = self.mlp(hidden_states, forward_batch)

        hidden_states, residual = self.layer_communicator.postprocess_layer(
            hidden_states, residual, forward_batch
        )

        return hidden_states, residual

1497
1498
1499
1500
1501
1502
1503
1504
    def op_comm_prepare_attn(
        self,
        state,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        residual: Optional[torch.Tensor],
        zero_allocator: BumpAllocator,
1505
        tbo_subbatch_index: Optional[int] = None,
1506
1507
    ):
        state.hidden_states_after_comm_pre_attn, state.residual_after_input_ln = (
fzyzcjy's avatar
fzyzcjy committed
1508
            self.layer_communicator.prepare_attn(hidden_states, residual, forward_batch)
1509
1510
1511
1512
1513
1514
        )
        state.update(
            dict(
                forward_batch=forward_batch,
                positions=positions,
                zero_allocator=zero_allocator,
1515
                tbo_subbatch_index=tbo_subbatch_index,
1516
            )
1517
        )
1518

1519
1520
1521
1522
1523
1524
1525
    def op_comm_prepare_mlp(self, state):
        state.hidden_states_mlp_input, state.residual_after_comm_pre_mlp = (
            self.layer_communicator.prepare_mlp(
                state.pop("hidden_states_after_attn"),
                state.pop("residual_after_input_ln"),
                state.forward_batch,
            )
1526
        )
1527

1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
    def op_mlp(self, state):
        hidden_states = state.pop("hidden_states_mlp_input")
        if not (
            enable_moe_dense_fully_dp()
            and (not self.is_layer_sparse)
            and hidden_states.shape[0] == 0
        ):
            state.hidden_states_mlp_output = self.mlp(
                hidden_states, state.forward_batch.forward_mode
            )
        else:
            state.hidden_states_mlp_output = hidden_states
1540

1541
    def op_comm_postprocess_layer(self, state):
1542
        hidden_states, residual = self.layer_communicator.postprocess_layer(
1543
1544
1545
            state.pop("hidden_states_mlp_output"),
            state.pop("residual_after_comm_pre_mlp"),
            state.forward_batch,
1546
        )
1547

1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
        output = dict(
            positions=state.positions,
            hidden_states=hidden_states,
            residual=residual,
            forward_batch=state.forward_batch,
            zero_allocator=state.zero_allocator,
            tbo_subbatch_index=state.tbo_subbatch_index,
        )

        state.clear(
            expect_keys={
                "positions",
                "forward_batch",
                "zero_allocator",
                "tbo_subbatch_index",
            }
        )
        return output
1566

Liangsheng Yin's avatar
Liangsheng Yin committed
1567
1568
1569
1570
1571
1572
1573
1574

class DeepseekV2Model(nn.Module):
    fall_back_to_pt_during_load = False

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
1575
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
1576
1577
1578
1579
    ) -> None:
        super().__init__()
        self.padding_id = config.pad_token_id
        self.vocab_size = config.vocab_size
1580
        self.first_k_dense_replace = config.first_k_dense_replace
Liangsheng Yin's avatar
Liangsheng Yin committed
1581
1582
1583
1584

        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
Ke Bao's avatar
Ke Bao committed
1585
            enable_tp=not global_server_args_dict["enable_dp_attention"],
Liangsheng Yin's avatar
Liangsheng Yin committed
1586
        )
1587
        self.alt_stream = torch.cuda.Stream() if _is_cuda else None
Liangsheng Yin's avatar
Liangsheng Yin committed
1588
1589
1590
1591
1592
1593
        self.layers = nn.ModuleList(
            [
                DeepseekV2DecoderLayer(
                    config,
                    layer_id,
                    quant_config=quant_config,
1594
                    prefix=add_prefix(f"layers.{layer_id}", prefix),
1595
                    alt_stream=self.alt_stream,
Liangsheng Yin's avatar
Liangsheng Yin committed
1596
1597
1598
1599
1600
1601
                )
                for layer_id in range(config.num_hidden_layers)
            ]
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

1602
        self.dp_size = get_local_attention_dp_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1603

1604
1605
1606
    def get_input_embeddings(self) -> torch.Tensor:
        return self.embed_tokens

Liangsheng Yin's avatar
Liangsheng Yin committed
1607
1608
1609
1610
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
1611
        forward_batch: ForwardBatch,
1612
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1613
    ) -> torch.Tensor:
1614
1615
        total_num_layers = len(self.layers)
        device = input_embeds.device if input_embeds is not None else input_ids.device
1616
        zero_allocator = BumpAllocator(
1617
            buffer_size=total_num_layers * 2 * (2 if forward_batch.can_run_tbo else 1),
1618
            dtype=torch.float32,
1619
            device=device,
1620
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1621

1622
1623
1624
1625
1626
        if input_embeds is None:
            hidden_states = self.embed_tokens(input_ids)
        else:
            hidden_states = input_embeds

Liangsheng Yin's avatar
Liangsheng Yin committed
1627
        residual = None
1628
1629
1630
1631
1632
1633
1634

        normal_num_layers = (
            self.first_k_dense_replace
            if forward_batch.can_run_tbo
            else total_num_layers
        )
        for i in range(normal_num_layers):
1635
1636
1637
1638
1639
            with get_global_expert_distribution_recorder().with_current_layer(i):
                layer = self.layers[i]
                hidden_states, residual = layer(
                    positions, hidden_states, forward_batch, residual, zero_allocator
                )
1640
1641
1642
1643
1644
1645
1646
1647
1648

        if normal_num_layers != total_num_layers:
            hidden_states, residual = model_forward_maybe_tbo(
                layers=self.layers[normal_num_layers:],
                enable_tbo=True,
                positions=positions,
                forward_batch=forward_batch,
                hidden_states=hidden_states,
                residual=residual,
1649
1650
1651
                input_data_scatter_mode=self.layers[
                    normal_num_layers - 1
                ].layer_scatter_modes.layer_output_mode,
1652
1653
1654
                zero_allocator=zero_allocator,
            )

Ke Bao's avatar
Ke Bao committed
1655
        if not forward_batch.forward_mode.is_idle():
1656
1657
1658
1659
            if residual is None:
                hidden_states = self.norm(hidden_states)
            else:
                hidden_states, _ = self.norm(hidden_states, residual)
Liangsheng Yin's avatar
Liangsheng Yin committed
1660
1661
1662
1663
1664
1665
1666
1667
1668
        return hidden_states


class DeepseekV2ForCausalLM(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
1669
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
1670
1671
1672
    ) -> None:
        super().__init__()
        self.config = config
1673
        self.tp_size = get_tensor_model_parallel_world_size()
Liangsheng Yin's avatar
Liangsheng Yin committed
1674
        self.quant_config = quant_config
1675
        self.determine_num_fused_shared_experts()
1676
1677
1678
1679
1680
1681
1682
1683
        self.model = DeepseekV2Model(
            config, quant_config, prefix=add_prefix("model", prefix)
        )
        self.lm_head = ParallelLMHead(
            config.vocab_size,
            config.hidden_size,
            quant_config=quant_config,
            prefix=add_prefix("lm_head", prefix),
1684
            use_attn_tp_group=global_server_args_dict["enable_dp_lm_head"],
1685
1686
        )
        self.logits_processor = LogitsProcessor(config)
1687
        self.dp_size = get_local_attention_dp_size()
1688

1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
        self._routed_experts_weights_of_layer = LazyValue(
            lambda: {
                layer_id: layer.mlp.get_moe_weights()
                for layer_id, layer in enumerate(self.model.layers)
                if isinstance(layer.mlp, DeepseekV2MoE)
            }
        )

    @property
    def routed_experts_weights_of_layer(self):
        return self._routed_experts_weights_of_layer.value

1701
    def determine_num_fused_shared_experts(
1702
1703
        self, architecture: str = "DeepseekV3ForCausalLM"
    ):
1704
1705
1706
1707
1708
        self.num_fused_shared_experts = (
            0
            if global_server_args_dict["disable_shared_experts_fusion"]
            else self.config.n_shared_experts
        )
1709
        if self.num_fused_shared_experts > 0:
1710
1711
            # Only Deepseek V3/R1 can use shared experts fusion optimization now.
            if (
1712
1713
                not _is_cuda
                or self.config.architectures[0] != architecture
1714
1715
                or self.config.n_routed_experts != 256
            ):
1716
                self.num_fused_shared_experts = 0
1717
                global_server_args_dict["disable_shared_experts_fusion"] = 1
1718
1719
                log_info_on_rank0(
                    logger,
1720
                    "Only Deepseek V3/R1 on NV-platform can use shared experts fusion optimization. Shared experts fusion optimization is disabled.",
1721
                )
1722
        elif self.num_fused_shared_experts == 0:
1723
            if (
1724
1725
                _is_cuda
                and torch.cuda.get_device_capability("cuda") >= (9, 0)
1726
                and self.config.architectures[0] == architecture
1727
1728
1729
                and self.config.n_routed_experts == 256
                and (not global_server_args_dict["enable_deepep_moe"])
            ):
1730
1731
                self.num_fused_shared_experts = self.config.n_shared_experts
                global_server_args_dict["disable_shared_experts_fusion"] = 0
1732
1733
1734
                log_info_on_rank0(
                    logger,
                    "Deepseek V3/R1 with fp8 can use shared experts fusion optimization when SM version >=90. Shared experts fusion optimization is enabled.",
1735
                )
1736

Mick's avatar
Mick committed
1737
1738
1739
    def get_input_embeddings(self) -> nn.Embedding:
        return self.model.embed_tokens

1740
    @torch.no_grad()
Liangsheng Yin's avatar
Liangsheng Yin committed
1741
1742
1743
1744
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
1745
        forward_batch: ForwardBatch,
1746
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1747
    ) -> torch.Tensor:
1748
        hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
Lianmin Zheng's avatar
Lianmin Zheng committed
1749

1750
1751
1752
        return self.logits_processor(
            input_ids, hidden_states, self.lm_head, forward_batch
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
1753

1754
    def post_load_weights(self, is_nextn=False, weight_names=None):
inkcherry's avatar
inkcherry committed
1755
1756

        # Perform post-processing after loading weights
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
        if is_nextn:
            layer_ids = [self.config.num_hidden_layers]
        else:
            if weight_names is None:
                layer_ids = range(self.config.num_hidden_layers)
            else:
                layer_ids = set()
                for name in weight_names:
                    if "kv_b_proj" in name:
                        layer_id = int(name.split(".")[2])
                        # filter the nextn layer.
                        if layer_id != self.config.num_hidden_layers:
                            layer_ids.add(layer_id)

1771
1772
1773
1774
1775
1776
        for layer_id in layer_ids:
            self_attn = (
                self.model.layers[layer_id].self_attn
                if not is_nextn
                else self.model.decoder.self_attn
            )
Baizhou Zhang's avatar
Baizhou Zhang committed
1777
1778
1779
1780
1781
1782
1783
1784
            if hasattr(self_attn.kv_b_proj, "qweight"):
                # AWQ compatible
                if _is_cuda:
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                    ).T
inkcherry's avatar
inkcherry committed
1785
                else:
Baizhou Zhang's avatar
Baizhou Zhang committed
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                        0,
                        0,
                        0,
                    ).T
            else:
                w = self_attn.kv_b_proj.weight
            # NOTE(HandH1998): Since `bmm_fp8` only supports per-tensor scale, we have to requantize `self_attn.kv_b_proj`.
            # This may affect the accuracy of fp8 model.
1798
1799
1800
1801
            # Fix deepseek v3 blockwise bmm by using deep_gemm
            use_deep_gemm_bmm = False
            model_dtype = torch.get_default_dtype()

Baizhou Zhang's avatar
Baizhou Zhang committed
1802
1803
1804
1805
            if w.dtype in (
                torch.float8_e4m3fn,
                torch.float8_e4m3fnuz,
            ):
1806
1807
1808
1809
                if (
                    hasattr(self.quant_config, "weight_block_size")
                    and self.quant_config.weight_block_size is not None
                ):
Baizhou Zhang's avatar
Baizhou Zhang committed
1810
                    weight_block_size = self.quant_config.weight_block_size
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
                    assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                    if _is_fp8_fnuz:
                        weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                            weight=w,
                            weight_scale=self_attn.kv_b_proj.weight_scale_inv,
                            input_scale=None,
                        )
                    else:
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale_inv

                    if (
                        _is_cuda
                        and weight_block_size[0] == 128
                        and weight_block_size[1] == 128
                        and model_dtype == torch.bfloat16
                    ):
                        if _ENABLE_JIT_DEEPGEMM and get_bool_env_var(
                            "SGL_USE_DEEPGEMM_BMM", "false"
1830
                        ):
1831
1832
                            block_scale = weight_scale
                            use_deep_gemm_bmm = True
1833
                        else:
1834
1835
1836
1837
1838
                            w = block_quant_dequant(
                                weight,
                                weight_scale,
                                weight_block_size,
                                model_dtype,
1839
                            )
1840
1841
1842
1843
1844
                    else:
                        w, scale = block_quant_to_tensor_quant(
                            weight, weight_scale, weight_block_size
                        )
                        self_attn.w_scale = scale
Baizhou Zhang's avatar
Baizhou Zhang committed
1845
                else:
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
                    if _is_fp8_fnuz:
                        weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                            weight=w,
                            weight_scale=self_attn.kv_b_proj.weight_scale,
                            input_scale=None,
                        )
                    else:
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale

Baizhou Zhang's avatar
Baizhou Zhang committed
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
                    w, scale = channel_quant_to_tensor_quant(weight, weight_scale)
                    self_attn.w_scale = scale

            if w.dtype == torch.int8:
                if hasattr(self.quant_config, "weight_block_size"):
                    # block-wise int8 need it
                    weight_block_size = self.quant_config.weight_block_size
                    if weight_block_size is not None:
                        assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale_inv
                        w = int8_block_dequant(
                            weight, weight_scale, weight_block_size
                        ).to(torch.bfloat16)
                else:
                    # channel-wise int8 need it
                    w = w.to(torch.bfloat16) * self_attn.kv_b_proj.weight_scale.to(
                        torch.bfloat16
                    )
1875

Baizhou Zhang's avatar
Baizhou Zhang committed
1876
1877
1878
            w_kc, w_vc = w.unflatten(
                0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
            ).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
1879
            if not use_deep_gemm_bmm:
1880
1881
1882
1883
1884
1885
                self_attn.w_kc = bind_or_assign(
                    self_attn.w_kc, w_kc.transpose(1, 2).contiguous().transpose(1, 2)
                )
                self_attn.w_vc = bind_or_assign(
                    self_attn.w_vc, w_vc.contiguous().transpose(1, 2)
                )
1886
1887
1888
1889
                if (
                    hasattr(self_attn.kv_b_proj, "weight_scale")
                    and self_attn.w_scale is None
                ):
1890
1891
1892
                    self_attn.w_scale = bind_or_assign(
                        self_attn.w_scale, self_attn.kv_b_proj.weight_scale
                    )
1893
1894
1895
1896
1897
1898
1899
1900
                    if _is_hip:
                        self_attn.w_scale *= 2.0
            else:
                num_tiles_k = self_attn.qk_nope_head_dim // weight_block_size[1]
                num_tiles_n = self_attn.v_head_dim // weight_block_size[0]
                ws_kc, ws_vc = block_scale.unflatten(
                    0, (-1, (num_tiles_k + num_tiles_n))
                ).split([num_tiles_k, num_tiles_n], dim=1)
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
                self_attn.w_scale_k = bind_or_assign(
                    self_attn.w_scale_k, ws_kc.transpose(1, 2).contiguous()
                )
                self_attn.w_scale_v = bind_or_assign(
                    self_attn.w_scale_v, ws_vc.contiguous()
                )
                self_attn.w_kc = bind_or_assign(
                    self_attn.w_kc, w_kc.transpose(1, 2).contiguous()
                )
                self_attn.w_vc = bind_or_assign(self_attn.w_vc, w_vc.contiguous())
1911
                self_attn.use_deep_gemm_bmm = True
inkcherry's avatar
inkcherry committed
1912

1913
1914
1915
1916
    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]], is_nextn=False):
        if is_nextn:
            if hasattr(self.config, "num_nextn_predict_layers"):
                num_nextn_layers = self.config.num_nextn_predict_layers
1917
                assert num_nextn_layers == 1, "Only 1 nextn layer is supported"
1918
1919
1920
1921
1922
1923
1924
1925
1926
                # compatible with old design
                nextn_layer_id = (
                    0
                    if self.config.num_hidden_layers == 1
                    else self.config.num_hidden_layers
                )
            else:
                raise ValueError("num_nextn_predict_layers is not in the config")

Liangsheng Yin's avatar
Liangsheng Yin committed
1927
1928
1929
1930
1931
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]
1932
        if self.num_fused_shared_experts > 0:
1933
            assert self.num_fused_shared_experts == 1
1934
1935
            weights_list = list(weights)
            weights_dict = dict(weights_list)
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
            if self.quant_config is not None:
                if self.quant_config.get_name() == "w8a8_int8":
                    suffix_list = [
                        "down_proj.weight",
                        "down_proj.weight_scale",
                        "gate_proj.weight",
                        "gate_proj.weight_scale",
                        "up_proj.weight",
                        "up_proj.weight_scale",
                    ]
                elif (
                    self.quant_config.get_name() == "fp8"
                    or self.quant_config.get_name() == "blockwise_int8"
                ):
                    suffix_list = [
                        "down_proj.weight",
                        "down_proj.weight_scale_inv",
                        "gate_proj.weight",
                        "gate_proj.weight_scale_inv",
                        "up_proj.weight",
                        "up_proj.weight_scale_inv",
                    ]
                elif self.quant_config.get_name() == "awq":
                    suffix_list = [
                        "down_proj.qweight",
                        "down_proj.qzeros",
                        "down_proj.scales",
                        "gate_proj.qweight",
                        "gate_proj.qzeros",
                        "gate_proj.scales",
                        "up_proj.qweight",
                        "up_proj.qzeros",
                        "up_proj.scales",
                    ]
                else:
                    raise ValueError(
                        f"Unsupported shared expert fusion for quantization: {self.quant_config.get_name()}."
                    )
1974
1975
1976
1977
1978
1979
            else:
                suffix_list = [
                    "down_proj.weight",
                    "gate_proj.weight",
                    "up_proj.weight",
                ]
1980
            names_to_remove = []
1981
1982

            moe_layers = (
1983
1984
1985
1986
                range(
                    self.config.first_k_dense_replace,
                    self.config.num_hidden_layers,
                    self.config.moe_layer_freq,
1987
1988
1989
1990
1991
1992
1993
                )
                if not is_nextn
                else [nextn_layer_id]
            )

            for moe_layer in tqdm(
                moe_layers,
1994
                desc=f"Cloning {self.num_fused_shared_experts} "
1995
                "shared expert into MoE",
1996
            ):
1997
1998
1999
2000
                for suffix in suffix_list:
                    shared_expert_weight_name = (
                        f"model.layers.{moe_layer}.mlp.shared_experts.{suffix}"
                    )
2001
2002
2003
2004
2005
2006
2007
                    weights_list.append(
                        (
                            f"model.layers.{moe_layer}."
                            f"mlp.experts."
                            f"{self.config.n_routed_experts + 0}"
                            f".{suffix}",
                            weights_dict[shared_expert_weight_name],
2008
                        )
2009
                    )
2010
                    names_to_remove += [shared_expert_weight_name]
2011
            weights = [w for w in weights_list if w[0] not in names_to_remove]
Liangsheng Yin's avatar
Liangsheng Yin committed
2012
2013
2014

        # Params for weights, fp8 weight scales, fp8 activation scales
        # (param_name, weight_name, expert_id, shard_id)
2015
        expert_params_mapping = get_moe_impl_class().make_expert_params_mapping(
Liangsheng Yin's avatar
Liangsheng Yin committed
2016
2017
2018
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
2019
            num_experts=self.config.n_routed_experts + self.num_fused_shared_experts,
Liangsheng Yin's avatar
Liangsheng Yin committed
2020
2021
        )

2022
2023
2024
2025
2026
2027
        # Fuse q_a_proj and kv_a_proj_with_mqa along output dimension when q_lora_rank is not None
        fuse_qkv_a_proj = hasattr(self.config, "q_lora_rank") and (
            self.config.q_lora_rank is not None
        )
        cached_a_proj = {} if fuse_qkv_a_proj else None

2028
2029
2030
2031
2032
2033
2034
2035
2036
        if is_nextn:
            nextn_layer_prefix = f"model.layers.{nextn_layer_id}"
            nextn_spec_weight_names = [
                "shared_head.norm",
                "eh_proj",
                "enorm",
                "hnorm",
            ]

Liangsheng Yin's avatar
Liangsheng Yin committed
2037
        params_dict = dict(self.named_parameters())
2038
        weight_names = []
Liangsheng Yin's avatar
Liangsheng Yin committed
2039
        for name, loaded_weight in weights:
2040
2041
            weight_names.append(name)

2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
            if not is_nextn:
                if hasattr(self.config, "num_nextn_predict_layers"):
                    num_nextn_layers = self.config.num_nextn_predict_layers
                    if num_nextn_layers > 0 and name.startswith("model.layers"):
                        name_list = name.split(".")
                        if (
                            len(name_list) >= 3
                            and int(name_list[2]) >= self.config.num_hidden_layers
                        ):
                            continue
            else:
                if not name.startswith(nextn_layer_prefix):
                    continue

                # Use shared head and embed weights from target model
                if "shared_head.head" in name or "embed_tokens" in name:
                    continue

                is_decoder = True
                # For nextn specific weights
                for weight_name in nextn_spec_weight_names:
                    if weight_name in name:
                        name = name.replace(nextn_layer_prefix, "model")
                        is_decoder = False
                        break
                # For decoder layer weights
                if is_decoder:
                    name = name.replace(nextn_layer_prefix, "model.decoder")

Liangsheng Yin's avatar
Liangsheng Yin committed
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
            if "rotary_emb.inv_freq" in name:
                continue
            for param_name, weight_name, shard_id in stacked_params_mapping:
                # Skip non-stacked layers and experts (experts handled below).
                if weight_name not in name:
                    continue
                # We have mlp.experts[0].gate_proj in the checkpoint.
                # Since we handle the experts below in expert_params_mapping,
                # we need to skip here BEFORE we update the name, otherwise
                # name will be updated to mlp.experts[0].gate_up_proj, which
                # will then be updated below in expert_params_mapping
                # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                if ("mlp.experts." in name) and name not in params_dict:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                for mapping in expert_params_mapping:
                    param_name, weight_name, expert_id, shard_id = mapping
                    if weight_name not in name:
                        continue
                    name = name.replace(weight_name, param_name)
                    param = params_dict[name]
                    weight_loader = param.weight_loader
                    weight_loader(
                        param,
                        loaded_weight,
2104
                        name,
Liangsheng Yin's avatar
Liangsheng Yin committed
2105
2106
2107
2108
2109
2110
2111
2112
2113
                        shard_id=shard_id,
                        expert_id=expert_id,
                    )
                    break
                else:
                    # Skip loading extra bias for GPTQ models.
                    if name.endswith(".bias") and name not in params_dict:
                        continue

2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
                    if fuse_qkv_a_proj and (
                        "q_a_proj" in name or "kv_a_proj_with_mqa" in name
                    ):
                        cached_a_proj[name] = loaded_weight
                        q_a_proj_name = (
                            name
                            if "q_a_proj" in name
                            else name.replace("kv_a_proj_with_mqa", "q_a_proj")
                        )
                        kv_a_proj_name = (
                            name
                            if "kv_a_proj_with_mqa" in name
                            else name.replace("q_a_proj", "kv_a_proj_with_mqa")
                        )

                        # When both q_a_proj and kv_a_proj_with_mqa has been cached, load the fused weight to parameter
                        if (
                            q_a_proj_name in cached_a_proj
                            and kv_a_proj_name in cached_a_proj
                        ):
                            q_a_proj_weight = cached_a_proj[q_a_proj_name]
                            kv_a_proj_weight = cached_a_proj[kv_a_proj_name]
                            fused_weight = torch.cat(
                                [q_a_proj_weight, kv_a_proj_weight], dim=0
                            )

                            param_name = name.replace(
                                "q_a_proj", "fused_qkv_a_proj_with_mqa"
                            )
                            param = params_dict[param_name]

                            weight_loader = getattr(
                                param, "weight_loader", default_weight_loader
                            )
                            weight_loader(param, fused_weight)
                            cached_a_proj.pop(q_a_proj_name)
                            cached_a_proj.pop(kv_a_proj_name)
                    else:
                        param = params_dict[name]
                        weight_loader = getattr(
                            param, "weight_loader", default_weight_loader
                        )
                        weight_loader(param, loaded_weight)
Liangsheng Yin's avatar
Liangsheng Yin committed
2157

2158
        self.post_load_weights(is_nextn=is_nextn, weight_names=weight_names)
Ke Bao's avatar
Ke Bao committed
2159

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
    def get_embed_and_head(self):
        return self.model.embed_tokens.weight, self.lm_head.weight

    def set_embed_and_head(self, embed, head):
        del self.model.embed_tokens.weight
        del self.lm_head.weight
        self.model.embed_tokens.weight = embed
        self.lm_head.weight = head
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

2171
2172
2173
2174
2175
2176
2177
2178
    @classmethod
    def get_model_config_for_expert_location(cls, config):
        return ModelConfigForExpertLocation(
            num_layers=config.num_hidden_layers,
            num_logical_experts=config.n_routed_experts,
            num_groups=config.n_group,
        )

Liangsheng Yin's avatar
Liangsheng Yin committed
2179

HandH1998's avatar
HandH1998 committed
2180
2181
2182
2183
2184
class DeepseekV3ForCausalLM(DeepseekV2ForCausalLM):
    pass


EntryClass = [DeepseekV2ForCausalLM, DeepseekV3ForCausalLM]