io_struct.py 31.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
"""
15
The definition of objects transferred between different
16
processes (TokenizerManager, DetokenizerManager, Controller).
Lianmin Zheng's avatar
Lianmin Zheng committed
17
18
"""

19
import copy
Lianmin Zheng's avatar
Lianmin Zheng committed
20
import uuid
YAMY's avatar
YAMY committed
21
from dataclasses import dataclass, field
22
from enum import Enum
23
24
from typing import TYPE_CHECKING, Any, Dict, List, Literal, Optional, Union

25
26
from sglang.srt.mm_utils import has_valid_data

27
28
29
30
31
# handle serialization of Image for pydantic
if TYPE_CHECKING:
    from PIL.Image import Image
else:
    Image = Any
32

33
from sglang.srt.managers.schedule_batch import BaseFinishReason, flatten_nested_list
34
from sglang.srt.sampling.sampling_params import SamplingParams
Lianmin Zheng's avatar
Lianmin Zheng committed
35
36


37
38
39
40
41
42
43
44
@dataclass
class SessionParams:
    id: Optional[str] = None
    rid: Optional[str] = None
    offset: Optional[int] = None
    replace: Optional[bool] = None


45
46
47
48
AudioDataItem = Union[str, Dict]
ImageDataItem = Union[Image, str, Dict]


Lianmin Zheng's avatar
Lianmin Zheng committed
49
50
@dataclass
class GenerateReqInput:
Ying Sheng's avatar
Ying Sheng committed
51
    # The input prompt. It can be a single prompt or a batch of prompts.
52
    text: Optional[Union[List[str], str]] = None
Rin Intachuen's avatar
Rin Intachuen committed
53
    # The token ids for text; one can specify either text or input_ids
54
    input_ids: Optional[Union[List[List[int]], List[int]]] = None
Rin Intachuen's avatar
Rin Intachuen committed
55
56
    # The embeddings for input_ids; one can specify either text or input_ids or input_embeds.
    input_embeds: Optional[Union[List[List[List[float]]], List[List[float]]]] = None
57
58
59
60
61
62
63
    # The image input. It can be an image instance, file name, URL, or base64 encoded string.
    # Can be formatted as:
    # - Single image for a single request
    # - List of images (one per request in a batch)
    # - List of lists of images (multiple images per request)
    # See also python/sglang/srt/utils.py:load_image for more details.
    image_data: Optional[
64
        Union[List[List[ImageDataItem]], List[ImageDataItem], ImageDataItem]
65
66
    ] = None
    # The audio input. Like image data, it can be a file name, a url, or base64 encoded string.
67
    audio_data: Optional[Union[List[AudioDataItem], AudioDataItem]] = None
68
    # The sampling_params. See descriptions below.
69
    sampling_params: Optional[Union[List[Dict], Dict]] = None
Ying Sheng's avatar
Ying Sheng committed
70
    # The request id.
Lianmin Zheng's avatar
Lianmin Zheng committed
71
    rid: Optional[Union[List[str], str]] = None
Ying Sheng's avatar
Ying Sheng committed
72
    # Whether to return logprobs.
73
    return_logprob: Optional[Union[List[bool], bool]] = None
74
    # If return logprobs, the start location in the prompt for returning logprobs.
75
    # By default, this value is "-1", which means it will only return logprobs for output tokens.
76
    logprob_start_len: Optional[Union[List[int], int]] = None
77
    # If return logprobs, the number of top logprobs to return at each position.
Liangsheng Yin's avatar
Liangsheng Yin committed
78
    top_logprobs_num: Optional[Union[List[int], int]] = None
79
80
    # If return logprobs, the token ids to return logprob for.
    token_ids_logprob: Optional[Union[List[List[int]], List[int]]] = None
81
    # Whether to detokenize tokens in text in the returned logprobs.
82
    return_text_in_logprobs: bool = False
Ying Sheng's avatar
Ying Sheng committed
83
    # Whether to stream output.
Lianmin Zheng's avatar
Lianmin Zheng committed
84
    stream: bool = False
85
86
87
    # Whether to log metrics for this request (e.g. health_generate calls do not log metrics)
    log_metrics: bool = True

88
89
    # The modalities of the image data [image, multi-images, video]
    modalities: Optional[List[str]] = None
90
91
92
    # LoRA related
    lora_path: Optional[Union[List[Optional[str]], Optional[str]]] = None

93
94
    # Session info for continual prompting
    session_params: Optional[Union[List[Dict], Dict]] = None
95

96
97
98
99
    # Custom logit processor for advanced sampling control. Must be a serialized instance
    # of `CustomLogitProcessor` in python/sglang/srt/sampling/custom_logit_processor.py
    # Use the processor's `to_str()` method to generate the serialized string.
    custom_logit_processor: Optional[Union[List[Optional[str]], str]] = None
100

101
102
103
    # Whether to return hidden states
    return_hidden_states: bool = False

104
    # For disaggregated inference
105
    bootstrap_host: Optional[Union[List[str], str]] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
106
    bootstrap_port: Optional[Union[List[Optional[int]], int]] = None
107
    bootstrap_room: Optional[Union[List[int], int]] = None
108

109
110
111
    def contains_mm_input(self) -> bool:
        return has_valid_data(self.image_data) or has_valid_data(self.audio_data)

112
    def normalize_batch_and_arguments(self):
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        """
        Normalize the batch size and arguments for the request.

        This method resolves various input formats and ensures all parameters
        are properly formatted as either single values or batches depending on the input.
        It also handles parallel sampling expansion and sets default values for
        unspecified parameters.

        Raises:
            ValueError: If inputs are not properly specified (e.g., none or all of
                       text, input_ids, input_embeds are provided)
        """
        self._validate_inputs()
        self._determine_batch_size()
        self._handle_parallel_sampling()

        if self.is_single:
            self._normalize_single_inputs()
        else:
            self._normalize_batch_inputs()

        self._validate_session_params()

    def _validate_inputs(self):
        """Validate that the input configuration is valid."""
Rin Intachuen's avatar
Rin Intachuen committed
138
139
140
141
142
143
        if (
            self.text is None and self.input_ids is None and self.input_embeds is None
        ) or (
            self.text is not None
            and self.input_ids is not None
            and self.input_embeds is not None
144
        ):
Rin Intachuen's avatar
Rin Intachuen committed
145
146
147
            raise ValueError(
                "Either text, input_ids or input_embeds should be provided."
            )
148

149
150
    def _determine_batch_size(self):
        """Determine if this is a single example or a batch and the batch size."""
151
152
153
154
155
        if self.text is not None:
            if isinstance(self.text, str):
                self.is_single = True
                self.batch_size = 1
            else:
156
                self.is_single = False
157
                self.batch_size = len(self.text)
Rin Intachuen's avatar
Rin Intachuen committed
158
159
            self.input_embeds = None
        elif self.input_ids is not None:
Yinghai Lu's avatar
Yinghai Lu committed
160
161
            if len(self.input_ids) == 0:
                raise ValueError("input_ids cannot be empty.")
162
163
164
            if isinstance(self.input_ids[0], int):
                self.is_single = True
                self.batch_size = 1
165
            else:
166
                self.is_single = False
167
                self.batch_size = len(self.input_ids)
Rin Intachuen's avatar
Rin Intachuen committed
168
169
170
171
172
173
            self.input_embeds = None
        else:
            if isinstance(self.input_embeds[0][0], float):
                self.is_single = True
                self.batch_size = 1
            else:
174
                self.is_single = False
Rin Intachuen's avatar
Rin Intachuen committed
175
                self.batch_size = len(self.input_embeds)
176

177
178
179
    def _handle_parallel_sampling(self):
        """Handle parallel sampling parameters and adjust batch size if needed."""
        # Determine parallel sample count
180
181
        if self.sampling_params is None:
            self.parallel_sample_num = 1
182
        elif isinstance(self.sampling_params, dict):
183
184
185
            self.parallel_sample_num = self.sampling_params.get("n", 1)
        else:  # isinstance(self.sampling_params, list):
            self.parallel_sample_num = self.sampling_params[0].get("n", 1)
186
187
188
189
190
            for sampling_params in self.sampling_params:
                if self.parallel_sample_num != sampling_params.get("n", 1):
                    raise ValueError(
                        "The parallel_sample_num should be the same for all samples in sample params."
                    )
Lianmin Zheng's avatar
Lianmin Zheng committed
191

192
        # If using parallel sampling with a single example, convert to batch
193
194
195
196
197
198
199
        if self.parallel_sample_num > 1 and self.is_single:
            self.is_single = False
            if self.text is not None:
                self.text = [self.text]
            if self.input_ids is not None:
                self.input_ids = [self.input_ids]

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    def _normalize_single_inputs(self):
        """Normalize inputs for a single example."""
        if self.sampling_params is None:
            self.sampling_params = {}
        if self.rid is None:
            self.rid = uuid.uuid4().hex
        if self.return_logprob is None:
            self.return_logprob = False
        if self.logprob_start_len is None:
            self.logprob_start_len = -1
        if self.top_logprobs_num is None:
            self.top_logprobs_num = 0
        if not self.token_ids_logprob:  # covers both None and []
            self.token_ids_logprob = None

    def _normalize_batch_inputs(self):
        """Normalize inputs for a batch of examples, including parallel sampling expansion."""
        # Calculate expanded batch size
        if self.parallel_sample_num == 1:
            num = self.batch_size
Lianmin Zheng's avatar
Lianmin Zheng committed
220
        else:
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
            # Expand parallel_sample_num
            num = self.batch_size * self.parallel_sample_num

        # Expand input based on type
        self._expand_inputs(num)
        self._normalize_lora_paths(num)
        self._normalize_image_data(num)
        self._normalize_audio_data(num)
        self._normalize_sampling_params(num)
        self._normalize_rid(num)
        self._normalize_logprob_params(num)
        self._normalize_custom_logit_processor(num)

    def _expand_inputs(self, num):
        """Expand the main inputs (text, input_ids, input_embeds) for parallel sampling."""
        if self.text is not None:
            if not isinstance(self.text, list):
                raise ValueError("Text should be a list for batch processing.")
            self.text = self.text * self.parallel_sample_num
        elif self.input_ids is not None:
            if not isinstance(self.input_ids, list) or not isinstance(
                self.input_ids[0], list
            ):
                raise ValueError(
                    "input_ids should be a list of lists for batch processing."
                )
            self.input_ids = self.input_ids * self.parallel_sample_num
        elif self.input_embeds is not None:
            if not isinstance(self.input_embeds, list):
                raise ValueError("input_embeds should be a list for batch processing.")
            self.input_embeds = self.input_embeds * self.parallel_sample_num

    def _normalize_lora_paths(self, num):
        """Normalize LoRA paths for batch processing."""
        if self.lora_path is not None:
            if isinstance(self.lora_path, str):
                self.lora_path = [self.lora_path] * num
            elif isinstance(self.lora_path, list):
                self.lora_path = self.lora_path * self.parallel_sample_num
260
            else:
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
                raise ValueError("lora_path should be a list or a string.")

    def _normalize_image_data(self, num):
        """Normalize image data for batch processing."""
        if self.image_data is None:
            self.image_data = [None] * num
        elif not isinstance(self.image_data, list):
            # Single image, convert to list of single-image lists
            self.image_data = [[self.image_data]] * num
            self.modalities = ["image"] * num
        elif isinstance(self.image_data, list):
            if len(self.image_data) != self.batch_size:
                raise ValueError(
                    "The length of image_data should be equal to the batch size."
                )

            self.modalities = []
            if len(self.image_data) > 0 and isinstance(self.image_data[0], list):
                # Already a list of lists, keep as is
                for i in range(len(self.image_data)):
                    if self.image_data[i] is None or self.image_data[i] == [None]:
                        self.modalities.append(None)
                    elif len(self.image_data[i]) == 1:
                        self.modalities.append("image")
                    elif len(self.image_data[i]) > 1:
                        self.modalities.append("multi-images")
287
                # Expand parallel_sample_num
288
289
                self.image_data = self.image_data * self.parallel_sample_num
                self.modalities = self.modalities * self.parallel_sample_num
Lianmin Zheng's avatar
Lianmin Zheng committed
290
            else:
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
                # List of images for a batch, wrap each in a list
                wrapped_images = [[img] for img in self.image_data]
                # Expand for parallel sampling
                self.image_data = wrapped_images * self.parallel_sample_num
                self.modalities = ["image"] * num

    def _normalize_audio_data(self, num):
        """Normalize audio data for batch processing."""
        if self.audio_data is None:
            self.audio_data = [None] * num
        elif not isinstance(self.audio_data, list):
            self.audio_data = [self.audio_data] * num
        elif isinstance(self.audio_data, list):
            self.audio_data = self.audio_data * self.parallel_sample_num

    def _normalize_sampling_params(self, num):
        """Normalize sampling parameters for batch processing."""
        if self.sampling_params is None:
            self.sampling_params = [{}] * num
        elif isinstance(self.sampling_params, dict):
            self.sampling_params = [self.sampling_params] * num
        else:  # Already a list
            self.sampling_params = self.sampling_params * self.parallel_sample_num

    def _normalize_rid(self, num):
        """Normalize request IDs for batch processing."""
        if self.rid is None:
            self.rid = [uuid.uuid4().hex for _ in range(num)]
        elif not isinstance(self.rid, list):
            raise ValueError("The rid should be a list for batch processing.")

    def _normalize_logprob_params(self, num):
        """Normalize logprob-related parameters for batch processing."""

        # Helper function to normalize a parameter
        def normalize_param(param, default_value, param_name):
            if param is None:
                return [default_value] * num
            elif not isinstance(param, list):
                return [param] * num
331
            else:
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
                if self.parallel_sample_num > 1:
                    raise ValueError(
                        f"Cannot use list {param_name} with parallel_sample_num > 1"
                    )
                return param

        # Normalize each logprob parameter
        self.return_logprob = normalize_param(
            self.return_logprob, False, "return_logprob"
        )
        self.logprob_start_len = normalize_param(
            self.logprob_start_len, -1, "logprob_start_len"
        )
        self.top_logprobs_num = normalize_param(
            self.top_logprobs_num, 0, "top_logprobs_num"
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
348

349
350
351
352
353
354
355
356
357
358
359
360
361
        # Handle token_ids_logprob specially due to its nested structure
        if not self.token_ids_logprob:  # covers both None and []
            self.token_ids_logprob = [None] * num
        elif not isinstance(self.token_ids_logprob, list):
            self.token_ids_logprob = [[self.token_ids_logprob] for _ in range(num)]
        elif not isinstance(self.token_ids_logprob[0], list):
            self.token_ids_logprob = [
                copy.deepcopy(self.token_ids_logprob) for _ in range(num)
            ]
        elif self.parallel_sample_num > 1:
            raise ValueError(
                "Cannot use list token_ids_logprob with parallel_sample_num > 1"
            )
362

363
364
365
366
367
368
369
370
371
372
    def _normalize_custom_logit_processor(self, num):
        """Normalize custom logit processor for batch processing."""
        if self.custom_logit_processor is None:
            self.custom_logit_processor = [None] * num
        elif not isinstance(self.custom_logit_processor, list):
            self.custom_logit_processor = [self.custom_logit_processor] * num
        elif self.parallel_sample_num > 1:
            raise ValueError(
                "Cannot use list custom_logit_processor with parallel_sample_num > 1"
            )
373

374
375
    def _validate_session_params(self):
        """Validate that session parameters are properly formatted."""
376
        if self.session_params is not None:
377
            if not isinstance(self.session_params, dict) and not isinstance(
378
                self.session_params[0], dict
379
380
            ):
                raise ValueError("Session params must be a dict or a list of dicts.")
381

382
    def regenerate_rid(self):
383
        """Generate a new request ID and return it."""
384
385
386
387
388
389
390
391
        self.rid = uuid.uuid4().hex
        return self.rid

    def __getitem__(self, i):
        return GenerateReqInput(
            text=self.text[i] if self.text is not None else None,
            input_ids=self.input_ids[i] if self.input_ids is not None else None,
            image_data=self.image_data[i],
Mick's avatar
Mick committed
392
            audio_data=self.audio_data[i],
393
394
395
396
397
            sampling_params=self.sampling_params[i],
            rid=self.rid[i],
            return_logprob=self.return_logprob[i],
            logprob_start_len=self.logprob_start_len[i],
            top_logprobs_num=self.top_logprobs_num[i],
398
            token_ids_logprob=self.token_ids_logprob[i],
399
400
            return_text_in_logprobs=self.return_text_in_logprobs,
            stream=self.stream,
401
            log_metrics=self.log_metrics,
402
403
            modalities=self.modalities[i] if self.modalities else None,
            lora_path=self.lora_path[i] if self.lora_path is not None else None,
404
405
406
407
408
            custom_logit_processor=(
                self.custom_logit_processor[i]
                if self.custom_logit_processor is not None
                else None
            ),
409
            return_hidden_states=self.return_hidden_states,
410
            # if `__getitem__` is called, the bootstrap_host, bootstrap_port, bootstrap_room must be a list
411
412
413
            bootstrap_host=(
                self.bootstrap_host[i] if self.bootstrap_host is not None else None
            ),
414
415
416
            bootstrap_port=(
                self.bootstrap_port[i] if self.bootstrap_port is not None else None
            ),
417
418
419
            bootstrap_room=(
                self.bootstrap_room[i] if self.bootstrap_room is not None else None
            ),
420
421
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
422
423
424

@dataclass
class TokenizedGenerateReqInput:
425
    # The request id
Lianmin Zheng's avatar
Lianmin Zheng committed
426
    rid: str
427
    # The input text
Liangsheng Yin's avatar
Liangsheng Yin committed
428
    input_text: str
429
    # The input token ids
Lianmin Zheng's avatar
Lianmin Zheng committed
430
    input_ids: List[int]
Mick's avatar
Mick committed
431
432
    # The multimodal inputs
    mm_inputs: dict
433
    # The sampling parameters
Lianmin Zheng's avatar
Lianmin Zheng committed
434
    sampling_params: SamplingParams
435
    # Whether to return the logprobs
436
    return_logprob: bool
437
    # If return logprobs, the start location in the prompt for returning logprobs.
438
    logprob_start_len: int
439
    # If return logprobs, the number of top logprobs to return at each position.
Liangsheng Yin's avatar
Liangsheng Yin committed
440
    top_logprobs_num: int
441
442
    # If return logprobs, the token id to return logprob for
    token_ids_logprob: List[int]
443
    # Whether to stream output
Lianmin Zheng's avatar
Lianmin Zheng committed
444
445
    stream: bool

446
447
    # LoRA related
    lora_path: Optional[str] = None  # None means just use the base model
Rin Intachuen's avatar
Rin Intachuen committed
448
449
    # The input embeds
    input_embeds: Optional[Union[List[List[List[float]]], List[List[float]]]] = None
450

451
452
    # Session info for continual prompting
    session_params: Optional[SessionParams] = None
453

454
455
456
    # Custom logit processor for advanced sampling control. Must be a serialized instance
    # of `CustomLogitProcessor` in python/sglang/srt/sampling/custom_logit_processor.py
    # Use the processor's `to_str()` method to generate the serialized string.
457
458
    custom_logit_processor: Optional[str] = None

459
460
461
    # Whether to return hidden states
    return_hidden_states: bool = False

462
463
    # For disaggregated inference
    bootstrap_host: Optional[str] = None
464
    bootstrap_port: Optional[int] = None
465
466
    bootstrap_room: Optional[int] = None

Lianmin Zheng's avatar
Lianmin Zheng committed
467

468
469
470
471
@dataclass
class EmbeddingReqInput:
    # The input prompt. It can be a single prompt or a batch of prompts.
    text: Optional[Union[List[str], str]] = None
472
473
474
475
476
477
478
479
480
    # The image input. It can be an image instance, file name, URL, or base64 encoded string.
    # Can be formatted as:
    # - Single image for a single request
    # - List of images (one per request in a batch)
    # - List of lists of images (multiple images per request)
    # See also python/sglang/srt/utils.py:load_image for more details.
    image_data: Optional[
        Union[List[List[Union[Image, str]]], List[Union[Image, str]], Union[Image, str]]
    ] = None
481
482
    # The audio input. Like image data, it can be a file name, a url, or base64 encoded string.
    audio_data: Optional[Union[List[str], str]] = None
483
484
485
486
487
488
    # The token ids for text; one can either specify text or input_ids.
    input_ids: Optional[Union[List[List[int]], List[int]]] = None
    # The request id.
    rid: Optional[Union[List[str], str]] = None
    # Dummy sampling params for compatibility
    sampling_params: Union[List[Dict], Dict] = None
Rin Intachuen's avatar
Rin Intachuen committed
489
490
    # Dummy input embeds for compatibility
    input_embeds: Optional[Union[List[List[List[float]]], List[List[float]]]] = None
491
492
    # Whether to log metrics for this request (e.g. health_generate calls do not log metrics)
    log_metrics: bool = True
493
494
    # The modalities of the image data [image, multi-images, video]
    modalities: Optional[List[str]] = None
495

496
497
498
    def contains_mm_input(self) -> bool:
        return has_valid_data(self.image_data) or has_valid_data(self.audio_data)

499
    def normalize_batch_and_arguments(self):
500
501
502
503
504
505
506
507
508
        # at least one of text, input_ids, or image should be provided
        if self.text is None and self.input_ids is None and self.image_data is None:
            raise ValueError(
                "At least one of text, input_ids, or image should be provided"
            )

        # text and input_ids cannot be provided at the same time
        if self.text is not None and self.input_ids is not None:
            raise ValueError("text and input_ids cannot be provided at the same time")
509

510
        # Derive the batch size
511
512
513
514
        self.batch_size = 0
        self.is_single = True

        # check the batch size of text
515
        if self.text is not None:
516
517
            if isinstance(self.text, list):
                self.batch_size += len(self.text)
518
            else:
519
520
521
522
523
524
                self.batch_size += 1

        # check the batch size of input_ids
        if self.input_ids is not None:
            if isinstance(self.input_ids[0], list):
                self.batch_size += len(self.input_ids)
525
            else:
526
527
528
529
                self.batch_size += 1

        if self.batch_size > 1:
            self.is_single = False
530

531
        # Fill in default arguments
532
        if self.is_single:
533
534
            if self.rid is None:
                self.rid = uuid.uuid4().hex
Ying Sheng's avatar
Ying Sheng committed
535
            if self.sampling_params is None:
536
                self.sampling_params = {}
537
            self.sampling_params["max_new_tokens"] = 0
538
539
540
541
        else:
            if self.rid is None:
                self.rid = [uuid.uuid4().hex for _ in range(self.batch_size)]
            else:
542
543
                assert isinstance(self.rid, list), "The rid should be a list."

Ying Sheng's avatar
Ying Sheng committed
544
            if self.sampling_params is None:
545
546
                self.sampling_params = [{}] * self.batch_size
            for i in range(self.batch_size):
547
                self.sampling_params[i]["max_new_tokens"] = 0
548

549
550
551
    def regenerate_rid(self):
        self.rid = uuid.uuid4().hex
        return self.rid
552

553
554
555
556
    def __getitem__(self, i):
        return EmbeddingReqInput(
            text=self.text[i] if self.text is not None else None,
            input_ids=self.input_ids[i] if self.input_ids is not None else None,
557
            image_data=self.image_data[i] if self.image_data is not None else None,
558
559
560
            sampling_params=self.sampling_params[i],
            rid=self.rid[i],
        )
561
562
563


@dataclass
564
class TokenizedEmbeddingReqInput:
565
566
567
568
569
570
    # The request id
    rid: str
    # The input text
    input_text: str
    # The input token ids
    input_ids: List[int]
571
572
    # The image inputs
    image_inputs: dict
573
574
575
576
    # Dummy sampling params for compatibility
    sampling_params: SamplingParams


Lianmin Zheng's avatar
Lianmin Zheng committed
577
578
@dataclass
class BatchTokenIDOut:
579
    # The request id
Lianmin Zheng's avatar
Lianmin Zheng committed
580
    rids: List[str]
Lianmin Zheng's avatar
Lianmin Zheng committed
581
582
583
    # The finish reason
    finished_reasons: List[BaseFinishReason]
    # For incremental decoding
Liangsheng Yin's avatar
Liangsheng Yin committed
584
    decoded_texts: List[str]
585
586
    decode_ids: List[int]
    read_offsets: List[int]
587
    # Only used when `--skip-tokenizer-init` is on
588
    output_ids: Optional[List[int]]
Lianmin Zheng's avatar
Lianmin Zheng committed
589
    # Detokenization configs
Lianmin Zheng's avatar
Lianmin Zheng committed
590
    skip_special_tokens: List[bool]
591
    spaces_between_special_tokens: List[bool]
592
    no_stop_trim: List[bool]
593

Lianmin Zheng's avatar
Lianmin Zheng committed
594
595
596
597
    # Token counts
    prompt_tokens: List[int]
    completion_tokens: List[int]
    cached_tokens: List[int]
598
599
    spec_verify_ct: List[int]

Lianmin Zheng's avatar
Lianmin Zheng committed
600
601
602
603
604
605
606
607
608
    # Logprobs
    input_token_logprobs_val: List[float]
    input_token_logprobs_idx: List[int]
    output_token_logprobs_val: List[float]
    output_token_logprobs_idx: List[int]
    input_top_logprobs_val: List[List]
    input_top_logprobs_idx: List[List]
    output_top_logprobs_val: List[List]
    output_top_logprobs_idx: List[List]
609
610
611
612
    input_token_ids_logprobs_val: List[List]
    input_token_ids_logprobs_idx: List[List]
    output_token_ids_logprobs_val: List[List]
    output_token_ids_logprobs_idx: List[List]
Lianmin Zheng's avatar
Lianmin Zheng committed
613

614
    # Hidden states
615
616
    output_hidden_states: List[List[float]]

Liangsheng Yin's avatar
Liangsheng Yin committed
617

618
619
620
621
@dataclass
class BatchMultimodalDecodeReq:
    # The request id
    rids: List[str]
622
623
624
625
626
627
    finished_reasons: List[BaseFinishReason]

    # Token counts
    prompt_tokens: List[int]
    completion_tokens: List[int]
    cached_tokens: List[int]
628
629


Lianmin Zheng's avatar
Lianmin Zheng committed
630
631
@dataclass
class BatchStrOut:
632
    # The request id
Lianmin Zheng's avatar
Lianmin Zheng committed
633
    rids: List[str]
Lianmin Zheng's avatar
Lianmin Zheng committed
634
635
    # The finish reason
    finished_reasons: List[dict]
636
    # The output decoded strings
637
    output_strs: List[str]
638
639
    # The token ids
    output_ids: Optional[List[int]]
Lianmin Zheng's avatar
Lianmin Zheng committed
640
641
642
643
644

    # Token counts
    prompt_tokens: List[int]
    completion_tokens: List[int]
    cached_tokens: List[int]
645
    spec_verify_ct: List[int]
646

Lianmin Zheng's avatar
Lianmin Zheng committed
647
648
649
650
651
652
653
654
655
    # Logprobs
    input_token_logprobs_val: List[float]
    input_token_logprobs_idx: List[int]
    output_token_logprobs_val: List[float]
    output_token_logprobs_idx: List[int]
    input_top_logprobs_val: List[List]
    input_top_logprobs_idx: List[List]
    output_top_logprobs_val: List[List]
    output_top_logprobs_idx: List[List]
656
657
658
659
    input_token_ids_logprobs_val: List[List]
    input_token_ids_logprobs_idx: List[List]
    output_token_ids_logprobs_val: List[List]
    output_token_ids_logprobs_idx: List[List]
Liangsheng Yin's avatar
Liangsheng Yin committed
660

661
    # Hidden states
662
663
    output_hidden_states: List[List[float]]

Liangsheng Yin's avatar
Liangsheng Yin committed
664

665
666
667
668
@dataclass
class BatchMultimodalOut:
    # The request id
    rids: List[str]
669
670
671
672
673
674
675
676
677
    # The finish reason
    finished_reasons: List[dict]
    # The outputs
    outputs: List[List[Dict]]

    # Token counts
    prompt_tokens: List[int]
    completion_tokens: List[int]
    cached_tokens: List[int]
678
679


680
681
@dataclass
class BatchEmbeddingOut:
682
    # The request id
683
    rids: List[str]
Lianmin Zheng's avatar
Lianmin Zheng committed
684
685
    # The finish reason
    finished_reasons: List[BaseFinishReason]
686
    # The output embedding
687
    embeddings: List[List[float]]
Lianmin Zheng's avatar
Lianmin Zheng committed
688
689
    # Token counts
    prompt_tokens: List[int]
690
    cached_tokens: List[int]
691
692


Liangsheng Yin's avatar
Liangsheng Yin committed
693
@dataclass
694
class FlushCacheReqInput:
Liangsheng Yin's avatar
Liangsheng Yin committed
695
    pass
Cody Yu's avatar
Cody Yu committed
696

697

698
699
700
701
702
@dataclass
class FlushCacheReqOutput:
    success: bool


703
@dataclass
Chayenne's avatar
Chayenne committed
704
class UpdateWeightFromDiskReqInput:
705
706
707
708
709
710
711
    # The model path with the new weights
    model_path: str
    # The format to load the weights
    load_format: Optional[str] = None


@dataclass
Chayenne's avatar
Chayenne committed
712
class UpdateWeightFromDiskReqOutput:
713
714
    success: bool
    message: str
715
716
    # Number of paused requests during weight sync.
    num_paused_requests: Optional[int] = 0
717
718


719
720
721
722
723
724
725
726
727
728
729
730
731
@dataclass
class UpdateWeightsFromDistributedReqInput:
    name: str
    dtype: str
    shape: List[int]


@dataclass
class UpdateWeightsFromDistributedReqOutput:
    success: bool
    message: str


732
733
@dataclass
class UpdateWeightsFromTensorReqInput:
734
735
736
737
738
739
740
741
742
743
744
    """Update model weights from tensor input.

    - Tensors are serialized for transmission
    - Data is structured in JSON for easy transmission over HTTP
    """

    serialized_named_tensors: List[Union[str, bytes]]
    # Optional format specification for loading
    load_format: Optional[str] = None
    # Whether to flush the cache after updating weights
    flush_cache: bool = True
745
746
747
748
749
750
751
752


@dataclass
class UpdateWeightsFromTensorReqOutput:
    success: bool
    message: str


753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
@dataclass
class InitWeightsUpdateGroupReqInput:
    # The master address
    master_address: str
    # The master port
    master_port: int
    # The rank offset
    rank_offset: int
    # The world size
    world_size: int
    # The group name
    group_name: str = "weight_update_group"
    # The backend
    backend: str = "nccl"


@dataclass
class InitWeightsUpdateGroupReqOutput:
    success: bool
    message: str


775
776
777
778
779
780
781
782
783
784
785
@dataclass
class GetWeightsByNameReqInput:
    name: str
    truncate_size: int = 100


@dataclass
class GetWeightsByNameReqOutput:
    parameter: list


786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
@dataclass
class ReleaseMemoryOccupationReqInput:
    pass


@dataclass
class ReleaseMemoryOccupationReqOutput:
    pass


@dataclass
class ResumeMemoryOccupationReqInput:
    pass


@dataclass
class ResumeMemoryOccupationReqOutput:
    pass


806
807
808
809
810
811
812
813
814
815
@dataclass
class SlowDownReqInput:
    forward_sleep_time: Optional[float]


@dataclass
class SlowDownReqOutput:
    pass


816
817
@dataclass
class AbortReq:
818
    # The request id
819
    rid: str
820
821


822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
@dataclass
class GetInternalStateReq:
    pass


@dataclass
class GetInternalStateReqOutput:
    internal_state: Dict[Any, Any]


@dataclass
class SetInternalStateReq:
    server_args: Dict[str, Any]


@dataclass
class SetInternalStateReqOutput:
    updated: bool
    server_args: Dict[str, Any]


@dataclass
class ProfileReqInput:
    # The output directory
    output_dir: Optional[str] = None
    # If set, it profile as many as this number of steps.
    # If it is set, profiling is automatically stopped after this step, and
    # the caller doesn't need to run stop_profile.
    num_steps: Optional[int] = None
851
    activities: Optional[List[Literal["CPU", "GPU", "MEM", "CUDA_PROFILER"]]] = None
852
853
    with_stack: Optional[bool] = None
    record_shapes: Optional[bool] = None
854
855
856


class ProfileReqType(Enum):
857
858
    START_PROFILE = 1
    STOP_PROFILE = 2
859
860


861
862
863
864
865
866
class ExpertDistributionReq(Enum):
    START_RECORD = 1
    STOP_RECORD = 2
    DUMP_RECORD = 3


867
868
869
870
871
@dataclass
class ExpertDistributionReqOutput:
    pass


872
873
874
875
876
877
@dataclass
class ProfileReq:
    type: ProfileReqType
    output_dir: Optional[str] = None
    num_steps: Optional[int] = None
    activities: Optional[List[str]] = None
878
879
    with_stack: Optional[bool] = None
    record_shapes: Optional[bool] = None
880
    profile_id: Optional[str] = None
881
882
883
884
885
886
887
888


@dataclass
class ProfileReqOutput:
    success: bool
    message: str


889
890
891
@dataclass
class ConfigureLoggingReq:
    log_requests: Optional[bool] = None
892
    log_requests_level: Optional[int] = None
893
894
895
896
    dump_requests_folder: Optional[str] = None
    dump_requests_threshold: Optional[int] = None


897
898
899
@dataclass
class OpenSessionReqInput:
    capacity_of_str_len: int
900
    session_id: Optional[str] = None
901
902
903
904
905
906
907
908
909


@dataclass
class CloseSessionReqInput:
    session_id: str


@dataclass
class OpenSessionReqOutput:
910
911
    session_id: Optional[str]
    success: bool
YAMY's avatar
YAMY committed
912
913


914
915
916
917
918
@dataclass
class HealthCheckOutput:
    pass


YAMY's avatar
YAMY committed
919
920
921
922
923
924
925
926
927
928
929
930
931
932
@dataclass
class Function:
    description: Optional[str] = None
    name: Optional[str] = None
    parameters: Optional[object] = None


@dataclass
class Tool:
    function: Function
    type: Optional[str] = "function"


@dataclass
933
class ParseFunctionCallReq:
YAMY's avatar
YAMY committed
934
935
936
937
938
939
940
    text: str  # The text to parse.
    tools: List[Tool] = field(
        default_factory=list
    )  # A list of available function tools (name, parameters, etc.).
    tool_call_parser: Optional[str] = (
        None  # Specify the parser type, e.g. 'llama3', 'qwen25', or 'mistral'. If not specified, tries all.
    )
941
942


Xihuai Wang's avatar
Xihuai Wang committed
943
944
945
946
947
948
@dataclass
class SeparateReasoningReqInput:
    text: str  # The text to parse.
    reasoning_parser: str  # Specify the parser type, e.g., "deepseek-r1".


949
950
951
952
@dataclass
class VertexGenerateReqInput:
    instances: List[dict]
    parameters: Optional[dict] = None
953
954
955
956
957
958
959
960
961
962
963
964


@dataclass
class RpcReqInput:
    method: str
    parameters: Optional[Dict] = None


@dataclass
class RpcReqOutput:
    success: bool
    message: str