Unverified Commit 3842eba5 authored by Liangsheng Yin's avatar Liangsheng Yin Committed by GitHub
Browse files

Logprobs Refractor (#331)

parent 24e59f53
......@@ -14,10 +14,14 @@ class GenerateReqInput:
sampling_params: Union[List[Dict], Dict] = None
# The request id
rid: Optional[Union[List[str], str]] = None
# Whether return logprobs of the prompts
# Whether to return logprobs
return_logprob: Optional[Union[List[bool], bool]] = None
# The start location of the prompt for return_logprob
logprob_start_len: Optional[Union[List[int], int]] = None
# The number of top logprobs to return
top_logprobs_num: Optional[Union[List[int], int]] = None
# Whether to detokenize tokens in logprobs
return_text_in_logprobs: bool = False
# Whether to stream output
stream: bool = False
```
......
......@@ -3,6 +3,7 @@ Usage:
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000
python choices_logprob.py
"""
import sglang as sgl
......@@ -19,9 +20,9 @@ def main():
print("questions:", question)
print("choice:", state["tool"])
meta_info = state.get_meta_info("tool")
print("logprobs of choice 1", meta_info["prompt_logprob"][0])
print("logprobs of choice 2", meta_info["prompt_logprob"][1])
print('-' * 50)
print("logprobs of choice 1", meta_info["prefill_token_logprobs"][0])
print("logprobs of choice 2", meta_info["prefill_token_logprobs"][1])
print("-" * 50)
# Run a batch
questions = [
......@@ -33,9 +34,9 @@ def main():
print("questions:", question)
print("choice:", state["tool"])
meta_info = state.get_meta_info("tool")
print("logprobs of choice 1", meta_info["prompt_logprob"][0])
print("logprobs of choice 2", meta_info["prompt_logprob"][1])
print('-' * 50)
print("logprobs of choice 1", meta_info["prefill_token_logprobs"][0])
print("logprobs of choice 2", meta_info["prefill_token_logprobs"][1])
print("-" * 50)
if __name__ == "__main__":
......
......@@ -213,6 +213,7 @@ class RuntimeEndpoint(BaseBackend):
"sampling_params": {"max_new_tokens": 0},
"return_logprob": True,
"logprob_start_len": max(prompt_len - 2, 0),
"return_text_in_logprobs": True,
}
self._add_images(s, data)
res = http_request(
......@@ -224,13 +225,19 @@ class RuntimeEndpoint(BaseBackend):
)
assert res.status_code == 200
obj = res.json()
normalized_prompt_logprob = [
normalized_prompt_logprobs = [
r["meta_info"]["normalized_prompt_logprob"] for r in obj
]
prompt_logprob = [r["meta_info"]["prompt_logprob"] for r in obj]
decision = choices[np.argmax(normalized_prompt_logprob)]
return decision, normalized_prompt_logprob, prompt_logprob
decision = choices[np.argmax(normalized_prompt_logprobs)]
prefill_token_logprobs = [r["meta_info"]["prefill_token_logprobs"] for r in obj]
decode_token_logprobs = [r["meta_info"]["decode_token_logprobs"] for r in obj]
return (
decision,
normalized_prompt_logprobs,
prefill_token_logprobs,
decode_token_logprobs,
)
def concatenate_and_append(self, src_rids: List[str], dst_rid: str):
res = http_request(
......
......@@ -454,15 +454,19 @@ class StreamExecutor:
self.stream_var_event[name].set()
def _execute_select(self, expr: SglSelect):
decision, normalized_prompt_logprob, prompt_logprob = self.backend.select(
self, expr.choices, expr.temperature
)
(
decision,
normalized_prompt_logprobs,
prefill_token_logprobs,
decode_token_logprobs,
) = self.backend.select(self, expr.choices, expr.temperature)
if expr.name is not None:
name = expr.name
self.variables[name] = decision
self.meta_info[name] = {
"normalized_prompt_logprob": normalized_prompt_logprob,
"prompt_logprob": prompt_logprob,
"normalized_prompt_logprobs": normalized_prompt_logprobs,
"prefill_token_logprobs": prefill_token_logprobs,
"decode_token_logprobs": decode_token_logprobs,
}
self.variable_event[name].set()
self.text_ += decision
......
......@@ -13,76 +13,127 @@ class LogitsProcessor(nn.Module):
self.config = config
self.tp_size = get_tensor_model_parallel_world_size()
def forward(self, input_ids, hidden_states, weight, input_metadata):
last_index = None
def _get_normalized_prompt_logprobs(
self, prefill_token_logprobs, input_metadata: InputMetadata
):
logprobs_cumsum = torch.cumsum(
prefill_token_logprobs, dim=0, dtype=torch.float32
)
start = input_metadata.extend_start_loc.clone()
end = start + input_metadata.extend_seq_lens - 2
start.clamp_(min=0, max=prefill_token_logprobs.shape[0] - 1)
end.clamp_(min=0, max=prefill_token_logprobs.shape[0] - 1)
sum_logp = (
logprobs_cumsum[end]
- logprobs_cumsum[start]
+ prefill_token_logprobs[start]
)
normalized_prompt_logprobs = sum_logp / (
(input_metadata.extend_seq_lens - 1).clamp(min=1)
)
return normalized_prompt_logprobs
def _get_top_logprobs(self, all_logprobs, input_metadata: InputMetadata):
if input_metadata.forward_mode == ForwardMode.DECODE:
decode_top_logprobs = []
for i in range(all_logprobs.shape[0]):
k = input_metadata.top_logprobs_nums[i]
t = all_logprobs[i].topk(k)
v_cpu = t.values.cpu().tolist()
p_cpu = t.indices.cpu().tolist()
decode_top_logprobs.append(list(zip(v_cpu, p_cpu)))
return None, decode_top_logprobs
else:
prefill_top_logprobs, decode_top_logprobs = [], []
pt = 0
# NOTE: the GPU-CPU overhead can be reduced
extend_seq_lens_cpu = input_metadata.extend_seq_lens
for i in range(len(input_metadata.extend_seq_lens)):
if extend_seq_lens_cpu[i] == 0:
continue
k = input_metadata.top_logprobs_nums[i]
t = all_logprobs[pt : pt + extend_seq_lens_cpu[i]].topk(k)
vs_cpu = t.values.cpu().tolist()
ps_cpu = t.indices.cpu().tolist()
prefill_top_logprobs.append(
[list(zip(vs_cpu[j], ps_cpu[j])) for j in range(len(vs_cpu) - 1)]
)
decode_top_logprobs.append(list(zip(vs_cpu[-1], ps_cpu[-1])))
return prefill_top_logprobs, decode_top_logprobs
# Compute the last index (the first decode token) of each requeast
# if we are in prefill or extend mode.
def forward(self, input_ids, hidden_states, weight, input_metadata: InputMetadata):
# Get last index for next token prediction, except for DECODE mode.
last_index = None
if input_metadata.forward_mode != ForwardMode.DECODE:
last_index = (
torch.cumsum(
input_metadata.seq_lens - input_metadata.prefix_lens,
dim=0,
dtype=torch.long,
)
torch.cumsum(input_metadata.extend_seq_lens, dim=0, dtype=torch.long)
- 1
)
# Get the last hidden states and last logits
if input_metadata.forward_mode == ForwardMode.DECODE:
last_hidden = hidden_states
else:
last_hidden = hidden_states[last_index]
last_logits = torch.matmul(last_hidden, weight.T)
if self.tp_size > 1:
last_logits = tensor_model_parallel_all_gather(last_logits)
last_logits = last_logits[:, : self.config.vocab_size]
# Return only last_logits if logprob is not requested
if not input_metadata.return_logprob:
# When logprob is not requested, only compute the last logits.
if input_metadata.forward_mode == ForwardMode.DECODE:
last_hidden = hidden_states
else:
last_hidden = hidden_states[last_index]
hidden_states = None
last_logits = torch.matmul(last_hidden, weight.T)
if self.tp_size > 1:
last_logits = tensor_model_parallel_all_gather(last_logits)
last_logits = last_logits[:, : self.config.vocab_size]
return last_logits, (None, None, None)
hidden_states = None
return last_logits, (None, None, None, None, None)
else:
# When logprob is requested, compute the logits for all tokens.
logits = torch.matmul(hidden_states, weight.T)
if self.tp_size > 1:
logits = tensor_model_parallel_all_gather(logits)
logits = logits[:, : self.config.vocab_size]
all_logprobs = torch.log(torch.softmax(logits.float(), dim=-1) + 1e-6)
if input_metadata.forward_mode == ForwardMode.DECODE:
all_logits = last_logits
else:
all_logits = torch.matmul(hidden_states, weight.T)
if self.tp_size > 1:
all_logits = tensor_model_parallel_all_gather(all_logits)
all_logits = all_logits[:, : self.config.vocab_size]
all_logprobs = torch.log(torch.softmax(all_logits.float(), dim=-1) + 1e-6)
prefill_top_logprobs, decode_top_logprobs = self._get_top_logprobs(
all_logprobs, input_metadata
)
if input_metadata.forward_mode == ForwardMode.DECODE:
last_logits = logits
last_logprobs = all_logprobs
prefill_logprobs = normalized_logprobs = None
return last_logits, (
None,
None,
decode_top_logprobs,
None,
last_logprobs,
)
else:
# Compute the logprobs for the last token of each request.
last_logits = logits[last_index]
last_logprobs = all_logprobs[last_index]
# Compute the logprobs and normalized logprobs for the prefill tokens.
# Note that we pad a zero at the end of each sequence for easy computation.
prefill_logprobs = all_logprobs[
prefill_token_logprobs = all_logprobs[
torch.arange(all_logprobs.shape[0], device="cuda"),
torch.cat([input_ids[1:], torch.tensor([0], device="cuda")]),
]
logprobs_cumsum = torch.cumsum(
prefill_logprobs, dim=0, dtype=torch.float32
)
start = input_metadata.extend_start_loc.clone()
end = start + input_metadata.extend_seq_lens - 2
start.clamp_(min=0, max=prefill_logprobs.shape[0] - 1)
end.clamp_(min=0, max=prefill_logprobs.shape[0] - 1)
sum_logp = (
logprobs_cumsum[end]
- logprobs_cumsum[start]
+ prefill_logprobs[start]
normalized_prompt_logprobs = self._get_normalized_prompt_logprobs(
prefill_token_logprobs, input_metadata
)
normalized_logprobs = sum_logp / (
(input_metadata.extend_seq_lens - 1).clamp(min=1)
return last_logits, (
prefill_token_logprobs,
prefill_top_logprobs,
decode_top_logprobs,
normalized_prompt_logprobs,
last_logprobs,
)
return last_logits, (prefill_logprobs, normalized_logprobs, last_logprobs)
if __name__ == "__main__":
all_logprobs = torch.tensor(
......@@ -93,23 +144,22 @@ if __name__ == "__main__":
)
seq_lens = torch.tensor([2, 0, 3, 0], dtype=torch.int32, device="cuda")
input_ids = torch.tensor([1, 2, 3, 0, 1], dtype=torch.int32, device="cuda")
logprobs = torch.zeros(5, dtype=torch.float32, device="cuda")
logprobs = all_logprobs[
token_logprobs = all_logprobs[
torch.arange(all_logprobs.shape[0], device="cuda"),
torch.cat([input_ids[1:], torch.tensor([0], device="cuda")]),
]
logprobs_cumsum = torch.cumsum(logprobs, dim=0, dtype=torch.float32)
logprobs_cumsum = torch.cumsum(token_logprobs, dim=0, dtype=torch.float32)
len_cumsum = torch.cumsum(seq_lens, dim=0)
start = torch.cat((torch.tensor([0], device="cuda"), len_cumsum[:-1]), 0)
end = start + seq_lens - 2
start.clamp_(min=0, max=logprobs.shape[0] - 1)
end.clamp_(min=0, max=logprobs.shape[0] - 1)
sum_logp = logprobs_cumsum[end] - logprobs_cumsum[start] + logprobs[start]
start.clamp_(min=0, max=token_logprobs.shape[0] - 1)
end.clamp_(min=0, max=token_logprobs.shape[0] - 1)
sum_logp = logprobs_cumsum[end] - logprobs_cumsum[start] + token_logprobs[start]
# assert logprobs == [2, _, 2, 4, _]
print("logprobs", logprobs)
print("token logprobs", token_logprobs)
print("start", start)
print("end", end)
print("sum_logp", sum_logp)
......@@ -19,10 +19,13 @@ class GenerateReqInput:
return_logprob: Optional[Union[List[bool], bool]] = None
# The start location of the prompt for return_logprob
logprob_start_len: Optional[Union[List[int], int]] = None
# The number of top logprobs to return
top_logprobs_num: Optional[Union[List[int], int]] = None
# Whether to detokenize tokens in logprobs
return_text_in_logprobs: bool = False
# Whether to stream output
stream: bool = False
# TODO: make all parameters a Union[List[T], T] to allow for batched requests
def post_init(self):
is_single = isinstance(self.text, str)
......@@ -36,6 +39,8 @@ class GenerateReqInput:
self.return_logprob = False
if self.logprob_start_len is None:
self.logprob_start_len = 0
if self.top_logprobs_num is None:
self.top_logprobs_num = 0
else:
num = len(self.text)
......@@ -64,6 +69,11 @@ class GenerateReqInput:
elif not isinstance(self.logprob_start_len, list):
self.logprob_start_len = [self.logprob_start_len] * num
if self.top_logprobs_num is None:
self.top_logprobs_num = [0] * num
elif not isinstance(self.top_logprobs_num, list):
self.top_logprobs_num = [self.top_logprobs_num] * num
@dataclass
class TokenizedGenerateReqInput:
......@@ -76,6 +86,7 @@ class TokenizedGenerateReqInput:
sampling_params: SamplingParams
return_logprob: bool
logprob_start_len: int
top_logprobs_num: int
stream: bool
......
......@@ -43,6 +43,7 @@ class Req:
self.sampling_params = None
self.return_logprob = False
self.logprob_start_len = 0
self.top_logprobs_num = 0
self.stream = False
self.tokenizer = None
......@@ -54,9 +55,11 @@ class Req:
self.prefix_indices = []
self.last_node = None
self.logprob = None
self.token_logprob = None
self.normalized_logprob = None
self.prefill_token_logprobs = None
self.decode_token_logprobs = None
self.normalized_prompt_logprob = None
self.prefill_top_logprobs = None
self.decode_top_logprobs = None
# For constrained decoding
self.regex_fsm = None
......@@ -159,6 +162,9 @@ class Batch:
out_cache_loc: torch.Tensor = None
out_cache_cont_start: torch.Tensor = None
out_cache_cont_end: torch.Tensor = None
# for processing logprobs
top_logprobs_nums: List[int] = None
return_logprob: bool = False
# for multimodal
......@@ -266,6 +272,7 @@ class Batch:
self.position_ids_offsets = position_ids_offsets
self.extend_num_tokens = extend_num_tokens
self.out_cache_loc = out_cache_loc
self.top_logprobs_nums = [r.top_logprobs_num for r in reqs]
self.temperatures = torch.tensor(
[r.sampling_params.temperature for r in reqs],
......@@ -415,6 +422,7 @@ class Batch:
self.prefix_lens = None
self.position_ids_offsets = self.position_ids_offsets[new_indices]
self.out_cache_loc = self.out_cache_cont_start = self.out_cache_cont_end = None
self.top_logprobs_nums = [self.top_logprobs_nums[i] for i in unfinished_indices]
self.return_logprob = any(req.return_logprob for req in self.reqs)
for item in [
......@@ -439,6 +447,7 @@ class Batch:
[self.position_ids_offsets, other.position_ids_offsets]
)
self.out_cache_loc = self.out_cache_cont_start = self.out_cache_cont_end = None
self.top_logprobs_nums.extend(other.top_logprobs_nums)
self.return_logprob = any(req.return_logprob for req in self.reqs)
for item in [
......
......@@ -260,6 +260,7 @@ class ModelRpcServer:
req.sampling_params = recv_req.sampling_params
req.return_logprob = recv_req.return_logprob
req.logprob_start_len = recv_req.logprob_start_len
req.top_logprobs_num = recv_req.top_logprobs_num
req.stream = recv_req.stream
req.tokenizer = self.tokenizer
......@@ -400,28 +401,36 @@ class ModelRpcServer:
self.model_config.vocab_size, self.int_token_logit_bias
)
logprobs = None
prefill_token_logprobs = None
if batch.extend_num_tokens != 0:
# Forward
logits, (
prefill_logprobs,
normalized_logprobs,
prefill_token_logprobs,
prefill_top_logprobs,
decode_top_logprobs,
normalized_prompt_logprobs,
last_logprobs,
) = self.model_runner.forward(batch, ForwardMode.EXTEND)
if prefill_logprobs is not None:
logprobs = prefill_logprobs.cpu().tolist()
normalized_logprobs = normalized_logprobs.cpu().tolist()
if prefill_token_logprobs is not None:
prefill_token_logprobs = prefill_token_logprobs.cpu().tolist()
normalized_prompt_logprobs = normalized_prompt_logprobs.cpu().tolist()
next_token_ids, _ = batch.sample(logits)
next_token_ids = next_token_ids.cpu().tolist()
else:
next_token_ids = [self.tokenizer.eos_token_id] * len(batch.reqs)
logits = logprobs = normalized_logprobs = last_logprobs = None
(
logits,
prefill_token_logprobs,
normalized_prompt_logprobs,
last_logprobs,
) = (None,) * 4
# Only batch transfer the selected logprobs of the next token to CPU to reduce overhead.
reqs = batch.reqs
last_token_logprobs = None
if last_logprobs is not None:
last_logprobs = (
last_token_logprobs = (
last_logprobs[torch.arange(len(reqs)), next_token_ids].cpu().tolist()
)
......@@ -432,18 +441,26 @@ class ModelRpcServer:
req.output_ids = [next_token_ids[i]]
req.check_finished()
if logprobs is not None:
req.logprob = logprobs[pt : pt + req.extend_input_len - 1]
req.normalized_logprob = normalized_logprobs[i]
# If logprob_start_len > 0, then first logprob_start_len prompt tokens
# will be ignored.
prompt_token_len = len(req.logprob)
token_ids = req.input_ids[-prompt_token_len:] + [next_token_ids[i]]
token_logprobs = req.logprob + [last_logprobs[i]]
req.token_logprob = list(zip(token_ids, token_logprobs))
if prefill_token_logprobs is not None:
# If logprob_start_len > 0, then first logprob_start_len prompt tokens will be ignored.
req.prefill_token_logprobs = list(
zip(
prefill_token_logprobs[pt : pt + req.extend_input_len - 1],
req.input_ids[-req.extend_input_len + 1 :],
)
)
if req.logprob_start_len == 0:
req.token_logprob = [(req.input_ids[0], None)] + req.token_logprob
req.prefill_token_logprobs = [
(None, req.input_ids[0])
] + req.prefill_token_logprobs
req.decode_token_logprobs = [
(last_token_logprobs[i], next_token_ids[i])
]
req.prefill_top_logprobs = prefill_top_logprobs[i]
if req.logprob_start_len == 0:
req.prefill_top_logprobs = [None] + req.prefill_top_logprobs
req.decode_top_logprobs = [decode_top_logprobs[i]]
req.normalized_prompt_logprob = normalized_prompt_logprobs[i]
pt += req.extend_input_len
self.handle_finished_requests(batch)
......@@ -493,27 +510,29 @@ class ModelRpcServer:
batch.prepare_for_decode()
# Forward
logits, (_, _, last_logprobs) = self.model_runner.forward(
batch, ForwardMode.DECODE
logits, (_, _, decode_top_logprobs, _, last_logprobs) = (
self.model_runner.forward(batch, ForwardMode.DECODE)
)
next_token_ids, _ = batch.sample(logits)
next_token_ids = next_token_ids.cpu().tolist()
# Only batch transfer the selected logprobs of the next token to CPU to reduce overhead.
reqs = batch.reqs
new_token_logprobs = None
if last_logprobs is not None:
last_logprobs = last_logprobs[
new_token_logprobs = last_logprobs[
torch.arange(len(reqs)), next_token_ids
].tolist()
# Check finish condition
for i, (req, next_tok_id) in enumerate(zip(reqs, next_token_ids)):
for i, (req, next_token_id) in enumerate(zip(reqs, next_token_ids)):
req.completion_tokens_wo_jump_forward += 1
req.output_ids.append(next_tok_id)
req.output_ids.append(next_token_id)
req.check_finished()
if last_logprobs is not None:
req.token_logprob.append((next_tok_id, last_logprobs[i]))
if new_token_logprobs is not None:
req.decode_token_logprobs.append((new_token_logprobs[i], next_token_id))
req.decode_top_logprobs.append(decode_top_logprobs[i])
self.handle_finished_requests(batch)
......@@ -558,9 +577,19 @@ class ModelRpcServer:
"completion_tokens_wo_jump_forward": req.completion_tokens_wo_jump_forward,
}
if req.return_logprob:
meta_info["prompt_logprob"] = req.logprob
meta_info["token_logprob"] = req.token_logprob
meta_info["normalized_prompt_logprob"] = req.normalized_logprob
(
meta_info["prefill_token_logprobs"],
meta_info["decode_token_logprobs"],
meta_info["prefill_top_logprobs"],
meta_info["decode_top_logprobs"],
meta_info["normalized_prompt_logprob"],
) = (
req.prefill_token_logprobs,
req.decode_token_logprobs,
req.prefill_top_logprobs,
req.decode_top_logprobs,
req.normalized_prompt_logprob,
)
output_meta_info.append(meta_info)
output_finished.append(req.finished)
......
......@@ -5,6 +5,7 @@ import logging
import pkgutil
from dataclasses import dataclass
from functools import lru_cache
from typing import List
import numpy as np
import torch
......@@ -81,6 +82,7 @@ class InputMetadata:
out_cache_cont_end: torch.Tensor = None
other_kv_index: torch.Tensor = None
top_logprobs_nums: List[int] = None
return_logprob: bool = False
# for flashinfer
......@@ -181,6 +183,7 @@ class InputMetadata:
out_cache_loc,
out_cache_cont_start=None,
out_cache_cont_end=None,
top_logprobs_nums=None,
return_logprob=False,
):
batch_size = len(req_pool_indices)
......@@ -229,6 +232,7 @@ class InputMetadata:
out_cache_loc=out_cache_loc,
out_cache_cont_start=out_cache_cont_start,
out_cache_cont_end=out_cache_cont_end,
top_logprobs_nums=top_logprobs_nums,
return_logprob=return_logprob,
other_kv_index=other_kv_index,
)
......@@ -377,6 +381,7 @@ class ModelRunner:
prefix_lens=batch.prefix_lens,
position_ids_offsets=batch.position_ids_offsets,
out_cache_loc=batch.out_cache_loc,
top_logprobs_nums=batch.top_logprobs_nums,
return_logprob=batch.return_logprob,
)
return self.model.forward(
......@@ -394,6 +399,7 @@ class ModelRunner:
prefix_lens=batch.prefix_lens,
position_ids_offsets=batch.position_ids_offsets,
out_cache_loc=batch.out_cache_loc,
top_logprobs_nums=batch.top_logprobs_nums,
return_logprob=batch.return_logprob,
)
return self.model.forward(
......@@ -413,6 +419,7 @@ class ModelRunner:
out_cache_loc=batch.out_cache_loc,
out_cache_cont_start=batch.out_cache_cont_start,
out_cache_cont_end=batch.out_cache_cont_end,
top_logprobs_nums=batch.top_logprobs_nums,
return_logprob=batch.return_logprob,
)
return self.model.forward(
......@@ -430,6 +437,7 @@ class ModelRunner:
prefix_lens=batch.prefix_lens,
position_ids_offsets=batch.position_ids_offsets,
out_cache_loc=batch.out_cache_loc,
top_logprobs_nums=batch.top_logprobs_nums,
return_logprob=batch.return_logprob,
)
return self.model.forward(
......
......@@ -173,6 +173,7 @@ class TokenizerManager:
sampling_params=sampling_params,
return_logprob=obj.return_logprob,
logprob_start_len=obj.logprob_start_len,
top_logprobs_num=obj.top_logprobs_num,
stream=obj.stream,
)
self.send_to_router.send_pyobj(tokenized_obj)
......@@ -215,6 +216,7 @@ class TokenizerManager:
sampling_params=sampling_params,
return_logprob=obj.return_logprob[i],
logprob_start_len=obj.logprob_start_len[i],
top_logprobs_num=obj.top_logprobs_num[i],
stream=obj.stream,
)
self.send_to_router.send_pyobj(tokenized_obj)
......
......@@ -123,31 +123,97 @@ async def flush_cache():
)
async def detokenize_logprob_tokens(token_logprobs):
token_ids = [tid for tid, _ in token_logprobs]
async def detokenize_logprob_tokens(token_logprobs, decode_to_text):
if not decode_to_text:
return [(logprob, token_id, None) for logprob, token_id in token_logprobs]
token_ids = [tid for _, tid in token_logprobs]
token_texts = await tokenizer_manager.detokenize(DetokenizeReqInput(token_ids))
return [(text, logprob) for text, (_, logprob) in zip(token_texts, token_logprobs)]
return [
(logprob, token_id, token_text)
for (logprob, token_id), token_text, in zip(token_logprobs, token_texts)
]
async def detokenize_top_logprobs_tokens(top_logprobs, decode_to_text):
for i, t in enumerate(top_logprobs):
if top_logprobs[i] is not None:
top_logprobs[i] = await detokenize_logprob_tokens(t, decode_to_text)
return top_logprobs
async def handle_token_logprobs_results(obj: GenerateReqInput, ret):
"""Handle the token logprobs results, convert token ids to text if needed.
Args:
obj (GenerateReqInput): The request object.
ret (Union[Dict, List[Dict]]): The response object.
"""
# NOTE: This is because the multiple requests in one http request.
async def convert_style(r, return_text):
r["meta_info"]["prefill_token_logprobs"] = await detokenize_logprob_tokens(
r["meta_info"]["prefill_token_logprobs"], return_text
)
r["meta_info"]["decode_token_logprobs"] = await detokenize_logprob_tokens(
r["meta_info"]["decode_token_logprobs"], return_text
)
r["meta_info"]["prefill_top_logprobs"] = await detokenize_top_logprobs_tokens(
r["meta_info"]["prefill_top_logprobs"], return_text
)
r["meta_info"]["decode_top_logprobs"] = await detokenize_top_logprobs_tokens(
r["meta_info"]["decode_top_logprobs"], return_text
)
if isinstance(obj.text, str):
if obj.return_logprob:
await convert_style(ret, obj.return_text_in_logprobs)
else:
for i, r in enumerate(ret):
if obj.return_logprob[i]:
await convert_style(r, obj.return_text_in_logprobs)
async def stream_generator(obj: GenerateReqInput):
async for out in tokenizer_manager.generate_request(obj):
if obj.return_logprob and obj.return_text_in_logprobs:
out["meta_info"]["token_logprob"] = await detokenize_logprob_tokens(
out["meta_info"]["token_logprob"]
)
await handle_token_logprobs_results(obj, out)
yield out
async def make_openai_style_logprobs(token_logprobs):
async def make_openai_style_logprobs(
prefill_token_logprobs=None,
decode_token_logprobs=None,
prefill_top_logprobs=None,
decode_top_logprobs=None,
):
ret_logprobs = LogProbs()
for token_text, token_logprob in token_logprobs:
ret_logprobs.tokens.append(token_text)
ret_logprobs.token_logprobs.append(token_logprob)
def append_token_logprobs(token_logprobs):
for logprob, _, token_text in token_logprobs:
ret_logprobs.tokens.append(token_text)
ret_logprobs.token_logprobs.append(logprob)
# Not Supported yet
ret_logprobs.text_offset.append(-1)
def append_top_logprobs(top_logprobs):
for tokens in top_logprobs:
if tokens is not None:
ret_logprobs.top_logprobs.append(
{token[2]: token[0] for token in tokens}
)
else:
ret_logprobs.top_logprobs.append(None)
if prefill_token_logprobs is not None:
append_token_logprobs(prefill_token_logprobs)
if decode_token_logprobs is not None:
append_token_logprobs(decode_token_logprobs)
if prefill_top_logprobs is not None:
append_top_logprobs(prefill_top_logprobs)
if decode_top_logprobs is not None:
append_top_logprobs(decode_top_logprobs)
# Not supported yet.
ret_logprobs.top_logprobs.append({})
ret_logprobs.text_offset.append(-1)
return ret_logprobs
......@@ -165,10 +231,7 @@ async def generate_request(obj: GenerateReqInput):
return StreamingResponse(stream_results(), media_type="text/event-stream")
ret = await tokenizer_manager.generate_request(obj).__anext__()
if obj.return_logprob and obj.return_text_in_logprobs:
ret["meta_info"]["token_logprob"] = await detokenize_logprob_tokens(
ret["meta_info"]["token_logprob"]
)
await handle_token_logprobs_results(obj, ret)
return ret
......@@ -192,7 +255,8 @@ async def v1_completions(raw_request: Request):
"frequency_penalty": request.frequency_penalty,
"regex": request.regex,
},
return_logprob=request.logprobs is not None,
return_logprob=request.logprobs is not None and request.logprobs > 0,
top_logprobs_num=request.logprobs if request.logprobs is not None else 0,
return_text_in_logprobs=True,
stream=request.stream,
)
......@@ -212,15 +276,32 @@ async def v1_completions(raw_request: Request):
if request.echo:
# Prepend prompt in response text.
text = request.prompt + text
if request.logprobs:
# The first chunk and echo is enabled.
if not stream_buffer and request.echo:
prefill_token_logprobs = content["meta_info"][
"prefill_token_logprobs"
]
prefill_top_logprobs = content["meta_info"][
"prefill_top_logprobs"
]
else:
# Skip prompt tokens if echo is disabled.
n_prev_token = prompt_tokens
prefill_token_logprobs = None
prefill_top_logprobs = None
if request.logprobs is not None:
logprobs = await make_openai_style_logprobs(
content["meta_info"]["token_logprob"][n_prev_token:]
prefill_token_logprobs=prefill_token_logprobs,
prefill_top_logprobs=prefill_top_logprobs,
decode_token_logprobs=content["meta_info"][
"decode_token_logprobs"
][n_prev_token:],
decode_top_logprobs=content["meta_info"]["decode_top_logprobs"][
n_prev_token:
],
)
n_prev_token = len(content["meta_info"]["token_logprob"])
n_prev_token = len(content["meta_info"]["decode_token_logprobs"])
else:
logprobs = None
......@@ -255,20 +336,26 @@ async def v1_completions(raw_request: Request):
prompt_tokens = ret["meta_info"]["prompt_tokens"]
completion_tokens = ret["meta_info"]["completion_tokens"]
text = ret["text"]
token_logprob_pos = prompt_tokens
if request.echo:
token_logprob_pos = 0
text = request.prompt + text
else:
token_logprob_pos = prompt_tokens
logprobs = (
await make_openai_style_logprobs(
ret["meta_info"]["token_logprob"][token_logprob_pos:]
if request.logprobs:
if request.echo:
prefill_token_logprobs = ret["meta_info"]["prefill_token_logprobs"]
prefill_top_logprobs = ret["meta_info"]["prefill_top_logprobs"]
else:
prefill_token_logprobs = None
prefill_top_logprobs = None
logprobs = await make_openai_style_logprobs(
prefill_token_logprobs=prefill_token_logprobs,
prefill_top_logprobs=prefill_top_logprobs,
decode_token_logprobs=ret["meta_info"]["decode_token_logprobs"],
decode_top_logprobs=ret["meta_info"]["decode_top_logprobs"],
)
if request.logprobs is not None
else None
)
else:
logprobs = None
choice_data = CompletionResponseChoice(
index=0,
text=text,
......
......@@ -9,11 +9,12 @@ The capital of France is Paris.\nThe capital of the United States is Washington,
"""
import argparse
import json
import requests
def test_decode(url, return_logprob):
def test_decode(url, return_logprob, top_logprobs_num, return_text):
response = requests.post(
url + "/generate",
json={
......@@ -23,10 +24,13 @@ def test_decode(url, return_logprob):
"max_new_tokens": 32,
},
"return_logprob": return_logprob,
"top_logprobs_num": top_logprobs_num,
"return_text_in_logprobs": return_text,
"logprob_start_len": 0,
},
)
print(response.json())
print(json.dumps(response.json()))
print("=" * 100)
if __name__ == "__main__":
......@@ -37,5 +41,8 @@ if __name__ == "__main__":
url = f"{args.host}:{args.port}"
test_decode(url, False)
test_decode(url, True)
test_decode(url, False, 0, False)
test_decode(url, True, 0, False)
test_decode(url, True, 0, True)
test_decode(url, True, 3, False)
test_decode(url, True, 3, True)
......@@ -13,7 +13,7 @@ import json
import requests
def test_decode_stream(url, return_logprob):
def test_decode_stream(url, return_logprob, top_logprobs_num):
response = requests.post(
url + "/generate",
json={
......@@ -24,6 +24,8 @@ def test_decode_stream(url, return_logprob):
},
"stream": True,
"return_logprob": return_logprob,
"top_logprobs_num": top_logprobs_num,
"return_text_in_logprobs": True,
},
stream=True,
)
......@@ -37,19 +39,20 @@ def test_decode_stream(url, return_logprob):
data = json.loads(chunk[5:].strip("\n"))
if return_logprob:
assert data["meta_info"]["prompt_logprob"] is not None
assert data["meta_info"]["token_logprob"] is not None
assert data["meta_info"]["prefill_token_logprobs"] is not None
assert data["meta_info"]["decode_token_logprobs"] is not None
assert data["meta_info"]["normalized_prompt_logprob"] is not None
if prev == 0: # Skip prompt logprobs
prev = data["meta_info"]["prompt_tokens"]
for token_txt, _, logprob in data["meta_info"]["token_logprob"][prev:]:
print(f"{token_txt}\t{logprob}", flush=True)
prev = len(data["meta_info"]["token_logprob"])
for logprob, token_id, token_text in data["meta_info"][
"decode_token_logprobs"
][prev:]:
print(f"{token_text:12s}\t{logprob}\t{token_id}", flush=True)
prev = len(data["meta_info"]["decode_token_logprobs"])
else:
output = data["text"].strip()
print(output[prev:], end="", flush=True)
prev = len(output)
print("")
print("=" * 100)
if __name__ == "__main__":
......@@ -60,5 +63,6 @@ if __name__ == "__main__":
url = f"{args.host}:{args.port}"
test_decode_stream(url, False)
test_decode_stream(url, True)
test_decode_stream(url, False, 0)
test_decode_stream(url, True, 0)
test_decode_stream(url, True, 3)
......@@ -34,6 +34,7 @@ def test_completion(args, echo, logprobs):
if echo:
assert text.startswith("The capital of France is")
if logprobs:
print(response.choices[0].logprobs.top_logprobs)
assert response.choices[0].logprobs
if echo:
assert response.choices[0].logprobs.token_logprobs[0] == None
......@@ -44,6 +45,7 @@ def test_completion(args, echo, logprobs):
assert response.usage.prompt_tokens > 0
assert response.usage.completion_tokens > 0
assert response.usage.total_tokens > 0
print("=" * 100)
def test_completion_stream(args, echo, logprobs):
......@@ -68,13 +70,14 @@ def test_completion_stream(args, echo, logprobs):
f"{r.choices[0].text:12s}\t" f"{r.choices[0].logprobs.token_logprobs}",
flush=True,
)
print(r.choices[0].logprobs.top_logprobs)
else:
print(r.choices[0].text, end="", flush=True)
assert r.id
assert r.usage.prompt_tokens > 0
assert r.usage.completion_tokens > 0
assert r.usage.total_tokens > 0
print()
print("=" * 100)
def test_chat_completion(args):
......@@ -94,6 +97,7 @@ def test_chat_completion(args):
assert response.usage.prompt_tokens > 0
assert response.usage.completion_tokens > 0
assert response.usage.total_tokens > 0
print("=" * 100)
def test_chat_completion_image(args):
......@@ -124,6 +128,7 @@ def test_chat_completion_image(args):
assert response.usage.prompt_tokens > 0
assert response.usage.completion_tokens > 0
assert response.usage.total_tokens > 0
print("=" * 100)
def test_chat_completion_stream(args):
......@@ -149,7 +154,7 @@ def test_chat_completion_stream(args):
if not data.content:
continue
print(data.content, end="", flush=True)
print()
print("=" * 100)
def test_regex(args):
......@@ -174,6 +179,7 @@ def test_regex(args):
)
text = response.choices[0].message.content
print(json.loads(text))
print("=" * 100)
if __name__ == "__main__":
......@@ -188,10 +194,14 @@ if __name__ == "__main__":
test_completion(args, echo=True, logprobs=False)
test_completion(args, echo=False, logprobs=True)
test_completion(args, echo=True, logprobs=True)
test_completion(args, echo=False, logprobs=3)
test_completion(args, echo=True, logprobs=3)
test_completion_stream(args, echo=False, logprobs=False)
test_completion_stream(args, echo=True, logprobs=False)
test_completion_stream(args, echo=False, logprobs=True)
test_completion_stream(args, echo=True, logprobs=True)
test_completion_stream(args, echo=False, logprobs=3)
test_completion_stream(args, echo=True, logprobs=3)
test_chat_completion(args)
test_chat_completion_stream(args)
test_regex(args)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment