test_triton_attention_kernels.py 13.2 KB
Newer Older
1
2
3
4
5
import random
import unittest

import torch

Ke Bao's avatar
Ke Bao committed
6
7
8
9
10
from sglang.srt.layers.attention.triton_ops.decode_attention import (
    decode_attention_fwd,
    decode_attention_fwd_grouped,
    decode_attention_fwd_normal,
)
11
from sglang.srt.layers.attention.triton_ops.extend_attention import (
12
13
14
    extend_attention_fwd,
    redundant_attention,
)
15
16
17
from sglang.srt.layers.attention.triton_ops.prefill_attention import (
    context_attention_fwd,
)
18
19


Ke Bao's avatar
Ke Bao committed
20
class TestTritonAttention(unittest.TestCase):
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

    def _set_all_seeds(self, seed):
        """Set all random seeds for reproducibility."""
        random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False

    def setUp(self):
        # Set seeds before each test method
        self._set_all_seeds(42)

    def _test_extend_attention_once(self, B, N_CTX, H_Q, H_KV, D):
        dtype = torch.bfloat16

        b_seq_len_prefix = torch.randint(
            1, N_CTX // 2, (B,), dtype=torch.int32, device="cuda"
        )
        b_seq_len_extend = torch.randint(
            1, N_CTX // 2, (B,), dtype=torch.int32, device="cuda"
        )
        b_seq_len = b_seq_len_prefix + b_seq_len_extend
        max_len_in_batch = torch.max(b_seq_len, 0)[0].item()

        b_req_idx = torch.arange(B, dtype=torch.int32, device="cuda")
        b_start_loc = torch.zeros((B,), dtype=torch.int32, device="cuda")
        b_start_loc[1:] = torch.cumsum(b_seq_len[:-1], 0)
        b_start_loc_extend = torch.zeros((B,), dtype=torch.int32, device="cuda")
        b_start_loc_extend[1:] = torch.cumsum(b_seq_len_extend[:-1], 0)
52
53
54
55
56
57
58

        kv_indptr = torch.zeros((B + 1,), dtype=torch.int32, device="cuda")
        kv_indptr[1 : B + 1] = torch.cumsum(b_seq_len_prefix[:B], dim=0)
        kv_indices = torch.zeros(
            (b_seq_len_prefix.sum().item(),), dtype=torch.int32, device="cuda"
        )

59
        for i in range(B):
60
61
            kv_indices[kv_indptr[i] : kv_indptr[i + 1]] = torch.arange(
                b_start_loc[i], b_start_loc[i] + b_seq_len_prefix[i]
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
            )

        total_token_num = torch.sum(b_seq_len).item()
        extend_token_num = torch.sum(b_seq_len_extend).item()
        k_buffer = torch.empty(
            (total_token_num, H_KV, D), dtype=dtype, device="cuda"
        ).normal_(mean=0.1, std=0.2)
        v_buffer = torch.empty(
            (total_token_num, H_KV, D), dtype=dtype, device="cuda"
        ).normal_(mean=0.1, std=0.2)

        k_extend = torch.empty((extend_token_num, H_KV, D), dtype=dtype, device="cuda")
        v_extend = torch.empty((extend_token_num, H_KV, D), dtype=dtype, device="cuda")
        q_extend = torch.empty((extend_token_num, H_Q, D), dtype=dtype, device="cuda")
        for i in range(B):
            extend_start_in_buffer = b_start_loc[i] + b_seq_len_prefix[i]
            extend_end_in_buffer = b_start_loc[i] + b_seq_len[i]
            extend_start = b_start_loc_extend[i]
            extend_end = b_start_loc_extend[i] + b_seq_len_extend[i]
            k_extend[extend_start:extend_end] = k_buffer[
                extend_start_in_buffer:extend_end_in_buffer
            ]
            v_extend[extend_start:extend_end] = v_buffer[
                extend_start_in_buffer:extend_end_in_buffer
            ]
            q_extend[extend_start:extend_end] = torch.empty(
                (b_seq_len_extend[i], H_Q, D), dtype=dtype, device="cuda"
            ).normal_(mean=0.1, std=0.2)

        o_extend = torch.empty((extend_token_num, H_Q, D), dtype=dtype, device="cuda")
92
93
94
        o_extend_mask = torch.empty(
            (extend_token_num, H_Q, D), dtype=dtype, device="cuda"
        )
95
96
97
98
99
100
        o_redundant = torch.empty(
            (extend_token_num, H_Q, D), dtype=dtype, device="cuda"
        )

        b_seq_len_extend = b_seq_len - b_seq_len_prefix
        max_len_extend = torch.max(b_seq_len_extend, 0)[0].item()
101
102
103
        qo_indptr = torch.zeros((B + 1,), dtype=torch.int32, device="cuda")
        qo_indptr[1 : B + 1] = torch.cumsum(b_seq_len_extend[:B], dim=0)

104
        custom_mask = None
105
        mask_indptr = None
106

107
108
109
110
111
112
113
        extend_attention_fwd(
            q_extend,
            k_extend,
            v_extend,
            o_extend,
            k_buffer,
            v_buffer,
114
115
116
            qo_indptr,
            kv_indptr,
            kv_indices,
117
            custom_mask,
118
            mask_indptr,
119
120
121
122
123
124
125
            max_len_extend,
        )

        b_seq_mask_len = b_seq_len_extend * b_seq_len
        custom_mask = torch.ones(
            (b_seq_mask_len.sum().item(),), dtype=torch.bool, device="cuda"
        )
126
127
        mask_indptr = torch.zeros((B + 1,), dtype=torch.int64, device="cuda")
        mask_indptr[1 : B + 1] = torch.cumsum(b_seq_mask_len[:B], dim=0)
128
129
130
131
132
133
134
135
136
137
138
        for i in range(B):
            causal_mask = (
                torch.tril(
                    torch.ones(b_seq_len_extend[i], b_seq_len_extend[i]), diagonal=0
                )
                == 1
            )
            prefix_mask = torch.ones(
                b_seq_len_extend[i], b_seq_len_prefix[i], dtype=torch.bool
            )
            mask_flatten = torch.cat([prefix_mask, causal_mask], dim=1).flatten()
139
            custom_mask[mask_indptr[i] : mask_indptr[i + 1]] = mask_flatten
140
141
142
143
144
145
146
147
148
149
150
151

        extend_attention_fwd(
            q_extend,
            k_extend,
            v_extend,
            o_extend_mask,
            k_buffer,
            v_buffer,
            qo_indptr,
            kv_indptr,
            kv_indices,
            custom_mask,
152
            mask_indptr,
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
            max_len_extend,
        )

        redundant_attention(
            q_extend,
            o_redundant,
            k_buffer,
            v_buffer,
            b_req_idx,
            b_start_loc,
            b_seq_len,
            b_seq_len_prefix,
            max_len_in_batch,
        )

        self.assertTrue(torch.allclose(o_extend, o_redundant, rtol=1e-2))
169
        self.assertTrue(torch.allclose(o_extend_mask, o_redundant, rtol=1e-2))
170
171
172
173
174
175
176
177
178
179

    def test_extend_attention(self):

        # Define the varying parameter values
        attention_values = [128, 96, 80, 13]

        # Loop through the values and call the method
        for value in attention_values:
            self._test_extend_attention_once(19, 12331, 12, 4, value)

Ke Bao's avatar
Ke Bao committed
180
    def _test_context_attention_once(self, head_dim, is_causal):
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
        # Set up a simple test case
        num_heads = 4
        seq_lens = [8, 12]
        max_seq_len = max(seq_lens)

        # Create random input tensors
        q = torch.randn(sum(seq_lens), num_heads, head_dim, device="cuda")
        k = torch.randn(sum(seq_lens), num_heads, head_dim, device="cuda")
        v = torch.randn(sum(seq_lens), num_heads, head_dim, device="cuda")
        o = torch.zeros(sum(seq_lens), num_heads, head_dim, device="cuda")

        # Create b_start_loc and b_seq_len tensors
        b_start_loc = torch.tensor([0, seq_lens[0]], device="cuda")
        b_seq_len = torch.tensor(seq_lens, device="cuda")

Ke Bao's avatar
Ke Bao committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        context_attention_fwd(
            q, k, v, o, b_start_loc, b_seq_len, max_seq_len, is_causal=is_causal
        )

        cu_seq_lens = [0] * (len(seq_lens) + 1)
        for i, seq_len in enumerate(seq_lens):
            cu_seq_lens[i + 1] = cu_seq_lens[i] + seq_len

        for i in range(len(seq_lens)):
            start, end = cu_seq_lens[i], cu_seq_lens[i + 1]
            o_torch = torch.nn.functional.scaled_dot_product_attention(
                q[start:end].permute(1, 0, 2),
                k[start:end].permute(1, 0, 2),
                v[start:end].permute(1, 0, 2),
                is_causal=is_causal,
            ).permute(1, 0, 2)

            cos_sim = torch.nn.functional.cosine_similarity(
                o[start:end].flatten(), o_torch.flatten(), dim=0
            )
            self.assertTrue(cos_sim.item() > 1 - (1e-5))
            self.assertTrue(torch.allclose(o[start:end], o_torch, atol=1e-2))
218
219
220
221
222

    def test_context_attention(self):
        head_dim = [128, 96, 80, 13]

        for dim in head_dim:
Ke Bao's avatar
Ke Bao committed
223
224
            for is_causal in [True, False]:
                self._test_context_attention_once(dim, is_causal)
225
226
227
228
229
230

    def _test_decode_attention_once(self, B, H_Q, H_KV, D):
        dtype = torch.bfloat16
        seq_len = 10  # This represents the number of tokens already in the sequence
        total_tokens = B * seq_len
        sm_scale = 1.0 / (D**0.5)
231
232
        max_kv_splits = 8
        num_kv_splits = torch.full((B,), 4, dtype=torch.int32, device="cuda")
233
234
235
236
237
238
239
240
241
242
243
244
245

        # q represents the new token being generated, one per batch
        q = torch.randn(B, H_Q, D, dtype=dtype, device="cuda")

        # k_buffer and v_buffer represent all previous tokens
        k_buffer = torch.randn(total_tokens, H_KV, D, dtype=dtype, device="cuda")
        v_buffer = torch.randn(total_tokens, H_KV, D, dtype=dtype, device="cuda")

        # o will have the same shape as q
        o = torch.zeros(B, H_Q, D, dtype=dtype, device="cuda")

        b_seq_len = torch.full((B,), seq_len, device="cuda")

246
247
248
249
        kv_indptr = torch.zeros((B + 1,), dtype=torch.int32, device="cuda")
        kv_indptr[1 : B + 1] = torch.cumsum(b_seq_len[:B], dim=0)
        kv_indices = torch.arange(total_tokens, device="cuda")

Ke Bao's avatar
Ke Bao committed
250
        attn_logits = torch.empty(
251
252
253
254
255
256
            (B, H_Q, max_kv_splits, D),
            dtype=torch.float32,
            device="cuda",
        )
        attn_lse = torch.empty(
            (B, H_Q, max_kv_splits),
257
            dtype=torch.float32,
Ke Bao's avatar
Ke Bao committed
258
259
260
            device="cuda",
        )

261
262
263
264
265
        decode_attention_fwd(
            q,
            k_buffer,
            v_buffer,
            o,
266
267
            kv_indptr,
            kv_indices,
268
269
            attn_logits,
            attn_lse,
270
            num_kv_splits,
271
            max_kv_splits,
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
            sm_scale,
        )

    def test_decode_attention(self):
        # Here we just to ensure there is no error
        # TODO: correctnesss test

        # Test configurations
        configs = [
            (2, 4, 4, 64),  # MHA
            (2, 4, 2, 64),  # GQA
            (2, 4, 4, 80),  # Non-standard head dim
            (2, 4, 4, 13),  # Prime number head dim
        ]

        for B, H_Q, H_KV, D in configs:
            self._test_decode_attention_once(B, H_Q, H_KV, D)

290
    def _test_grouped_decode_attention_once(self, B, S, H_Q, H_KV, D, D_V):
Ke Bao's avatar
Ke Bao committed
291
        dtype = torch.bfloat16
292
        seq_len = S  # This represents the number of tokens already in the sequence
Ke Bao's avatar
Ke Bao committed
293
294
        total_tokens = B * seq_len
        sm_scale = 1.0 / (D**0.5)
295
296
        max_kv_splits = 8
        num_kv_splits = torch.full((B,), 4, dtype=torch.int32, device="cuda")
Ke Bao's avatar
Ke Bao committed
297
298
299
300
301
302
303
304
305

        # q represents the new token being generated, one per batch
        q = torch.randn(B, H_Q, D, dtype=dtype, device="cuda")

        # k_buffer and v_buffer represent all previous tokens
        k_buffer = torch.randn(total_tokens, H_KV, D, dtype=dtype, device="cuda")
        v_buffer = torch.randn(total_tokens, H_KV, D_V, dtype=dtype, device="cuda")

        # o will have the same shape as q
306
307
        o = torch.zeros(B, H_Q, D_V, dtype=dtype, device="cuda")
        o_grouped = torch.zeros(B, H_Q, D_V, dtype=dtype, device="cuda")
Ke Bao's avatar
Ke Bao committed
308
309
310

        b_seq_len = torch.full((B,), seq_len, device="cuda")

311
312
313
314
        kv_indptr = torch.zeros((B + 1,), dtype=torch.int32, device="cuda")
        kv_indptr[1 : B + 1] = torch.cumsum(b_seq_len[:B], dim=0)
        kv_indices = torch.arange(total_tokens, device="cuda")

Ke Bao's avatar
Ke Bao committed
315
        attn_logits = torch.empty(
316
317
318
319
320
321
            (B, H_Q, max_kv_splits, D_V),
            dtype=torch.float32,
            device="cuda",
        )
        attn_lse = torch.empty(
            (B, H_Q, max_kv_splits),
322
            dtype=torch.float32,
Ke Bao's avatar
Ke Bao committed
323
324
325
326
327
328
329
330
            device="cuda",
        )

        decode_attention_fwd_normal(
            q,
            k_buffer,
            v_buffer,
            o,
331
332
            kv_indptr,
            kv_indices,
333
334
            attn_logits,
            attn_lse,
335
            num_kv_splits,
336
            max_kv_splits,
Ke Bao's avatar
Ke Bao committed
337
338
339
            sm_scale,
        )

340
        attn_logits1 = torch.empty(
341
342
343
344
345
346
            (B, H_Q, max_kv_splits, D_V),
            dtype=torch.float32,
            device="cuda",
        )
        attn_lse1 = torch.empty(
            (B, H_Q, max_kv_splits, D_V),
347
348
349
350
            dtype=torch.float32,
            device="cuda",
        )

Ke Bao's avatar
Ke Bao committed
351
352
353
354
355
        decode_attention_fwd_grouped(
            q,
            k_buffer,
            v_buffer,
            o_grouped,
356
357
            kv_indptr,
            kv_indices,
358
359
            attn_logits1,
            attn_lse1,
360
            num_kv_splits,
361
            max_kv_splits,
Ke Bao's avatar
Ke Bao committed
362
363
364
365
366
367
            sm_scale,
        )

        cos_sim = torch.nn.functional.cosine_similarity(
            o.flatten(), o_grouped.flatten(), dim=0
        )
368
        print(cos_sim.item())
Ke Bao's avatar
Ke Bao committed
369
370
371
372
        self.assertTrue(cos_sim.item() > 0.99)
        self.assertTrue(torch.allclose(o, o_grouped, atol=3e-2))

    def test_grouped_decode_attention(self):
373
        seq_lens = [5, 100, 128, 500]
Ke Bao's avatar
Ke Bao committed
374
        configs = [
375
            (2, 16, 16, 64, 64),
Ke Bao's avatar
Ke Bao committed
376
377
378
379
380
381
382
            (2, 16, 1, 64, 64),
            (2, 64, 1, 13, 13),
            (2, 128, 1, 80, 80),
            (2, 128, 2, 512, 512),
            (2, 128, 1, 576, 512),
        ]

383
384
385
        for S in seq_lens:
            for B, H_Q, H_KV, D, D_V in configs:
                self._test_grouped_decode_attention_once(B, S, H_Q, H_KV, D, D_V)
Ke Bao's avatar
Ke Bao committed
386

387
388
389

if __name__ == "__main__":
    unittest.main()