test_triton_attention_kernels.py 11 KB
Newer Older
1
2
3
4
5
import random
import unittest

import torch

Ke Bao's avatar
Ke Bao committed
6
7
8
9
10
from sglang.srt.layers.attention.triton_ops.decode_attention import (
    decode_attention_fwd,
    decode_attention_fwd_grouped,
    decode_attention_fwd_normal,
)
11
from sglang.srt.layers.attention.triton_ops.extend_attention import (
12
13
14
    extend_attention_fwd,
    redundant_attention,
)
15
16
17
from sglang.srt.layers.attention.triton_ops.prefill_attention import (
    context_attention_fwd,
)
18
19


Ke Bao's avatar
Ke Bao committed
20
class TestTritonAttention(unittest.TestCase):
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

    def _set_all_seeds(self, seed):
        """Set all random seeds for reproducibility."""
        random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False

    def setUp(self):
        # Set seeds before each test method
        self._set_all_seeds(42)

    def _test_extend_attention_once(self, B, N_CTX, H_Q, H_KV, D):
        dtype = torch.bfloat16

        b_seq_len_prefix = torch.randint(
            1, N_CTX // 2, (B,), dtype=torch.int32, device="cuda"
        )
        b_seq_len_extend = torch.randint(
            1, N_CTX // 2, (B,), dtype=torch.int32, device="cuda"
        )
        b_seq_len = b_seq_len_prefix + b_seq_len_extend
        max_len_in_batch = torch.max(b_seq_len, 0)[0].item()

        b_req_idx = torch.arange(B, dtype=torch.int32, device="cuda")
        b_start_loc = torch.zeros((B,), dtype=torch.int32, device="cuda")
        b_start_loc[1:] = torch.cumsum(b_seq_len[:-1], 0)
        b_start_loc_extend = torch.zeros((B,), dtype=torch.int32, device="cuda")
        b_start_loc_extend[1:] = torch.cumsum(b_seq_len_extend[:-1], 0)
52
53
54
55
56
57
58

        kv_indptr = torch.zeros((B + 1,), dtype=torch.int32, device="cuda")
        kv_indptr[1 : B + 1] = torch.cumsum(b_seq_len_prefix[:B], dim=0)
        kv_indices = torch.zeros(
            (b_seq_len_prefix.sum().item(),), dtype=torch.int32, device="cuda"
        )

59
        for i in range(B):
60
61
            kv_indices[kv_indptr[i] : kv_indptr[i + 1]] = torch.arange(
                b_start_loc[i], b_start_loc[i] + b_seq_len_prefix[i]
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
            )

        total_token_num = torch.sum(b_seq_len).item()
        extend_token_num = torch.sum(b_seq_len_extend).item()
        k_buffer = torch.empty(
            (total_token_num, H_KV, D), dtype=dtype, device="cuda"
        ).normal_(mean=0.1, std=0.2)
        v_buffer = torch.empty(
            (total_token_num, H_KV, D), dtype=dtype, device="cuda"
        ).normal_(mean=0.1, std=0.2)

        k_extend = torch.empty((extend_token_num, H_KV, D), dtype=dtype, device="cuda")
        v_extend = torch.empty((extend_token_num, H_KV, D), dtype=dtype, device="cuda")
        q_extend = torch.empty((extend_token_num, H_Q, D), dtype=dtype, device="cuda")
        for i in range(B):
            extend_start_in_buffer = b_start_loc[i] + b_seq_len_prefix[i]
            extend_end_in_buffer = b_start_loc[i] + b_seq_len[i]
            extend_start = b_start_loc_extend[i]
            extend_end = b_start_loc_extend[i] + b_seq_len_extend[i]
            k_extend[extend_start:extend_end] = k_buffer[
                extend_start_in_buffer:extend_end_in_buffer
            ]
            v_extend[extend_start:extend_end] = v_buffer[
                extend_start_in_buffer:extend_end_in_buffer
            ]
            q_extend[extend_start:extend_end] = torch.empty(
                (b_seq_len_extend[i], H_Q, D), dtype=dtype, device="cuda"
            ).normal_(mean=0.1, std=0.2)

        o_extend = torch.empty((extend_token_num, H_Q, D), dtype=dtype, device="cuda")
        o_redundant = torch.empty(
            (extend_token_num, H_Q, D), dtype=dtype, device="cuda"
        )

        b_seq_len_extend = b_seq_len - b_seq_len_prefix
        max_len_extend = torch.max(b_seq_len_extend, 0)[0].item()
98
99
100
        qo_indptr = torch.zeros((B + 1,), dtype=torch.int32, device="cuda")
        qo_indptr[1 : B + 1] = torch.cumsum(b_seq_len_extend[:B], dim=0)

101
102
103
104
105
106
107
        extend_attention_fwd(
            q_extend,
            k_extend,
            v_extend,
            o_extend,
            k_buffer,
            v_buffer,
108
109
110
            qo_indptr,
            kv_indptr,
            kv_indices,
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
            max_len_extend,
        )

        redundant_attention(
            q_extend,
            o_redundant,
            k_buffer,
            v_buffer,
            b_req_idx,
            b_start_loc,
            b_seq_len,
            b_seq_len_prefix,
            max_len_in_batch,
        )

        self.assertTrue(torch.allclose(o_extend, o_redundant, rtol=1e-2))

    def test_extend_attention(self):

        # Define the varying parameter values
        attention_values = [128, 96, 80, 13]

        # Loop through the values and call the method
        for value in attention_values:
            self._test_extend_attention_once(19, 12331, 12, 4, value)

Ke Bao's avatar
Ke Bao committed
137
    def _test_context_attention_once(self, head_dim, is_causal):
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
        # Set up a simple test case
        num_heads = 4
        seq_lens = [8, 12]
        max_seq_len = max(seq_lens)

        # Create random input tensors
        q = torch.randn(sum(seq_lens), num_heads, head_dim, device="cuda")
        k = torch.randn(sum(seq_lens), num_heads, head_dim, device="cuda")
        v = torch.randn(sum(seq_lens), num_heads, head_dim, device="cuda")
        o = torch.zeros(sum(seq_lens), num_heads, head_dim, device="cuda")

        # Create b_start_loc and b_seq_len tensors
        b_start_loc = torch.tensor([0, seq_lens[0]], device="cuda")
        b_seq_len = torch.tensor(seq_lens, device="cuda")

Ke Bao's avatar
Ke Bao committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
        context_attention_fwd(
            q, k, v, o, b_start_loc, b_seq_len, max_seq_len, is_causal=is_causal
        )

        cu_seq_lens = [0] * (len(seq_lens) + 1)
        for i, seq_len in enumerate(seq_lens):
            cu_seq_lens[i + 1] = cu_seq_lens[i] + seq_len

        for i in range(len(seq_lens)):
            start, end = cu_seq_lens[i], cu_seq_lens[i + 1]
            o_torch = torch.nn.functional.scaled_dot_product_attention(
                q[start:end].permute(1, 0, 2),
                k[start:end].permute(1, 0, 2),
                v[start:end].permute(1, 0, 2),
                is_causal=is_causal,
            ).permute(1, 0, 2)

            cos_sim = torch.nn.functional.cosine_similarity(
                o[start:end].flatten(), o_torch.flatten(), dim=0
            )
            self.assertTrue(cos_sim.item() > 1 - (1e-5))
            self.assertTrue(torch.allclose(o[start:end], o_torch, atol=1e-2))
175
176
177
178
179

    def test_context_attention(self):
        head_dim = [128, 96, 80, 13]

        for dim in head_dim:
Ke Bao's avatar
Ke Bao committed
180
181
            for is_causal in [True, False]:
                self._test_context_attention_once(dim, is_causal)
182
183
184
185
186
187

    def _test_decode_attention_once(self, B, H_Q, H_KV, D):
        dtype = torch.bfloat16
        seq_len = 10  # This represents the number of tokens already in the sequence
        total_tokens = B * seq_len
        sm_scale = 1.0 / (D**0.5)
188
        num_kv_splits = 8
189
190
191
192
193
194
195
196
197
198
199
200
201

        # q represents the new token being generated, one per batch
        q = torch.randn(B, H_Q, D, dtype=dtype, device="cuda")

        # k_buffer and v_buffer represent all previous tokens
        k_buffer = torch.randn(total_tokens, H_KV, D, dtype=dtype, device="cuda")
        v_buffer = torch.randn(total_tokens, H_KV, D, dtype=dtype, device="cuda")

        # o will have the same shape as q
        o = torch.zeros(B, H_Q, D, dtype=dtype, device="cuda")

        b_seq_len = torch.full((B,), seq_len, device="cuda")

202
203
204
205
        kv_indptr = torch.zeros((B + 1,), dtype=torch.int32, device="cuda")
        kv_indptr[1 : B + 1] = torch.cumsum(b_seq_len[:B], dim=0)
        kv_indices = torch.arange(total_tokens, device="cuda")

Ke Bao's avatar
Ke Bao committed
206
        attn_logits = torch.empty(
207
208
            (B, H_Q, num_kv_splits, D + 1),
            dtype=torch.float32,
Ke Bao's avatar
Ke Bao committed
209
210
211
            device="cuda",
        )

212
213
214
215
216
        decode_attention_fwd(
            q,
            k_buffer,
            v_buffer,
            o,
217
218
            kv_indptr,
            kv_indices,
Ke Bao's avatar
Ke Bao committed
219
            attn_logits,
220
            num_kv_splits,
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
            sm_scale,
        )

    def test_decode_attention(self):
        # Here we just to ensure there is no error
        # TODO: correctnesss test

        # Test configurations
        configs = [
            (2, 4, 4, 64),  # MHA
            (2, 4, 2, 64),  # GQA
            (2, 4, 4, 80),  # Non-standard head dim
            (2, 4, 4, 13),  # Prime number head dim
        ]

        for B, H_Q, H_KV, D in configs:
            self._test_decode_attention_once(B, H_Q, H_KV, D)

239
    def _test_grouped_decode_attention_once(self, B, S, H_Q, H_KV, D, D_V):
Ke Bao's avatar
Ke Bao committed
240
        dtype = torch.bfloat16
241
        seq_len = S  # This represents the number of tokens already in the sequence
Ke Bao's avatar
Ke Bao committed
242
243
        total_tokens = B * seq_len
        sm_scale = 1.0 / (D**0.5)
244
        num_kv_splits = 8
Ke Bao's avatar
Ke Bao committed
245
246
247
248
249
250
251
252
253

        # q represents the new token being generated, one per batch
        q = torch.randn(B, H_Q, D, dtype=dtype, device="cuda")

        # k_buffer and v_buffer represent all previous tokens
        k_buffer = torch.randn(total_tokens, H_KV, D, dtype=dtype, device="cuda")
        v_buffer = torch.randn(total_tokens, H_KV, D_V, dtype=dtype, device="cuda")

        # o will have the same shape as q
254
255
        o = torch.zeros(B, H_Q, D_V, dtype=dtype, device="cuda")
        o_grouped = torch.zeros(B, H_Q, D_V, dtype=dtype, device="cuda")
Ke Bao's avatar
Ke Bao committed
256
257
258

        b_seq_len = torch.full((B,), seq_len, device="cuda")

259
260
261
262
        kv_indptr = torch.zeros((B + 1,), dtype=torch.int32, device="cuda")
        kv_indptr[1 : B + 1] = torch.cumsum(b_seq_len[:B], dim=0)
        kv_indices = torch.arange(total_tokens, device="cuda")

Ke Bao's avatar
Ke Bao committed
263
        attn_logits = torch.empty(
264
265
            (B, H_Q, num_kv_splits, D_V + 1),
            dtype=torch.float32,
Ke Bao's avatar
Ke Bao committed
266
267
268
269
270
271
272
273
            device="cuda",
        )

        decode_attention_fwd_normal(
            q,
            k_buffer,
            v_buffer,
            o,
274
275
            kv_indptr,
            kv_indices,
Ke Bao's avatar
Ke Bao committed
276
            attn_logits,
277
            num_kv_splits,
Ke Bao's avatar
Ke Bao committed
278
279
280
            sm_scale,
        )

281
282
283
284
285
286
        attn_logits1 = torch.empty(
            (B, H_Q, num_kv_splits, D_V + 1),
            dtype=torch.float32,
            device="cuda",
        )

Ke Bao's avatar
Ke Bao committed
287
288
289
290
291
        decode_attention_fwd_grouped(
            q,
            k_buffer,
            v_buffer,
            o_grouped,
292
293
            kv_indptr,
            kv_indices,
294
295
            attn_logits1,
            num_kv_splits,
Ke Bao's avatar
Ke Bao committed
296
297
298
299
300
301
            sm_scale,
        )

        cos_sim = torch.nn.functional.cosine_similarity(
            o.flatten(), o_grouped.flatten(), dim=0
        )
302
        print(cos_sim.item())
Ke Bao's avatar
Ke Bao committed
303
304
305
306
        self.assertTrue(cos_sim.item() > 0.99)
        self.assertTrue(torch.allclose(o, o_grouped, atol=3e-2))

    def test_grouped_decode_attention(self):
307
        seq_lens = [5, 100, 128, 500]
Ke Bao's avatar
Ke Bao committed
308
        configs = [
309
            (2, 16, 16, 64, 64),
Ke Bao's avatar
Ke Bao committed
310
311
312
313
314
315
316
            (2, 16, 1, 64, 64),
            (2, 64, 1, 13, 13),
            (2, 128, 1, 80, 80),
            (2, 128, 2, 512, 512),
            (2, 128, 1, 576, 512),
        ]

317
318
319
        for S in seq_lens:
            for B, H_Q, H_KV, D, D_V in configs:
                self._test_grouped_decode_attention_once(B, S, H_Q, H_KV, D, D_V)
Ke Bao's avatar
Ke Bao committed
320

321
322
323

if __name__ == "__main__":
    unittest.main()