test_triton_attention_kernels.py 12.5 KB
Newer Older
1
2
3
4
5
import random
import unittest

import torch

Ke Bao's avatar
Ke Bao committed
6
7
8
9
10
from sglang.srt.layers.attention.triton_ops.decode_attention import (
    decode_attention_fwd,
    decode_attention_fwd_grouped,
    decode_attention_fwd_normal,
)
11
from sglang.srt.layers.attention.triton_ops.extend_attention import (
12
13
14
    extend_attention_fwd,
    redundant_attention,
)
15
16
17
from sglang.srt.layers.attention.triton_ops.prefill_attention import (
    context_attention_fwd,
)
18
19


Ke Bao's avatar
Ke Bao committed
20
class TestTritonAttention(unittest.TestCase):
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

    def _set_all_seeds(self, seed):
        """Set all random seeds for reproducibility."""
        random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False

    def setUp(self):
        # Set seeds before each test method
        self._set_all_seeds(42)

    def _test_extend_attention_once(self, B, N_CTX, H_Q, H_KV, D):
        dtype = torch.bfloat16

        b_seq_len_prefix = torch.randint(
            1, N_CTX // 2, (B,), dtype=torch.int32, device="cuda"
        )
        b_seq_len_extend = torch.randint(
            1, N_CTX // 2, (B,), dtype=torch.int32, device="cuda"
        )
        b_seq_len = b_seq_len_prefix + b_seq_len_extend
        max_len_in_batch = torch.max(b_seq_len, 0)[0].item()

        b_req_idx = torch.arange(B, dtype=torch.int32, device="cuda")
        b_start_loc = torch.zeros((B,), dtype=torch.int32, device="cuda")
        b_start_loc[1:] = torch.cumsum(b_seq_len[:-1], 0)
        b_start_loc_extend = torch.zeros((B,), dtype=torch.int32, device="cuda")
        b_start_loc_extend[1:] = torch.cumsum(b_seq_len_extend[:-1], 0)
52
53
54
55
56
57
58

        kv_indptr = torch.zeros((B + 1,), dtype=torch.int32, device="cuda")
        kv_indptr[1 : B + 1] = torch.cumsum(b_seq_len_prefix[:B], dim=0)
        kv_indices = torch.zeros(
            (b_seq_len_prefix.sum().item(),), dtype=torch.int32, device="cuda"
        )

59
        for i in range(B):
60
61
            kv_indices[kv_indptr[i] : kv_indptr[i + 1]] = torch.arange(
                b_start_loc[i], b_start_loc[i] + b_seq_len_prefix[i]
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
            )

        total_token_num = torch.sum(b_seq_len).item()
        extend_token_num = torch.sum(b_seq_len_extend).item()
        k_buffer = torch.empty(
            (total_token_num, H_KV, D), dtype=dtype, device="cuda"
        ).normal_(mean=0.1, std=0.2)
        v_buffer = torch.empty(
            (total_token_num, H_KV, D), dtype=dtype, device="cuda"
        ).normal_(mean=0.1, std=0.2)

        k_extend = torch.empty((extend_token_num, H_KV, D), dtype=dtype, device="cuda")
        v_extend = torch.empty((extend_token_num, H_KV, D), dtype=dtype, device="cuda")
        q_extend = torch.empty((extend_token_num, H_Q, D), dtype=dtype, device="cuda")
        for i in range(B):
            extend_start_in_buffer = b_start_loc[i] + b_seq_len_prefix[i]
            extend_end_in_buffer = b_start_loc[i] + b_seq_len[i]
            extend_start = b_start_loc_extend[i]
            extend_end = b_start_loc_extend[i] + b_seq_len_extend[i]
            k_extend[extend_start:extend_end] = k_buffer[
                extend_start_in_buffer:extend_end_in_buffer
            ]
            v_extend[extend_start:extend_end] = v_buffer[
                extend_start_in_buffer:extend_end_in_buffer
            ]
            q_extend[extend_start:extend_end] = torch.empty(
                (b_seq_len_extend[i], H_Q, D), dtype=dtype, device="cuda"
            ).normal_(mean=0.1, std=0.2)

        o_extend = torch.empty((extend_token_num, H_Q, D), dtype=dtype, device="cuda")
92
93
94
        o_extend_mask = torch.empty(
            (extend_token_num, H_Q, D), dtype=dtype, device="cuda"
        )
95
96
97
98
99
100
        o_redundant = torch.empty(
            (extend_token_num, H_Q, D), dtype=dtype, device="cuda"
        )

        b_seq_len_extend = b_seq_len - b_seq_len_prefix
        max_len_extend = torch.max(b_seq_len_extend, 0)[0].item()
101
102
103
        qo_indptr = torch.zeros((B + 1,), dtype=torch.int32, device="cuda")
        qo_indptr[1 : B + 1] = torch.cumsum(b_seq_len_extend[:B], dim=0)

104
105
106
        custom_mask = None
        mask_offsets = None

107
108
109
110
111
112
113
        extend_attention_fwd(
            q_extend,
            k_extend,
            v_extend,
            o_extend,
            k_buffer,
            v_buffer,
114
115
116
            qo_indptr,
            kv_indptr,
            kv_indices,
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
            custom_mask,
            mask_offsets,
            max_len_extend,
        )

        b_seq_mask_len = b_seq_len_extend * b_seq_len
        custom_mask = torch.ones(
            (b_seq_mask_len.sum().item(),), dtype=torch.bool, device="cuda"
        )
        mask_offsets = torch.zeros((B + 1,), dtype=torch.int64, device="cuda")
        mask_offsets[1 : B + 1] = torch.cumsum(b_seq_mask_len[:B], dim=0)
        for i in range(B):
            causal_mask = (
                torch.tril(
                    torch.ones(b_seq_len_extend[i], b_seq_len_extend[i]), diagonal=0
                )
                == 1
            )
            prefix_mask = torch.ones(
                b_seq_len_extend[i], b_seq_len_prefix[i], dtype=torch.bool
            )
            mask_flatten = torch.cat([prefix_mask, causal_mask], dim=1).flatten()
            custom_mask[mask_offsets[i] : mask_offsets[i + 1]] = mask_flatten

        extend_attention_fwd(
            q_extend,
            k_extend,
            v_extend,
            o_extend_mask,
            k_buffer,
            v_buffer,
            qo_indptr,
            kv_indptr,
            kv_indices,
            custom_mask,
            mask_offsets,
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
            max_len_extend,
        )

        redundant_attention(
            q_extend,
            o_redundant,
            k_buffer,
            v_buffer,
            b_req_idx,
            b_start_loc,
            b_seq_len,
            b_seq_len_prefix,
            max_len_in_batch,
        )

        self.assertTrue(torch.allclose(o_extend, o_redundant, rtol=1e-2))
169
        self.assertTrue(torch.allclose(o_extend_mask, o_redundant, rtol=1e-2))
170
171
172
173
174
175
176
177
178
179

    def test_extend_attention(self):

        # Define the varying parameter values
        attention_values = [128, 96, 80, 13]

        # Loop through the values and call the method
        for value in attention_values:
            self._test_extend_attention_once(19, 12331, 12, 4, value)

Ke Bao's avatar
Ke Bao committed
180
    def _test_context_attention_once(self, head_dim, is_causal):
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
        # Set up a simple test case
        num_heads = 4
        seq_lens = [8, 12]
        max_seq_len = max(seq_lens)

        # Create random input tensors
        q = torch.randn(sum(seq_lens), num_heads, head_dim, device="cuda")
        k = torch.randn(sum(seq_lens), num_heads, head_dim, device="cuda")
        v = torch.randn(sum(seq_lens), num_heads, head_dim, device="cuda")
        o = torch.zeros(sum(seq_lens), num_heads, head_dim, device="cuda")

        # Create b_start_loc and b_seq_len tensors
        b_start_loc = torch.tensor([0, seq_lens[0]], device="cuda")
        b_seq_len = torch.tensor(seq_lens, device="cuda")

Ke Bao's avatar
Ke Bao committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        context_attention_fwd(
            q, k, v, o, b_start_loc, b_seq_len, max_seq_len, is_causal=is_causal
        )

        cu_seq_lens = [0] * (len(seq_lens) + 1)
        for i, seq_len in enumerate(seq_lens):
            cu_seq_lens[i + 1] = cu_seq_lens[i] + seq_len

        for i in range(len(seq_lens)):
            start, end = cu_seq_lens[i], cu_seq_lens[i + 1]
            o_torch = torch.nn.functional.scaled_dot_product_attention(
                q[start:end].permute(1, 0, 2),
                k[start:end].permute(1, 0, 2),
                v[start:end].permute(1, 0, 2),
                is_causal=is_causal,
            ).permute(1, 0, 2)

            cos_sim = torch.nn.functional.cosine_similarity(
                o[start:end].flatten(), o_torch.flatten(), dim=0
            )
            self.assertTrue(cos_sim.item() > 1 - (1e-5))
            self.assertTrue(torch.allclose(o[start:end], o_torch, atol=1e-2))
218
219
220
221
222

    def test_context_attention(self):
        head_dim = [128, 96, 80, 13]

        for dim in head_dim:
Ke Bao's avatar
Ke Bao committed
223
224
            for is_causal in [True, False]:
                self._test_context_attention_once(dim, is_causal)
225
226
227
228
229
230

    def _test_decode_attention_once(self, B, H_Q, H_KV, D):
        dtype = torch.bfloat16
        seq_len = 10  # This represents the number of tokens already in the sequence
        total_tokens = B * seq_len
        sm_scale = 1.0 / (D**0.5)
231
        num_kv_splits = 8
232
233
234
235
236
237
238
239
240
241
242
243
244

        # q represents the new token being generated, one per batch
        q = torch.randn(B, H_Q, D, dtype=dtype, device="cuda")

        # k_buffer and v_buffer represent all previous tokens
        k_buffer = torch.randn(total_tokens, H_KV, D, dtype=dtype, device="cuda")
        v_buffer = torch.randn(total_tokens, H_KV, D, dtype=dtype, device="cuda")

        # o will have the same shape as q
        o = torch.zeros(B, H_Q, D, dtype=dtype, device="cuda")

        b_seq_len = torch.full((B,), seq_len, device="cuda")

245
246
247
248
        kv_indptr = torch.zeros((B + 1,), dtype=torch.int32, device="cuda")
        kv_indptr[1 : B + 1] = torch.cumsum(b_seq_len[:B], dim=0)
        kv_indices = torch.arange(total_tokens, device="cuda")

Ke Bao's avatar
Ke Bao committed
249
        attn_logits = torch.empty(
250
251
            (B, H_Q, num_kv_splits, D + 1),
            dtype=torch.float32,
Ke Bao's avatar
Ke Bao committed
252
253
254
            device="cuda",
        )

255
256
257
258
259
        decode_attention_fwd(
            q,
            k_buffer,
            v_buffer,
            o,
260
261
            kv_indptr,
            kv_indices,
Ke Bao's avatar
Ke Bao committed
262
            attn_logits,
263
            num_kv_splits,
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
            sm_scale,
        )

    def test_decode_attention(self):
        # Here we just to ensure there is no error
        # TODO: correctnesss test

        # Test configurations
        configs = [
            (2, 4, 4, 64),  # MHA
            (2, 4, 2, 64),  # GQA
            (2, 4, 4, 80),  # Non-standard head dim
            (2, 4, 4, 13),  # Prime number head dim
        ]

        for B, H_Q, H_KV, D in configs:
            self._test_decode_attention_once(B, H_Q, H_KV, D)

282
    def _test_grouped_decode_attention_once(self, B, S, H_Q, H_KV, D, D_V):
Ke Bao's avatar
Ke Bao committed
283
        dtype = torch.bfloat16
284
        seq_len = S  # This represents the number of tokens already in the sequence
Ke Bao's avatar
Ke Bao committed
285
286
        total_tokens = B * seq_len
        sm_scale = 1.0 / (D**0.5)
287
        num_kv_splits = 8
Ke Bao's avatar
Ke Bao committed
288
289
290
291
292
293
294
295
296

        # q represents the new token being generated, one per batch
        q = torch.randn(B, H_Q, D, dtype=dtype, device="cuda")

        # k_buffer and v_buffer represent all previous tokens
        k_buffer = torch.randn(total_tokens, H_KV, D, dtype=dtype, device="cuda")
        v_buffer = torch.randn(total_tokens, H_KV, D_V, dtype=dtype, device="cuda")

        # o will have the same shape as q
297
298
        o = torch.zeros(B, H_Q, D_V, dtype=dtype, device="cuda")
        o_grouped = torch.zeros(B, H_Q, D_V, dtype=dtype, device="cuda")
Ke Bao's avatar
Ke Bao committed
299
300
301

        b_seq_len = torch.full((B,), seq_len, device="cuda")

302
303
304
305
        kv_indptr = torch.zeros((B + 1,), dtype=torch.int32, device="cuda")
        kv_indptr[1 : B + 1] = torch.cumsum(b_seq_len[:B], dim=0)
        kv_indices = torch.arange(total_tokens, device="cuda")

Ke Bao's avatar
Ke Bao committed
306
        attn_logits = torch.empty(
307
308
            (B, H_Q, num_kv_splits, D_V + 1),
            dtype=torch.float32,
Ke Bao's avatar
Ke Bao committed
309
310
311
312
313
314
315
316
            device="cuda",
        )

        decode_attention_fwd_normal(
            q,
            k_buffer,
            v_buffer,
            o,
317
318
            kv_indptr,
            kv_indices,
Ke Bao's avatar
Ke Bao committed
319
            attn_logits,
320
            num_kv_splits,
Ke Bao's avatar
Ke Bao committed
321
322
323
            sm_scale,
        )

324
325
326
327
328
329
        attn_logits1 = torch.empty(
            (B, H_Q, num_kv_splits, D_V + 1),
            dtype=torch.float32,
            device="cuda",
        )

Ke Bao's avatar
Ke Bao committed
330
331
332
333
334
        decode_attention_fwd_grouped(
            q,
            k_buffer,
            v_buffer,
            o_grouped,
335
336
            kv_indptr,
            kv_indices,
337
338
            attn_logits1,
            num_kv_splits,
Ke Bao's avatar
Ke Bao committed
339
340
341
342
343
344
            sm_scale,
        )

        cos_sim = torch.nn.functional.cosine_similarity(
            o.flatten(), o_grouped.flatten(), dim=0
        )
345
        print(cos_sim.item())
Ke Bao's avatar
Ke Bao committed
346
347
348
349
        self.assertTrue(cos_sim.item() > 0.99)
        self.assertTrue(torch.allclose(o, o_grouped, atol=3e-2))

    def test_grouped_decode_attention(self):
350
        seq_lens = [5, 100, 128, 500]
Ke Bao's avatar
Ke Bao committed
351
        configs = [
352
            (2, 16, 16, 64, 64),
Ke Bao's avatar
Ke Bao committed
353
354
355
356
357
358
359
            (2, 16, 1, 64, 64),
            (2, 64, 1, 13, 13),
            (2, 128, 1, 80, 80),
            (2, 128, 2, 512, 512),
            (2, 128, 1, 576, 512),
        ]

360
361
362
        for S in seq_lens:
            for B, H_Q, H_KV, D, D_V in configs:
                self._test_grouped_decode_attention_once(B, S, H_Q, H_KV, D, D_V)
Ke Bao's avatar
Ke Bao committed
363

364
365
366

if __name__ == "__main__":
    unittest.main()