test_utils.py 16.7 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
"""Common utilities for testing and benchmarking"""
2

3
import argparse
Liangsheng Yin's avatar
Liangsheng Yin committed
4
import asyncio
5
import os
6
import subprocess
7
import threading
8
import time
Liangsheng Yin's avatar
Liangsheng Yin committed
9
from functools import partial
10
from types import SimpleNamespace
11
from typing import Callable, List, Optional
Liangsheng Yin's avatar
Liangsheng Yin committed
12

Lianmin Zheng's avatar
Lianmin Zheng committed
13
14
import numpy as np
import requests
15
16
import torch
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
17

18
from sglang.bench_serving import run_benchmark
Lianmin Zheng's avatar
Lianmin Zheng committed
19
from sglang.global_config import global_config
Ying Sheng's avatar
Ying Sheng committed
20
21
from sglang.lang.backend.openai import OpenAI
from sglang.lang.backend.runtime_endpoint import RuntimeEndpoint
Mingyi's avatar
Mingyi committed
22
from sglang.srt.utils import kill_child_process
23
from sglang.utils import get_exception_traceback
Liangsheng Yin's avatar
Liangsheng Yin committed
24

Ying Sheng's avatar
Ying Sheng committed
25
DEFAULT_MODEL_NAME_FOR_TEST = "meta-llama/Meta-Llama-3.1-8B-Instruct"
Yineng Zhang's avatar
Yineng Zhang committed
26
DEFAULT_MOE_MODEL_NAME_FOR_TEST = "mistralai/Mixtral-8x7B-Instruct-v0.1"
27
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH = 600
28
29
30
31
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1 = "meta-llama/Meta-Llama-3.1-8B-Instruct,mistralai/Mistral-7B-Instruct-v0.3,deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct,google/gemma-2-27b-it"
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2 = "meta-llama/Meta-Llama-3.1-70B-Instruct,mistralai/Mixtral-8x7B-Instruct-v0.1,Qwen/Qwen2-57B-A14B-Instruct"
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8,neuralmagic/Mistral-7B-Instruct-v0.3-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8,neuralmagic/gemma-2-2b-it-FP8"
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2 = "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8,neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8,neuralmagic/Qwen2-72B-Instruct-FP8,neuralmagic/Qwen2-57B-A14B-Instruct-FP8"
32

33
34
35
36
37
38
39

def is_in_ci():
    """Return whether it is in CI runner."""
    return os.getenv("SGLANG_IS_IN_CI", "false") == "true"


if is_in_ci():
Lianmin Zheng's avatar
Lianmin Zheng committed
40
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = 5157
41
    DEFAULT_URL_FOR_TEST = "http://127.0.0.1:6157"
42
else:
43
44
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = 1157
    DEFAULT_URL_FOR_TEST = "http://127.0.0.1:2157"
45

Lianmin Zheng's avatar
Lianmin Zheng committed
46

Liangsheng Yin's avatar
Liangsheng Yin committed
47
48
def call_generate_lightllm(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None
Lianmin Zheng's avatar
Lianmin Zheng committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

    data = {
        "inputs": prompt,
        "parameters": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop_sequences": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    pred = res.json()["generated_text"][0]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
64
65
66
def call_generate_vllm(prompt, temperature, max_tokens, stop=None, n=1, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


83
def call_generate_outlines(
Liangsheng Yin's avatar
Liangsheng Yin committed
84
    prompt, temperature, max_tokens, stop=[], regex=None, n=1, url=None
85
):
Liangsheng Yin's avatar
Liangsheng Yin committed
86
87
    assert url is not None

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "regex": regex,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
105
106
107
def call_generate_srt_raw(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    data = {
        "text": prompt,
        "sampling_params": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    obj = res.json()
    pred = obj["text"]
    return pred


123
def call_generate_gserver(prompt, temperature, max_tokens, stop=None, url=None):
Lianmin Zheng's avatar
Lianmin Zheng committed
124
    raise NotImplementedError()
125
126


Liangsheng Yin's avatar
Liangsheng Yin committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
def call_generate_guidance(
    prompt, temperature, max_tokens, stop=None, n=1, regex=None, model=None
):
    assert model is not None
    from guidance import gen

    rets = []
    for _ in range(n):
        out = (
            model
            + prompt
            + gen(
                name="answer",
                max_tokens=max_tokens,
                temperature=temperature,
                stop=stop,
                regex=regex,
            )
        )
        rets.append(out["answer"])
    return rets if n > 1 else rets[0]


async def call_generate_lmql(
    prompt, temperature, max_tokens, stop=None, n=1, max_len=4096, model=None, **kwargs
):
    assert model is not None
    import lmql

    if stop != None:

        @lmql.query(model=model)
        async def program(question, max_tokens, stop):
            '''lmql
            """{question}[ANSWER]""" where len(TOKENS(ANSWER)) < max_tokens and STOPS_AT(ANSWER, stop)
            return ANSWER
            '''

    else:

        @lmql.query(model=model)
        async def program(question, max_tokens):
            '''lmql
            """{question}[ANSWER]""" where len(TOKENS(ANSWER)) < max_tokens
            return ANSWER
            '''

    tasks = [
        program(
            question=prompt,
            temperature=temperature,
            max_tokens=max_tokens,
            stop=stop,
            max_len=max_len,
            **kwargs,
        )
        for _ in range(n)
    ]
    rets = await asyncio.gather(*tasks)
    return rets if n > 1 else rets[0]


def call_select_lightllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    scores = []
    for i in range(len(choices)):
        data = {
            "inputs": context + choices[i],
            "parameters": {
                "max_new_tokens": 1,
            },
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
        scores.append(0)
    return np.argmax(scores)


Liangsheng Yin's avatar
Liangsheng Yin committed
206
207
208
def call_select_vllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
209
210
211
212
213
214
215
216
217
    scores = []
    for i in range(len(choices)):
        data = {
            "prompt": context + choices[i],
            "max_tokens": 1,
            "prompt_logprobs": 1,
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
Lianmin Zheng's avatar
Lianmin Zheng committed
218
        scores.append(res.json().get("prompt_score", 0))
Lianmin Zheng's avatar
Lianmin Zheng committed
219
220
221
222
223
224
225
226
227
228
229
    return np.argmax(scores)

    """
    Modify vllm/entrypoints/api_server.py

    if final_output.prompt_logprobs is not None:
        score = np.mean([prob[t_id] for t_id, prob in zip(final_output.prompt_token_ids[1:], final_output.prompt_logprobs[1:])])
        ret["prompt_score"] = score
    """


Liangsheng Yin's avatar
Liangsheng Yin committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
def call_select_guidance(context, choices, model=None):
    assert model is not None
    from guidance import select

    out = model + context + select(choices, name="answer")
    return choices.index(out["answer"])


async def call_select_lmql(context, choices, temperature=0, max_len=4096, model=None):
    assert model is not None
    import lmql

    @lmql.query(model=model)
    async def program(ctx, choices):
        '''lmql
        """{ctx}[ANSWER]""" where ANSWER in set(choices)
        return ANSWER
        '''

    answer = await program(
        ctx=context, choices=choices, temperature=temperature, max_len=max_len
    )
    return choices.index(answer)


255
def add_common_other_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
256
    parser.add_argument("--parallel", type=int, default=64)
Lianmin Zheng's avatar
Lianmin Zheng committed
257
258
259
260
261
262
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=None)
    parser.add_argument(
        "--backend",
        type=str,
        required=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
263
264
265
266
        choices=[
            "vllm",
            "outlines",
            "lightllm",
267
            "gserver",
Liangsheng Yin's avatar
Liangsheng Yin committed
268
269
270
271
272
            "guidance",
            "lmql",
            "srt-raw",
            "llama.cpp",
        ],
Lianmin Zheng's avatar
Lianmin Zheng committed
273
    )
Liangsheng Yin's avatar
Liangsheng Yin committed
274
    parser.add_argument("--n-ctx", type=int, default=4096)
Lianmin Zheng's avatar
Lianmin Zheng committed
275
276
277
278
279
280
281
282
283
    parser.add_argument(
        "--model-path", type=str, default="meta-llama/Llama-2-7b-chat-hf"
    )
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()

    if args.port is None:
        default_port = {
            "vllm": 21000,
Liangsheng Yin's avatar
Liangsheng Yin committed
284
            "outlines": 21000,
Lianmin Zheng's avatar
Lianmin Zheng committed
285
286
287
            "lightllm": 22000,
            "lmql": 23000,
            "srt-raw": 30000,
288
            "gserver": 9988,
Lianmin Zheng's avatar
Lianmin Zheng committed
289
290
291
292
293
        }
        args.port = default_port.get(args.backend, None)
    return args


294
def add_common_sglang_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
295
296
297
298
299
300
301
302
303
    parser.add_argument("--parallel", type=int, default=64)
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=30000)
    parser.add_argument("--backend", type=str, default="srt")
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()
    return args


304
def select_sglang_backend(args: argparse.Namespace):
Lianmin Zheng's avatar
Lianmin Zheng committed
305
306
307
308
    if args.backend.startswith("srt"):
        if args.backend == "srt-no-parallel":
            global_config.enable_parallel_encoding = False
        backend = RuntimeEndpoint(f"{args.host}:{args.port}")
309
    elif args.backend.startswith("gpt-"):
Lianmin Zheng's avatar
Lianmin Zheng committed
310
311
312
313
        backend = OpenAI(args.backend)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")
    return backend
Liangsheng Yin's avatar
Liangsheng Yin committed
314
315


316
def _get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
317
318
319
320
321
322
    if args.backend == "lightllm":
        return partial(call_generate_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_generate_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "srt-raw":
        return partial(call_generate_srt_raw, url=f"{args.host}:{args.port}/generate")
323
324
    elif args.backend == "gserver":
        return partial(call_generate_gserver, url=f"{args.host}:{args.port}")
Liangsheng Yin's avatar
Liangsheng Yin committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
    elif args.backend == "outlines":
        return partial(call_generate_outlines, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_generate = partial(call_generate_guidance, model=model)
        call_generate("Hello,", 1.0, 8, ".")
        return call_generate
    elif args.backend == "lmql":
        import lmql

        model = lmql.model(args.model_path, endpoint=f"{args.host}:{args.port}")
        return partial(call_generate_lmql, model=model)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


343
def _get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
    if args.backend == "lightllm":
        return partial(call_select_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_select_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_select = partial(call_select_guidance, model=model)

        call_select("Hello,", ["world", "earth"])
        return call_select

    elif args.backend == "lmql":
        import lmql

        model = lmql.model(args.model_path, endpoint=f"{args.host}:{args.port}")
        return partial(call_select_lmql, model=model)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


366
def get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
367
368
369
370
371
372
373
374
375
376
377
378
    call_generate = _get_call_generate(args)

    def func(*args, **kwargs):
        try:
            return call_generate(*args, **kwargs)
        except Exception:
            print("Exception in call_generate:\n" + get_exception_traceback())
            raise

    return func


379
def get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
380
381
382
383
384
385
386
387
388
389
    call_select = _get_call_select(args)

    def func(*args, **kwargs):
        try:
            return call_select(*args, **kwargs)
        except Exception:
            print("Exception in call_select:\n" + get_exception_traceback())
            raise

    return func
390
391


392
def popen_launch_server(
393
394
395
396
397
    model: str,
    base_url: str,
    timeout: float,
    api_key: Optional[str] = None,
    other_args: tuple = (),
398
399
    env: Optional[dict] = None,
    return_stdout_stderr: bool = False,
400
401
402
403
):
    _, host, port = base_url.split(":")
    host = host[2:]

404
405
406
407
408
409
410
    command = [
        "python3",
        "-m",
        "sglang.launch_server",
        "--model-path",
        model,
        "--host",
411
        host,
412
        "--port",
413
414
        port,
        *other_args,
415
    ]
416
417
418
    if api_key:
        command += ["--api-key", api_key]

419
420
421
422
423
424
425
426
427
428
    if return_stdout_stderr:
        process = subprocess.Popen(
            command,
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            env=env,
            text=True,
        )
    else:
        process = subprocess.Popen(command, stdout=None, stderr=None, env=env)
429
430
431
432

    start_time = time.time()
    while time.time() - start_time < timeout:
        try:
433
434
435
436
437
            headers = {
                "Content-Type": "application/json; charset=utf-8",
                "Authorization": f"Bearer {api_key}",
            }
            response = requests.get(f"{base_url}/v1/models", headers=headers)
438
439
440
441
442
443
            if response.status_code == 200:
                return process
        except requests.RequestException:
            pass
        time.sleep(10)
    raise TimeoutError("Server failed to start within the timeout period.")
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469


def run_with_timeout(
    func: Callable,
    args: tuple = (),
    kwargs: Optional[dict] = None,
    timeout: float = None,
):
    """Run a function with timeout."""
    ret_value = []

    def _target_func():
        ret_value.append(func(*args, **(kwargs or {})))

    t = threading.Thread(target=_target_func)
    t.start()
    t.join(timeout=timeout)
    if t.is_alive():
        raise TimeoutError()

    if not ret_value:
        raise RuntimeError()

    return ret_value[0]


470
def run_unittest_files(files: List[str], timeout_per_file: float):
471
472
473
474
    tic = time.time()
    success = True

    for filename in files:
Mingyi's avatar
Mingyi committed
475
        global process
476

Mingyi's avatar
Mingyi committed
477
478
        def run_one_file(filename):
            filename = os.path.join(os.getcwd(), filename)
479
            print(f"\n\nRun:\npython3 {filename}\n\n", flush=True)
Mingyi's avatar
Mingyi committed
480
481
482
483
484
            process = subprocess.Popen(
                ["python3", filename], stdout=None, stderr=None, env=os.environ
            )
            process.wait()
            return process.returncode
485
486

        try:
Mingyi's avatar
Mingyi committed
487
488
489
490
            ret_code = run_with_timeout(
                run_one_file, args=(filename,), timeout=timeout_per_file
            )
            assert ret_code == 0
491
        except TimeoutError:
Mingyi's avatar
Mingyi committed
492
            kill_child_process(process.pid)
493
494
            time.sleep(5)
            print(
495
496
                f"\nTimeout after {timeout_per_file} seconds when running {filename}\n",
                flush=True,
497
            )
Mingyi's avatar
Mingyi committed
498
499
            success = False
            break
500
501

    if success:
502
        print(f"Success. Time elapsed: {time.time() - tic:.2f}s", flush=True)
503
    else:
504
        print(f"Fail. Time elapsed: {time.time() - tic:.2f}s", flush=True)
505
506

    return 0 if success else -1
507
508
509
510


def get_similarities(vec1, vec2):
    return F.cosine_similarity(torch.tensor(vec1), torch.tensor(vec2), dim=0)
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554


def run_bench_serving(model, num_prompts, request_rate, other_server_args):
    # Launch the server
    base_url = DEFAULT_URL_FOR_TEST
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
    )

    # Run benchmark
    args = SimpleNamespace(
        backend="sglang",
        base_url=base_url,
        host=None,
        port=None,
        dataset_name="random",
        dataset_path="",
        model=None,
        tokenizer=None,
        num_prompts=num_prompts,
        sharegpt_output_len=None,
        random_input_len=4096,
        random_output_len=2048,
        random_range_ratio=0.0,
        request_rate=request_rate,
        multi=None,
        seed=0,
        output_file=None,
        disable_tqdm=False,
        disable_stream=False,
        disable_ignore_eos=False,
        extra_request_body=None,
    )

    try:
        res = run_benchmark(args)
    finally:
        kill_child_process(process.pid)

    assert res["completed"] == num_prompts
    return res
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586


def run_bench_latency(model, other_args):
    command = [
        "python3",
        "-m",
        "sglang.bench_latency",
        "--model-path",
        model,
        "--batch-size",
        "1",
        "--input",
        "128",
        "--output",
        "8",
        *other_args,
    ]
    process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    try:
        stdout, stderr = process.communicate()
        output = stdout.decode()
        error = stderr.decode()
        print(f"Output: {output}", flush=True)
        print(f"Error: {error}", flush=True)

        lastline = output.split("\n")[-3]
        output_throughput = float(lastline.split(" ")[-2])
    finally:
        kill_child_process(process.pid)

    return output_throughput