schedule_batch.py 24.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

16
"""Meta data for requests and batches"""
Lianmin Zheng's avatar
Lianmin Zheng committed
17

Ying Sheng's avatar
Ying Sheng committed
18
import logging
19
from dataclasses import dataclass
20
from typing import List, Optional, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
21
22

import torch
23

Liangsheng Yin's avatar
Liangsheng Yin committed
24
from sglang.global_config import global_config
25
26
from sglang.srt.constrained import RegexGuide
from sglang.srt.constrained.jump_forward import JumpForwardMap
27
from sglang.srt.mem_cache.base_prefix_cache import BasePrefixCache
28
from sglang.srt.mem_cache.chunk_cache import ChunkCache
29
from sglang.srt.mem_cache.memory_pool import BaseTokenToKVPool, ReqToTokenPool
30
from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo
Liangsheng Yin's avatar
Liangsheng Yin committed
31
32

INIT_INCREMENTAL_DETOKENIZATION_OFFSET = 5
Lianmin Zheng's avatar
Lianmin Zheng committed
33

34
35
36
37
38
# Put some global args for easy access
global_server_args_dict = {
    "disable_flashinfer": False,
    "disable_flashinfer_sampling": False,
    "attention_reduce_in_fp32": False,
39
    "enable_mla": False,
40
41
}

Lianmin Zheng's avatar
Lianmin Zheng committed
42

Ying Sheng's avatar
Ying Sheng committed
43
44
45
logger = logging.getLogger(__name__)


46
47
48
class BaseFinishReason:
    def __init__(self, is_error: bool = False):
        self.is_error = is_error
Lianmin Zheng's avatar
Lianmin Zheng committed
49

50
51
52
53
54
    def __str__(self):
        raise NotImplementedError("Subclasses must implement this method")


class FINISH_MATCHED_TOKEN(BaseFinishReason):
Mingyi's avatar
Mingyi committed
55
    def __init__(self, matched: Union[int, List[int]]):
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        super().__init__()
        self.matched = matched

    def __str__(self) -> str:
        return f"FINISH_MATCHED_TOKEN: {self.matched}"


class FINISH_LENGTH(BaseFinishReason):
    def __init__(self, length: int):
        super().__init__()
        self.length = length

    def __str__(self) -> str:
        return f"FINISH_LENGTH: {self.length}"


class FINISH_MATCHED_STR(BaseFinishReason):
    def __init__(self, matched: str):
        super().__init__()
        self.matched = matched

    def __str__(self) -> str:
        return f"FINISH_MATCHED_STR: {self.matched}"


class FINISH_ABORT(BaseFinishReason):
    def __init__(self):
        super().__init__(is_error=True)

    def __str__(self) -> str:
        return "FINISH_ABORT"
87

Lianmin Zheng's avatar
Lianmin Zheng committed
88
89

class Req:
90
91
    """Store all inforamtion of a request."""

Liangsheng Yin's avatar
Liangsheng Yin committed
92
    def __init__(self, rid, origin_input_text, origin_input_ids):
93
        # Input and output info
Lianmin Zheng's avatar
Lianmin Zheng committed
94
        self.rid = rid
Liangsheng Yin's avatar
Liangsheng Yin committed
95
        self.origin_input_text = origin_input_text
Liangsheng Yin's avatar
Liangsheng Yin committed
96
        self.origin_input_ids_unpadded = origin_input_ids  # Before image padding
Liangsheng Yin's avatar
Liangsheng Yin committed
97
        self.origin_input_ids = origin_input_ids
Liangsheng Yin's avatar
Liangsheng Yin committed
98
        self.output_ids = []  # Each decode stage's output ids
99
        self.fill_ids = None  # fill_ids = origin_input_ids + output_ids
Liangsheng Yin's avatar
Liangsheng Yin committed
100

101
102
103
        # Memory info
        self.req_pool_idx = None

104
        # For incremental decoding
105
106
107
108
109
110
111
112
        # ----- | --------- read_ids -------|
        # ----- |   surr_ids  |
        # xxxxx | xxxxxxxxxxx | xxxxxxxxxxx |
        # ----- ^ ----------- ^ ----------- ^
        # ----- 1 ----------- 2 ----------- 3
        # 1: surr_offset
        # 2: read_offset
        # 3: last token
113
        self.vid = 0  # version id to sync decode status with in detokenizer_manager
Liangsheng Yin's avatar
Liangsheng Yin committed
114
115
116
        self.decoded_text = ""
        self.surr_offset = None  # Surrounding offset to defeat the cleanup algorithm
        self.read_offset = None
117

118
119
120
        # The number of decoded tokens for token usage report. Note that
        # this does not include the jump forward tokens.
        self.completion_tokens_wo_jump_forward = 0
121

122
        # For vision input
Lianmin Zheng's avatar
Lianmin Zheng committed
123
        self.pixel_values = None
shiyi.c_98's avatar
shiyi.c_98 committed
124
        self.image_size = None
125
        self.image_offset = None
126
        self.pad_value = None
127

128
129
130
131
132
        # Prefix info
        self.extend_input_len = 0
        self.prefix_indices = []
        self.last_node = None

133
        # Sampling parameters
Lianmin Zheng's avatar
Lianmin Zheng committed
134
135
136
        self.sampling_params = None
        self.stream = False

137
        # Check finish
138
        self.tokenizer = None
139
        self.finished_reason = None
Lianmin Zheng's avatar
Lianmin Zheng committed
140

141
142
        # Logprobs
        self.return_logprob = False
143
        self.embedding = None
144
145
146
        self.logprob_start_len = 0
        self.top_logprobs_num = 0
        self.normalized_prompt_logprob = None
147
148
149
150
        self.input_token_logprobs = None
        self.input_top_logprobs = None
        self.output_token_logprobs = []
        self.output_top_logprobs = []
Liangsheng Yin's avatar
Liangsheng Yin committed
151
152
153
        # The tokens is prefilled but need to be considered as decode tokens
        # and should be updated for the decode logprobs
        self.last_update_decode_tokens = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
154

155
        # Constrained decoding
Liangsheng Yin's avatar
Liangsheng Yin committed
156
157
158
        self.regex_fsm: RegexGuide = None
        self.regex_fsm_state: int = 0
        self.jump_forward_map: JumpForwardMap = None
Liangsheng Yin's avatar
Liangsheng Yin committed
159

160
161
162
163
    # whether request reached finished condition
    def finished(self) -> bool:
        return self.finished_reason is not None

164
    def init_next_round_input(self, tree_cache: Optional[BasePrefixCache] = None):
165
        self.fill_ids = self.origin_input_ids + self.output_ids
166
167
168
169
        if tree_cache is not None:
            self.prefix_indices, self.last_node = tree_cache.match_prefix(
                rid=self.rid, key=self.adjust_max_prefix_ids()
            )
170
        self.extend_input_len = len(self.fill_ids) - len(self.prefix_indices)
171

172
    def adjust_max_prefix_ids(self):
173
174
        self.fill_ids = self.origin_input_ids + self.output_ids
        input_len = len(self.fill_ids)
Liangsheng Yin's avatar
Liangsheng Yin committed
175
176
177
178
179
180
        max_prefix_len = input_len

        if self.sampling_params.max_new_tokens > 0:
            # Need at least one token to compute logits
            max_prefix_len = min(max_prefix_len, input_len - 1)

181
        if self.return_logprob:
Liangsheng Yin's avatar
Liangsheng Yin committed
182
183
184
185
186
            max_prefix_len = min(max_prefix_len, self.logprob_start_len)

            if self.normalized_prompt_logprob is None:
                # Need at least two tokens to compute normalized logprob
                max_prefix_len = min(max_prefix_len, input_len - 2)
187

188
        return self.fill_ids[:max_prefix_len]
189

Liangsheng Yin's avatar
Liangsheng Yin committed
190
    # Based on https://github.com/vllm-project/vllm/blob/7a64d24aad69e4d2548aa0bf528d9fe63428ab01/vllm/transformers_utils/detokenizer.py#L194-L313
191
    def init_incremental_detokenize(self):
Liangsheng Yin's avatar
Liangsheng Yin committed
192
193
194
195
196
197
198
199
200
        first_iter = self.surr_offset is None or self.read_offset is None

        if first_iter:
            self.read_offset = len(self.origin_input_ids_unpadded)
            self.surr_offset = max(
                self.read_offset - INIT_INCREMENTAL_DETOKENIZATION_OFFSET, 0
            )

        all_ids = self.origin_input_ids_unpadded + self.output_ids
201
        return all_ids[self.surr_offset :], self.read_offset - self.surr_offset
Liangsheng Yin's avatar
Liangsheng Yin committed
202

203
    def get_next_inc_detokenization(self):
204
205
        if self.tokenizer is None:
            return False, ""
206
207
        read_ids, read_offset = self.init_incremental_detokenize()
        surr_ids = read_ids[:read_offset]
Liangsheng Yin's avatar
Liangsheng Yin committed
208
209
210
211
212

        surr_text = self.tokenizer.decode(
            surr_ids,
            skip_special_tokens=self.sampling_params.skip_special_tokens,
            spaces_between_special_tokens=self.sampling_params.spaces_between_special_tokens,
Liangsheng Yin's avatar
Liangsheng Yin committed
213
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
214
215
216
217
218
219
220
        new_text = self.tokenizer.decode(
            read_ids,
            skip_special_tokens=self.sampling_params.skip_special_tokens,
            spaces_between_special_tokens=self.sampling_params.spaces_between_special_tokens,
        )

        if len(new_text) > len(surr_text) and not new_text.endswith("�"):
221
            return True, new_text[len(surr_text) :]
Liangsheng Yin's avatar
Liangsheng Yin committed
222
223

        return False, ""
Lianmin Zheng's avatar
Lianmin Zheng committed
224

225
    def check_finished(self):
226
        if self.finished():
227
228
            return

Liangsheng Yin's avatar
Liangsheng Yin committed
229
        if len(self.output_ids) >= self.sampling_params.max_new_tokens:
230
231
232
            self.finished_reason = FINISH_LENGTH(
                length=self.sampling_params.max_new_tokens
            )
233
234
            return

235
        last_token_id = self.output_ids[-1]
236
237
238
239
240
241

        matched_eos = last_token_id in self.sampling_params.stop_token_ids

        if self.tokenizer is not None:
            matched_eos |= last_token_id == self.tokenizer.eos_token_id

242
        if matched_eos and not self.sampling_params.ignore_eos:
243
244
245
            self.finished_reason = FINISH_MATCHED_TOKEN(matched=last_token_id)
            return

246
247
248
249
250
251
        if len(self.sampling_params.stop_strs) > 0:
            tail_str = self.tokenizer.decode(
                self.output_ids[-(self.sampling_params.stop_str_max_len + 1) :]
            )

            for stop_str in self.sampling_params.stop_strs:
Liangsheng Yin's avatar
Liangsheng Yin committed
252
                if stop_str in tail_str or stop_str in self.decoded_text:
253
                    self.finished_reason = FINISH_MATCHED_STR(matched=stop_str)
254
255
                    return

Liangsheng Yin's avatar
Liangsheng Yin committed
256
    def jump_forward_and_retokenize(self, jump_forward_str, next_state):
Liangsheng Yin's avatar
Liangsheng Yin committed
257
258
259
260
261
262
        if self.origin_input_text is None:
            # Recovering text can only use unpadded ids
            self.origin_input_text = self.tokenizer.decode(
                self.origin_input_ids_unpadded
            )

Liangsheng Yin's avatar
Liangsheng Yin committed
263
        all_text = self.origin_input_text + self.decoded_text + jump_forward_str
Liangsheng Yin's avatar
Liangsheng Yin committed
264
265
        all_ids = self.tokenizer.encode(all_text)
        prompt_tokens = len(self.origin_input_ids_unpadded)
Liangsheng Yin's avatar
Liangsheng Yin committed
266
267
268

        if all_ids[prompt_tokens - 1] != self.origin_input_ids_unpadded[-1]:
            # TODO(lsyin): fix token fusion
269
            logger.warning(
Liangsheng Yin's avatar
Liangsheng Yin committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
                "Token fusion between input and output, try to avoid this by removing the space at the end of the input."
            )
            return False

        old_output_ids = self.output_ids
        self.output_ids = all_ids[prompt_tokens:]
        self.decoded_text = self.decoded_text + jump_forward_str
        self.surr_offset = prompt_tokens
        self.read_offset = len(all_ids)

        # NOTE: A trick to reduce the surrouding tokens decoding overhead
        for i in range(0, INIT_INCREMENTAL_DETOKENIZATION_OFFSET):
            surr_text_ = self.tokenizer.decode(
                all_ids[self.read_offset - i : self.read_offset]
            )
            if not surr_text_.endswith("�"):
                self.surr_offset = self.read_offset - i
                break
Liangsheng Yin's avatar
Liangsheng Yin committed
288
289
290
291
292
293

        self.regex_fsm_state = next_state

        if self.return_logprob:
            # For fast-forward part's logprobs
            k = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
294
295
            for i, old_id in enumerate(old_output_ids):
                if old_id == self.output_ids[i]:
Liangsheng Yin's avatar
Liangsheng Yin committed
296
297
298
                    k = k + 1
                else:
                    break
299
300
            self.output_token_logprobs = self.output_token_logprobs[:k]
            self.output_top_logprobs = self.output_top_logprobs[:k]
Liangsheng Yin's avatar
Liangsheng Yin committed
301
            self.logprob_start_len = prompt_tokens + k
Liangsheng Yin's avatar
Liangsheng Yin committed
302
            self.last_update_decode_tokens = len(self.output_ids) - k
303

Liangsheng Yin's avatar
Liangsheng Yin committed
304
        return True
Liangsheng Yin's avatar
Liangsheng Yin committed
305

Lianmin Zheng's avatar
Lianmin Zheng committed
306
    def __repr__(self):
Liangsheng Yin's avatar
Liangsheng Yin committed
307
        return f"rid(n={self.rid}, " f"input_ids={self.origin_input_ids}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
308
309


310
@dataclass
311
class ScheduleBatch:
312
313
    """Store all inforamtion of a batch."""

314
    # Request, memory pool, and cache
315
316
    reqs: List[Req]
    req_to_token_pool: ReqToTokenPool
317
    token_to_kv_pool: BaseTokenToKVPool
318
    tree_cache: BasePrefixCache
319

320
    # Batched arguments to model runner
321
322
323
324
325
    input_ids: torch.Tensor = None
    req_pool_indices: torch.Tensor = None
    seq_lens: torch.Tensor = None
    position_ids_offsets: torch.Tensor = None
    out_cache_loc: torch.Tensor = None
326
    extend_num_tokens: int = None
Liangsheng Yin's avatar
Liangsheng Yin committed
327

328
329
330
    # For mixed chunekd prefill
    prefix_lens_cpu: List[int] = None

331
    # For processing logprobs
332
    return_logprob: bool = False
333
    top_logprobs_nums: List[int] = None
334
335
336

    @classmethod
    def init_new(cls, reqs, req_to_token_pool, token_to_kv_pool, tree_cache):
337
        return_logprob = any(req.return_logprob for req in reqs)
338
339
340
341
342
343

        return cls(
            reqs=reqs,
            req_to_token_pool=req_to_token_pool,
            token_to_kv_pool=token_to_kv_pool,
            tree_cache=tree_cache,
344
            return_logprob=return_logprob,
Lianmin Zheng's avatar
Lianmin Zheng committed
345
346
        )

347
348
349
    def batch_size(self):
        return len(self.reqs) if self.reqs is not None else 0

Lianmin Zheng's avatar
Lianmin Zheng committed
350
351
352
    def is_empty(self):
        return len(self.reqs) == 0

353
    def has_stream(self) -> bool:
354
        # Return whether batch has at least 1 streaming request
355
356
        return any(r.stream for r in self.reqs)

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
    def alloc_req_slots(self, num_reqs):
        req_pool_indices = self.req_to_token_pool.alloc(num_reqs)
        if req_pool_indices is None:
            raise RuntimeError(
                "Out of memory. "
                "Please set a smaller number for `--max-running-requests`."
            )
        return req_pool_indices

    def alloc_token_slots(self, num_tokens: int):
        out_cache_loc = self.token_to_kv_pool.alloc(num_tokens)

        if out_cache_loc is None:
            if self.tree_cache is not None:
                self.tree_cache.evict(num_tokens, self.token_to_kv_pool.free)
                out_cache_loc = self.token_to_kv_pool.alloc(num_tokens)

            if out_cache_loc is None:
                logger.error("Prefill out of memory. Try to lower your batch size.")
                if self.tree_cache is not None:
                    self.tree_cache.pretty_print()
                exit(1)

        return out_cache_loc

382
    def prepare_for_extend(self, vocab_size: int):
383
        bs = self.batch_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
384
        reqs = self.reqs
385
        input_ids = [r.fill_ids[len(r.prefix_indices) :] for r in reqs]
386
        extend_num_tokens = sum(len(ids) for ids in input_ids)
Lianmin Zheng's avatar
Lianmin Zheng committed
387
388
        seq_lens = []

389
        # Allocate memory
390
        req_pool_indices_cpu = self.alloc_req_slots(bs)
391
        out_cache_loc = self.alloc_token_slots(extend_num_tokens)
392

393
        pt = 0
394
395
        for i, req in enumerate(reqs):
            req.req_pool_idx = req_pool_indices_cpu[i]
396
            pre_len, seq_len = len(req.prefix_indices), len(req.fill_ids)
397
398
            ext_len = seq_len - pre_len
            seq_lens.append(seq_len)
Lianmin Zheng's avatar
Lianmin Zheng committed
399

400
            if pre_len > 0:
401
                self.req_to_token_pool.req_to_token[req.req_pool_idx][
402
403
                    :pre_len
                ] = req.prefix_indices
Lianmin Zheng's avatar
Lianmin Zheng committed
404

405
406
407
408
            self.req_to_token_pool.req_to_token[req.req_pool_idx][pre_len:seq_len] = (
                out_cache_loc[pt : pt + ext_len]
            )
            pt += ext_len
Lianmin Zheng's avatar
Lianmin Zheng committed
409
410

        # Set fields
411
412
413
414
        with torch.device("cuda"):
            self.input_ids = torch.tensor(sum(input_ids, []), dtype=torch.int32)
            self.req_pool_indices = torch.tensor(req_pool_indices_cpu)
            self.seq_lens = torch.tensor(seq_lens, dtype=torch.int32)
415
416
            self.position_ids_offsets = torch.zeros((bs,), dtype=torch.int64)

Lianmin Zheng's avatar
Lianmin Zheng committed
417
418
        self.extend_num_tokens = extend_num_tokens
        self.out_cache_loc = out_cache_loc
Liangsheng Yin's avatar
Liangsheng Yin committed
419
        self.top_logprobs_nums = [r.top_logprobs_num for r in reqs]
420
        self.prefix_lens_cpu = [len(r.prefix_indices) for r in reqs]
Lianmin Zheng's avatar
Lianmin Zheng committed
421

422
        self.sampling_info = SamplingBatchInfo.from_schedule_batch(self, vocab_size)
Lianmin Zheng's avatar
Lianmin Zheng committed
423

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
    def mix_with_running(self, running_batch: "ScheduleBatch"):
        # NOTE: prefix_indices is what has been cached, but we don't cache each decode step
        prefix_lens_cpu = [len(r.prefix_indices) for r in self.reqs]
        prefix_lens_cpu.extend(
            [
                len(r.origin_input_ids) + len(r.output_ids) - 1
                for r in running_batch.reqs
            ]
        )

        for req in running_batch.reqs:
            req.fill_ids = req.origin_input_ids + req.output_ids
            req.extend_input_len = 1

        input_ids = torch.cat([self.input_ids, running_batch.input_ids])
        out_cache_loc = torch.cat([self.out_cache_loc, running_batch.out_cache_loc])
        extend_num_tokens = self.extend_num_tokens + running_batch.batch_size()
        self.merge(running_batch)
        self.input_ids = input_ids
        self.out_cache_loc = out_cache_loc
        self.extend_num_tokens = extend_num_tokens
        self.prefix_lens_cpu = prefix_lens_cpu

447
    def check_decode_mem(self):
448
        bs = self.batch_size()
Ying Sheng's avatar
Ying Sheng committed
449
        if self.token_to_kv_pool.available_size() >= bs:
450
451
            return True

Mingyi's avatar
Mingyi committed
452
        self.tree_cache.evict(bs, self.token_to_kv_pool.free)
453

454
455
456
457
458
459
460
        if self.token_to_kv_pool.available_size() >= bs:
            return True

        return False

    def retract_decode(self):
        sorted_indices = [i for i in range(len(self.reqs))]
Liangsheng Yin's avatar
Liangsheng Yin committed
461
462

        # TODO(lsyin): improve retraction policy for radix cache
463
        sorted_indices.sort(
Liangsheng Yin's avatar
Liangsheng Yin committed
464
465
466
467
            key=lambda i: (
                len(self.reqs[i].output_ids),
                -len(self.reqs[i].origin_input_ids),
            ),
468
469
470
471
            reverse=True,
        )

        retracted_reqs = []
472
        seq_lens_cpu = self.seq_lens.cpu().numpy()
Liangsheng Yin's avatar
Liangsheng Yin committed
473
474
475
476
477
478
479
480
481
482
483
        while (
            self.token_to_kv_pool.available_size()
            < len(sorted_indices) * global_config.retract_decode_steps
        ):
            if len(sorted_indices) == 1:
                # Corner case: only one request left
                assert (
                    self.token_to_kv_pool.available_size() > 0
                ), "No space left for only one request"
                break

484
485
486
487
            idx = sorted_indices.pop()
            req = self.reqs[idx]
            retracted_reqs.append(req)

488
489
            if isinstance(self.tree_cache, ChunkCache):
                # ChunkCache does not have eviction
490
491
492
                token_indices = self.req_to_token_pool.req_to_token[req.req_pool_idx][
                    : seq_lens_cpu[idx]
                ]
493
                self.token_to_kv_pool.free(token_indices)
494
                self.req_to_token_pool.free(req.req_pool_idx)
495
496
497
498
                del self.tree_cache.entries[req.rid]
            else:
                # TODO: apply more fine-grained retraction
                last_uncached_pos = len(req.prefix_indices)
499
500
501
                token_indices = self.req_to_token_pool.req_to_token[req.req_pool_idx][
                    last_uncached_pos : seq_lens_cpu[idx]
                ]
502
                self.token_to_kv_pool.free(token_indices)
503
                self.req_to_token_pool.free(req.req_pool_idx)
504
505
506
507
508
509
510
511
512
513
514

                # release the last node
                self.tree_cache.dec_lock_ref(req.last_node)

                # NOTE(lsyin): we should use the newly evictable memory instantly.
                residual_size = (
                    len(sorted_indices) * global_config.retract_decode_steps
                    - self.token_to_kv_pool.available_size()
                )
                residual_size = max(0, residual_size)
                self.tree_cache.evict(residual_size, self.token_to_kv_pool.free)
Liangsheng Yin's avatar
Liangsheng Yin committed
515

516
            req.prefix_indices = []
517
            req.last_node = None
518
            req.extend_input_len = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
519
520
521
522

            # For incremental logprobs
            req.last_update_decode_tokens = 0
            req.logprob_start_len = 10**9
Liangsheng Yin's avatar
Liangsheng Yin committed
523

524
525
        self.filter_batch(sorted_indices)

Liangsheng Yin's avatar
Liangsheng Yin committed
526
527
528
529
530
531
532
533
534
535
        # Reqs in batch are filtered
        total_decoded_tokens = sum(len(r.output_ids) for r in self.reqs)
        total_max_new_tokens = sum(r.sampling_params.max_new_tokens for r in self.reqs)

        new_estimate_ratio = (
            total_decoded_tokens + global_config.retract_decode_steps * len(self.reqs)
        ) / total_max_new_tokens
        new_estimate_ratio = min(1.0, new_estimate_ratio)

        return retracted_reqs, new_estimate_ratio
536

Liangsheng Yin's avatar
Liangsheng Yin committed
537
    def check_for_jump_forward(self, model_runner):
Liangsheng Yin's avatar
Liangsheng Yin committed
538
        jump_forward_reqs = []
Liangsheng Yin's avatar
Liangsheng Yin committed
539
540
541
        filter_indices = [i for i in range(len(self.reqs))]

        for i, req in enumerate(self.reqs):
Liangsheng Yin's avatar
Liangsheng Yin committed
542
            if req.jump_forward_map is not None:
Liangsheng Yin's avatar
Liangsheng Yin committed
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
                jump_forward_bytes = req.jump_forward_map.jump_forward_byte(
                    req.regex_fsm_state
                )
                if jump_forward_bytes is not None and len(jump_forward_bytes) > 1:
                    suffix_bytes = []
                    continuation_range = range(0x80, 0xC0)
                    cur_state = req.regex_fsm_state
                    while (
                        len(jump_forward_bytes)
                        and jump_forward_bytes[0][0] in continuation_range
                    ):
                        # continuation bytes
                        byte_edge = jump_forward_bytes.pop(0)
                        suffix_bytes.append(byte_edge[0])
                        cur_state = byte_edge[1]

                    suffix_tokens = [f"<0x{hex(b)[2:].upper()}>" for b in suffix_bytes]
                    suffix_ids = req.tokenizer.convert_tokens_to_ids(suffix_tokens)

                    # Current ids, for cache and revert
                    cur_all_ids = tuple(req.origin_input_ids + req.output_ids)[:-1]
                    cur_output_ids = req.output_ids

                    req.output_ids.extend(suffix_ids)
567
                    decode_res, new_text = req.get_next_inc_detokenization()
Liangsheng Yin's avatar
Liangsheng Yin committed
568
569
                    if not decode_res:
                        req.output_ids = cur_output_ids
Liangsheng Yin's avatar
Liangsheng Yin committed
570
571
                        continue

sglang's avatar
sglang committed
572
573
574
575
                    (
                        jump_forward_str,
                        next_state,
                    ) = req.jump_forward_map.jump_forward_symbol(cur_state)
Liangsheng Yin's avatar
Liangsheng Yin committed
576
577
578
579
580
581
582
583
584

                    # Make the incrementally decoded text part of jump_forward_str
                    # so that the UTF-8 will not corrupt
                    jump_forward_str = new_text + jump_forward_str
                    if not req.jump_forward_and_retokenize(
                        jump_forward_str, next_state
                    ):
                        req.output_ids = cur_output_ids
                        continue
Liangsheng Yin's avatar
Liangsheng Yin committed
585

586
587
588
                    # The decode status has diverged from detokenizer_manager
                    req.vid += 1

Liangsheng Yin's avatar
Liangsheng Yin committed
589
                    # insert the old request into tree_cache
590
                    self.tree_cache.cache_finished_req(req, cur_all_ids)
Liangsheng Yin's avatar
Liangsheng Yin committed
591

Liangsheng Yin's avatar
Liangsheng Yin committed
592
593
594
595
596
597
598
599
600
601
602
603
                    # re-applying image padding
                    if req.pixel_values is not None:
                        (
                            req.origin_input_ids,
                            req.image_offset,
                        ) = model_runner.model.pad_input_ids(
                            req.origin_input_ids_unpadded,
                            req.pad_value,
                            req.pixel_values.shape,
                            req.image_size,
                        )

Liangsheng Yin's avatar
Liangsheng Yin committed
604
                    jump_forward_reqs.append(req)
Liangsheng Yin's avatar
Liangsheng Yin committed
605
606
                    filter_indices.remove(i)

607
        self.filter_batch(filter_indices)
Liangsheng Yin's avatar
Liangsheng Yin committed
608

Liangsheng Yin's avatar
Liangsheng Yin committed
609
        return jump_forward_reqs
Liangsheng Yin's avatar
Liangsheng Yin committed
610

611
    def prepare_for_decode(self, input_ids=None):
Lianmin Zheng's avatar
Lianmin Zheng committed
612
613
        if input_ids is None:
            input_ids = [
614
615
                r.output_ids[-1] if r.output_ids else r.origin_input_ids[-1]
                for r in self.reqs
Lianmin Zheng's avatar
Lianmin Zheng committed
616
            ]
617
618
619
        else:
            self.penalizer_orchestrator.cumulate_input_tokens(input_ids)

Lianmin Zheng's avatar
Lianmin Zheng committed
620
621
622
623
        self.input_ids = torch.tensor(input_ids, dtype=torch.int32, device="cuda")
        self.seq_lens.add_(1)

        # Alloc mem
624
625
        bs = self.batch_size()
        self.out_cache_loc = self.alloc_token_slots(bs)
Lianmin Zheng's avatar
Lianmin Zheng committed
626
627
628
629
630

        self.req_to_token_pool.req_to_token[
            self.req_pool_indices, self.seq_lens - 1
        ] = self.out_cache_loc

631
632
        self.sampling_info.update_regex_vocab_mask(self)

Lianmin Zheng's avatar
Lianmin Zheng committed
633
    def filter_batch(self, unfinished_indices: List[int]):
634
635
636
637
638
639
640
641
642
        if unfinished_indices is None or len(unfinished_indices) == 0:
            # Filter out all requests
            self.reqs = []
            return

        if len(unfinished_indices) == len(self.reqs):
            # No need to filter
            return

Lianmin Zheng's avatar
Lianmin Zheng committed
643
644
645
646
647
648
        self.reqs = [self.reqs[i] for i in unfinished_indices]
        new_indices = torch.tensor(unfinished_indices, dtype=torch.int32, device="cuda")
        self.seq_lens = self.seq_lens[new_indices]
        self.input_ids = None
        self.req_pool_indices = self.req_pool_indices[new_indices]
        self.position_ids_offsets = self.position_ids_offsets[new_indices]
649
        self.out_cache_loc = None
Liangsheng Yin's avatar
Liangsheng Yin committed
650
        self.top_logprobs_nums = [self.top_logprobs_nums[i] for i in unfinished_indices]
651
        self.return_logprob = any(req.return_logprob for req in self.reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
652

653
        self.sampling_info.filter(unfinished_indices, new_indices)
Lianmin Zheng's avatar
Lianmin Zheng committed
654

655
    def merge(self, other: "ScheduleBatch"):
656
657
658
        # Penalizer orchestrator must be merged before Batch.reqs is merged. This is because
        # orchestrator.merge() depends on Batch.reqs during preparation of each penalizers, so it
        # needs to be called with pre-merged Batch.reqs.
659
        self.sampling_info.merge(other.sampling_info)
660

Lianmin Zheng's avatar
Lianmin Zheng committed
661
662
663
664
665
666
667
668
669
        self.reqs.extend(other.reqs)

        self.req_pool_indices = torch.concat(
            [self.req_pool_indices, other.req_pool_indices]
        )
        self.seq_lens = torch.concat([self.seq_lens, other.seq_lens])
        self.position_ids_offsets = torch.concat(
            [self.position_ids_offsets, other.position_ids_offsets]
        )
670
        self.out_cache_loc = None
Liangsheng Yin's avatar
Liangsheng Yin committed
671
        self.top_logprobs_nums.extend(other.top_logprobs_nums)
672
        self.return_logprob = any(req.return_logprob for req in self.reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
673

674
    def sample(self, logits: torch.Tensor):
675
        from sglang.srt.layers.sampler import Sampler
676

677
        sampler = Sampler()
Lianmin Zheng's avatar
Lianmin Zheng committed
678

679
        batch_next_token_ids = sampler(logits, self.sampling_info)
680

681
        return batch_next_token_ids