offline_engine_api.ipynb 7.36 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Offline Engine API\n",
    "\n",
    "SGLang provides a direct inference engine without the need for an HTTP server, especially for use cases where additional HTTP server adds unnecessary complexity or overhead. Here are two general use cases:\n",
    "\n",
    "- Offline Batch Inference\n",
    "- Custom Server on Top of the Engine\n",
    "\n",
    "This document focuses on the offline batch inference, demonstrating four different inference modes:\n",
    "\n",
    "- Non-streaming synchronous generation\n",
    "- Streaming synchronous generation\n",
    "- Non-streaming asynchronous generation\n",
    "- Streaming asynchronous generation\n",
    "\n",
21
    "Additionally, you can easily build a custom server on top of the SGLang offline engine. A detailed example working in a python script can be found in [custom_server](https://github.com/sgl-project/sglang/blob/main/examples/runtime/engine/custom_server.py).\n",
22
    "\n"
Chayenne's avatar
Chayenne committed
23
24
   ]
  },
25
26
27
28
29
30
31
32
33
34
35
36
37
38
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Nest Asyncio\n",
    "Note that if you want to use **Offline Engine** in ipython or some other nested loop code, you need to add the following code:\n",
    "```python\n",
    "import nest_asyncio\n",
    "\n",
    "nest_asyncio.apply()\n",
    "\n",
    "```"
   ]
  },
39
40
41
42
43
44
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Advanced Usage\n",
    "\n",
45
    "The engine supports [vlm inference](https://github.com/sgl-project/sglang/blob/main/examples/runtime/engine/offline_batch_inference_vlm.py) as well as [extracting hidden states](https://github.com/sgl-project/sglang/blob/main/examples/runtime/hidden_states). \n",
46
47
48
49
    "\n",
    "Please see [the examples](https://github.com/sgl-project/sglang/tree/main/examples/runtime/engine) for further use cases."
   ]
  },
Chayenne's avatar
Chayenne committed
50
51
52
53
54
55
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Offline Batch Inference\n",
    "\n",
56
    "SGLang offline engine supports batch inference with efficient scheduling."
Chayenne's avatar
Chayenne committed
57
58
59
60
61
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
62
   "metadata": {},
Chayenne's avatar
Chayenne committed
63
64
65
66
   "outputs": [],
   "source": [
    "# launch the offline engine\n",
    "import asyncio\n",
67
68
69
70
71
72
73
74
    "import io\n",
    "import os\n",
    "\n",
    "from PIL import Image\n",
    "import requests\n",
    "import sglang as sgl\n",
    "\n",
    "from sglang.srt.conversation import chat_templates\n",
75
    "from sglang.test.test_utils import is_in_ci\n",
76
    "from sglang.utils import async_stream_and_merge, stream_and_merge\n",
77
78
79
    "\n",
    "if is_in_ci():\n",
    "    import patch\n",
80
81
82
83
    "else:\n",
    "    import nest_asyncio\n",
    "\n",
    "    nest_asyncio.apply()\n",
84
    "\n",
85
    "\n",
Chayenne's avatar
Chayenne committed
86
87
88
89
90
91
92
93
94
95
96
97
98
    "llm = sgl.Engine(model_path=\"meta-llama/Meta-Llama-3.1-8B-Instruct\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Non-streaming Synchronous Generation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
99
   "metadata": {},
Chayenne's avatar
Chayenne committed
100
101
102
103
104
105
106
107
108
109
110
111
112
   "outputs": [],
   "source": [
    "prompts = [\n",
    "    \"Hello, my name is\",\n",
    "    \"The president of the United States is\",\n",
    "    \"The capital of France is\",\n",
    "    \"The future of AI is\",\n",
    "]\n",
    "\n",
    "sampling_params = {\"temperature\": 0.8, \"top_p\": 0.95}\n",
    "\n",
    "outputs = llm.generate(prompts, sampling_params)\n",
    "for prompt, output in zip(prompts, outputs):\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
113
114
    "    print(\"===============================\")\n",
    "    print(f\"Prompt: {prompt}\\nGenerated text: {output['text']}\")"
Chayenne's avatar
Chayenne committed
115
116
117
118
119
120
121
122
123
124
125
126
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Streaming Synchronous Generation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
127
   "metadata": {},
Chayenne's avatar
Chayenne committed
128
129
130
   "outputs": [],
   "source": [
    "prompts = [\n",
131
132
133
    "    \"Write a short, neutral self-introduction for a fictional character. Hello, my name is\",\n",
    "    \"Provide a concise factual statement about France’s capital city. The capital of France is\",\n",
    "    \"Explain possible future trends in artificial intelligence. The future of AI is\",\n",
Chayenne's avatar
Chayenne committed
134
135
    "]\n",
    "\n",
136
137
138
139
    "sampling_params = {\n",
    "    \"temperature\": 0.2,\n",
    "    \"top_p\": 0.9,\n",
    "}\n",
Chayenne's avatar
Chayenne committed
140
    "\n",
141
    "print(\"\\n=== Testing synchronous streaming generation with overlap removal ===\\n\")\n",
Chayenne's avatar
Chayenne committed
142
    "\n",
143
144
145
146
    "for prompt in prompts:\n",
    "    print(f\"Prompt: {prompt}\")\n",
    "    merged_output = stream_and_merge(llm, prompt, sampling_params)\n",
    "    print(\"Generated text:\", merged_output)\n",
Chayenne's avatar
Chayenne committed
147
148
149
150
151
152
153
154
155
156
157
158
159
    "    print()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Non-streaming Asynchronous Generation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
160
   "metadata": {},
Chayenne's avatar
Chayenne committed
161
162
163
   "outputs": [],
   "source": [
    "prompts = [\n",
164
165
166
    "    \"Write a short, neutral self-introduction for a fictional character. Hello, my name is\",\n",
    "    \"Provide a concise factual statement about France’s capital city. The capital of France is\",\n",
    "    \"Explain possible future trends in artificial intelligence. The future of AI is\",\n",
Chayenne's avatar
Chayenne committed
167
168
169
170
    "]\n",
    "\n",
    "sampling_params = {\"temperature\": 0.8, \"top_p\": 0.95}\n",
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
171
    "print(\"\\n=== Testing asynchronous batch generation ===\")\n",
Chayenne's avatar
Chayenne committed
172
173
174
175
176
177
    "\n",
    "\n",
    "async def main():\n",
    "    outputs = await llm.async_generate(prompts, sampling_params)\n",
    "\n",
    "    for prompt, output in zip(prompts, outputs):\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
178
179
    "        print(f\"\\nPrompt: {prompt}\")\n",
    "        print(f\"Generated text: {output['text']}\")\n",
Chayenne's avatar
Chayenne committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    "\n",
    "\n",
    "asyncio.run(main())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Streaming Asynchronous Generation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
195
   "metadata": {},
Chayenne's avatar
Chayenne committed
196
197
198
   "outputs": [],
   "source": [
    "prompts = [\n",
199
200
201
    "    \"Write a short, neutral self-introduction for a fictional character. Hello, my name is\",\n",
    "    \"Provide a concise factual statement about France’s capital city. The capital of France is\",\n",
    "    \"Explain possible future trends in artificial intelligence. The future of AI is\",\n",
Chayenne's avatar
Chayenne committed
202
    "]\n",
203
    "\n",
Chayenne's avatar
Chayenne committed
204
205
    "sampling_params = {\"temperature\": 0.8, \"top_p\": 0.95}\n",
    "\n",
206
    "print(\"\\n=== Testing asynchronous streaming generation (no repeats) ===\")\n",
Chayenne's avatar
Chayenne committed
207
208
209
210
    "\n",
    "\n",
    "async def main():\n",
    "    for prompt in prompts:\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
211
    "        print(f\"\\nPrompt: {prompt}\")\n",
Chayenne's avatar
Chayenne committed
212
213
    "        print(\"Generated text: \", end=\"\", flush=True)\n",
    "\n",
214
215
216
217
218
    "        # Replace direct calls to async_generate with our custom overlap-aware version\n",
    "        async for cleaned_chunk in async_stream_and_merge(llm, prompt, sampling_params):\n",
    "            print(cleaned_chunk, end=\"\", flush=True)\n",
    "\n",
    "        print()  # New line after each prompt\n",
Chayenne's avatar
Chayenne committed
219
220
221
222
223
224
225
    "\n",
    "\n",
    "asyncio.run(main())"
   ]
  },
  {
   "cell_type": "code",
226
227
   "execution_count": null,
   "metadata": {},
Chayenne's avatar
Chayenne committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
   "outputs": [],
   "source": [
    "llm.shutdown()"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
244
   "pygments_lexer": "ipython3"
Chayenne's avatar
Chayenne committed
245
246
247
248
249
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}