test_nightly_gsm8k_eval.py 6.41 KB
Newer Older
1
2
import json
import os
3
import unittest
4
import warnings
5
from datetime import datetime
6
7
from types import SimpleNamespace

8
from sglang.srt.utils import kill_process_tree
9
10
11
12
from sglang.test.run_eval import run_eval
from sglang.test.test_utils import (
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1,
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2,
13
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_QUANT_TP1,
14
15
16
17
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1,
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2,
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
18
    CustomTestCase,
19
    is_in_ci,
20
    popen_launch_server,
21
    write_github_step_summary,
22
23
)

24
MODEL_SCORE_THRESHOLDS = {
25
    "meta-llama/Llama-3.1-8B-Instruct": 0.82,
26
    "mistralai/Mistral-7B-Instruct-v0.3": 0.58,
27
    "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct": 0.85,
28
    "google/gemma-2-27b-it": 0.92,
29
    "meta-llama/Llama-3.1-70B-Instruct": 0.95,
Lianmin Zheng's avatar
Lianmin Zheng committed
30
    "mistralai/Mixtral-8x7B-Instruct-v0.1": 0.64,
31
    "Qwen/Qwen2-57B-A14B-Instruct": 0.86,
32
    "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8": 0.83,
33
    "neuralmagic/Mistral-7B-Instruct-v0.3-FP8": 0.54,
34
    "neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8": 0.84,
35
    "neuralmagic/gemma-2-2b-it-FP8": 0.60,
36
    "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8": 0.94,
Lianmin Zheng's avatar
Lianmin Zheng committed
37
    "neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8": 0.65,
38
    "neuralmagic/Qwen2-72B-Instruct-FP8": 0.94,
39
40
    "neuralmagic/Qwen2-57B-A14B-Instruct-FP8": 0.82,
    "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4": 0.84,
41
    "hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4": 0.83,
42
    "hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4": 0.62,
43
44
}

45
46
47
48
49

def parse_models(model_string):
    return [model.strip() for model in model_string.split(",") if model.strip()]


50
def popen_launch_server_wrapper(base_url, model, is_fp8, is_tp2):
51
52
53
54
55
56
    other_args = ["--log-level-http", "warning", "--trust-remote-code"]
    if is_fp8:
        if "Llama-3" in model or "gemma-2" in model:
            other_args.extend(["--kv-cache-dtype", "fp8_e5m2"])
        elif "Qwen2-72B-Instruct-FP8" in model:
            other_args.extend(["--quantization", "fp8"])
57
58
        elif "neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8" in model:
            other_args.extend([])
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
        else:
            other_args.extend(["--quantization", "fp8", "--kv-cache-dtype", "fp8_e5m2"])
    if is_tp2:
        other_args.extend(["--tp", "2"])
    if "DeepSeek" in model:
        other_args.extend(["--mem-frac", "0.85"])
    if "AWQ" in model:
        other_args.extend(["--quantization", "awq"])
    elif "GPTQ" in model:
        other_args.extend(["--quantization", "gptq"])

    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_args,
    )
    return process


79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
def write_results_to_json(model, metrics, mode="a"):
    result = {
        "timestamp": datetime.now().isoformat(),
        "model": model,
        "metrics": metrics,
        "score": metrics["score"],
    }

    existing_results = []
    if mode == "a" and os.path.exists("results.json"):
        try:
            with open("results.json", "r") as f:
                existing_results = json.load(f)
        except json.JSONDecodeError:
            existing_results = []

    if isinstance(existing_results, list):
        existing_results.append(result)
    else:
        existing_results = [result]

    with open("results.json", "w") as f:
        json.dump(existing_results, f, indent=2)


def check_model_scores(results):
    failed_models = []
106
107
108
    summary = " | model | score | threshold |\n"
    summary += "| ----- | ----- | --------- |\n"

109
110
111
112
113
114
115
116
117
118
119
120
    for model, score in results:
        threshold = MODEL_SCORE_THRESHOLDS.get(model)
        if threshold is None:
            print(f"Warning: No threshold defined for model {model}")
            continue

        if score < threshold:
            failed_models.append(
                f"\nScore Check Failed: {model}\n"
                f"Model {model} score ({score:.4f}) is below threshold ({threshold:.4f})"
            )

121
122
123
124
125
126
127
128
        line = f"| {model} | {score} | {threshold} |\n"
        summary += line

    print(summary)

    if is_in_ci():
        write_github_step_summary(f"### TestNightlyGsm8KEval\n{summary}")

129
130
131
132
    if failed_models:
        raise AssertionError("\n".join(failed_models))


133
class TestNightlyGsm8KEval(CustomTestCase):
134
135
136
137
138
139
140
    @classmethod
    def setUpClass(cls):
        cls.model_groups = [
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1), False, False),
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2), False, True),
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1), True, False),
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2), True, True),
141
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_QUANT_TP1), False, False),
142
143
144
145
        ]
        cls.base_url = DEFAULT_URL_FOR_TEST

    def test_mgsm_en_all_models(self):
146
147
148
        warnings.filterwarnings(
            "ignore", category=ResourceWarning, message="unclosed.*socket"
        )
149
150
151
        is_first = True
        all_results = []

152
153
154
        for model_group, is_fp8, is_tp2 in self.model_groups:
            for model in model_group:
                with self.subTest(model=model):
155
156
157
                    process = popen_launch_server_wrapper(
                        self.base_url, model, is_fp8, is_tp2
                    )
158
159
160
161
162
163
164
165
166
167
168
169
170

                    args = SimpleNamespace(
                        base_url=self.base_url,
                        model=model,
                        eval_name="mgsm_en",
                        num_examples=None,
                        num_threads=1024,
                    )

                    metrics = run_eval(args)
                    print(
                        f"{'=' * 42}\n{model} - metrics={metrics} score={metrics['score']}\n{'=' * 42}\n"
                    )
171
172
173
174
175

                    write_results_to_json(model, metrics, "w" if is_first else "a")
                    is_first = False

                    all_results.append((model, metrics["score"]))
176
                    kill_process_tree(process.pid)
177

178
179
180
181
182
183
184
185
186
187
        try:
            with open("results.json", "r") as f:
                print("\nFinal Results from results.json:")
                print(json.dumps(json.load(f), indent=2))
        except Exception as e:
            print(f"Error reading results.json: {e}")

        # Check all scores after collecting all results
        check_model_scores(all_results)

188
189
190

if __name__ == "__main__":
    unittest.main()