Unverified Commit a4d6d6f1 authored by Xiaotong Jiang's avatar Xiaotong Jiang Committed by GitHub
Browse files

[feat]: Add math eval to CI nightly run (#2663)


Co-authored-by: default avatarChayenne <zhaochen20@outlook.com>
parent 062c48d2
......@@ -49,6 +49,7 @@ suites = {
"nightly": [
"test_nightly_gsm8k_eval.py",
"test_nightly_human_eval.py",
"test_nightly_math_eval.py",
],
"sampling/penaltylib": glob.glob(
"sampling/penaltylib/**/test_*.py", recursive=True
......
......@@ -25,7 +25,7 @@ MODEL_SCORE_THRESHOLDS = {
"deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct": 0.84,
"google/gemma-2-27b-it": 0.92,
"meta-llama/Llama-3.1-70B-Instruct": 0.96,
"mistralai/Mixtral-8x7B-Instruct-v0.1": 0.64,
"mistralai/Mixtral-8x7B-Instruct-v0.1": 0.63,
"Qwen/Qwen2-57B-A14B-Instruct": 0.87,
"neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8": 0.84,
"neuralmagic/Mistral-7B-Instruct-v0.3-FP8": 0.54,
......@@ -36,7 +36,7 @@ MODEL_SCORE_THRESHOLDS = {
"neuralmagic/Qwen2-72B-Instruct-FP8": 0.95,
"neuralmagic/Qwen2-57B-A14B-Instruct-FP8": 0.82,
"hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4": 0.84,
"hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4": 0.84,
"hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4": 0.83,
}
......
......@@ -12,19 +12,28 @@ from sglang.test.test_utils import (
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2,
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1,
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2,
DEFAULT_MODEL_NAME_FOR_TEST,
DEFAULT_URL_FOR_TEST,
is_in_ci,
)
class TestEvalAccuracyLarge(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model_groups = [
(parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1), False, False),
(parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2), False, True),
(parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1), True, False),
(parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2), True, True),
]
if is_in_ci():
cls.model_groups = [([DEFAULT_MODEL_NAME_FOR_TEST], False, False)]
else:
cls.model_groups = [
(parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1), False, False),
(parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2), False, True),
(
parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1),
True,
False,
),
(parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2), True, True),
]
cls.base_url = DEFAULT_URL_FOR_TEST
cls.process = None
cls.eval_process = None
......
import unittest
from types import SimpleNamespace
from sglang.srt.utils import kill_process_tree
from sglang.test.run_eval import run_eval
from sglang.test.test_utils import (
DEFAULT_MODEL_NAME_FOR_TEST,
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
DEFAULT_URL_FOR_TEST,
popen_launch_server,
)
class TestEvalAccuracyLarge(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model = DEFAULT_MODEL_NAME_FOR_TEST
cls.base_url = DEFAULT_URL_FOR_TEST
cls.process = popen_launch_server(
cls.model,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=["--log-level-http", "warning"],
)
@classmethod
def tearDownClass(cls):
kill_process_tree(cls.process.pid)
def test_math(self):
args = SimpleNamespace(
base_url=self.base_url,
model=self.model,
eval_name="math",
num_examples=5000,
num_threads=1024,
)
metrics = run_eval(args)
self.assertGreaterEqual(
metrics["score"], 0.519 - 0.02
) # -2% to account for sampling variance
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment