test_nightly_gsm8k_eval.py 6.29 KB
Newer Older
1
2
import json
import os
3
import unittest
4
import warnings
5
from datetime import datetime
6
7
from types import SimpleNamespace

8
from sglang.srt.utils import kill_process_tree
9
10
11
12
from sglang.test.run_eval import run_eval
from sglang.test.test_utils import (
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1,
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2,
13
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_QUANT_TP1,
14
15
16
17
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1,
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2,
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
18
    is_in_ci,
19
    popen_launch_server,
20
    write_github_step_summary,
21
22
)

23
MODEL_SCORE_THRESHOLDS = {
24
    "meta-llama/Llama-3.1-8B-Instruct": 0.82,
25
    "mistralai/Mistral-7B-Instruct-v0.3": 0.58,
26
    "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct": 0.85,
27
    "google/gemma-2-27b-it": 0.92,
28
    "meta-llama/Llama-3.1-70B-Instruct": 0.95,
29
    "mistralai/Mixtral-8x7B-Instruct-v0.1": 0.63,
30
    "Qwen/Qwen2-57B-A14B-Instruct": 0.86,
31
    "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8": 0.83,
32
    "neuralmagic/Mistral-7B-Instruct-v0.3-FP8": 0.54,
33
    "neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8": 0.84,
34
    "neuralmagic/gemma-2-2b-it-FP8": 0.60,
35
36
37
    "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8": 0.94,
    "neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8": 0.62,
    "neuralmagic/Qwen2-72B-Instruct-FP8": 0.94,
38
39
    "neuralmagic/Qwen2-57B-A14B-Instruct-FP8": 0.82,
    "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4": 0.84,
40
    "hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4": 0.83,
41
    "hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4": 0.60,
42
43
}

44
45
46
47
48

def parse_models(model_string):
    return [model.strip() for model in model_string.split(",") if model.strip()]


49
def popen_launch_server_wrapper(base_url, model, is_fp8, is_tp2):
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    other_args = ["--log-level-http", "warning", "--trust-remote-code"]
    if is_fp8:
        if "Llama-3" in model or "gemma-2" in model:
            other_args.extend(["--kv-cache-dtype", "fp8_e5m2"])
        elif "Qwen2-72B-Instruct-FP8" in model:
            other_args.extend(["--quantization", "fp8"])
        else:
            other_args.extend(["--quantization", "fp8", "--kv-cache-dtype", "fp8_e5m2"])
    if is_tp2:
        other_args.extend(["--tp", "2"])
    if "DeepSeek" in model:
        other_args.extend(["--mem-frac", "0.85"])
    if "AWQ" in model:
        other_args.extend(["--quantization", "awq"])
    elif "GPTQ" in model:
        other_args.extend(["--quantization", "gptq"])

    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_args,
    )
    return process


76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
def write_results_to_json(model, metrics, mode="a"):
    result = {
        "timestamp": datetime.now().isoformat(),
        "model": model,
        "metrics": metrics,
        "score": metrics["score"],
    }

    existing_results = []
    if mode == "a" and os.path.exists("results.json"):
        try:
            with open("results.json", "r") as f:
                existing_results = json.load(f)
        except json.JSONDecodeError:
            existing_results = []

    if isinstance(existing_results, list):
        existing_results.append(result)
    else:
        existing_results = [result]

    with open("results.json", "w") as f:
        json.dump(existing_results, f, indent=2)


def check_model_scores(results):
    failed_models = []
103
104
105
    summary = " | model | score | threshold |\n"
    summary += "| ----- | ----- | --------- |\n"

106
107
108
109
110
111
112
113
114
115
116
117
    for model, score in results:
        threshold = MODEL_SCORE_THRESHOLDS.get(model)
        if threshold is None:
            print(f"Warning: No threshold defined for model {model}")
            continue

        if score < threshold:
            failed_models.append(
                f"\nScore Check Failed: {model}\n"
                f"Model {model} score ({score:.4f}) is below threshold ({threshold:.4f})"
            )

118
119
120
121
122
123
124
125
        line = f"| {model} | {score} | {threshold} |\n"
        summary += line

    print(summary)

    if is_in_ci():
        write_github_step_summary(f"### TestNightlyGsm8KEval\n{summary}")

126
127
128
129
    if failed_models:
        raise AssertionError("\n".join(failed_models))


130
class TestNightlyGsm8KEval(unittest.TestCase):
131
132
133
134
135
136
137
    @classmethod
    def setUpClass(cls):
        cls.model_groups = [
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1), False, False),
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2), False, True),
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1), True, False),
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2), True, True),
138
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_QUANT_TP1), False, False),
139
140
141
142
        ]
        cls.base_url = DEFAULT_URL_FOR_TEST

    def test_mgsm_en_all_models(self):
143
144
145
        warnings.filterwarnings(
            "ignore", category=ResourceWarning, message="unclosed.*socket"
        )
146
147
148
        is_first = True
        all_results = []

149
150
151
        for model_group, is_fp8, is_tp2 in self.model_groups:
            for model in model_group:
                with self.subTest(model=model):
152
153
154
                    process = popen_launch_server_wrapper(
                        self.base_url, model, is_fp8, is_tp2
                    )
155
156
157
158
159
160
161
162
163
164
165
166
167

                    args = SimpleNamespace(
                        base_url=self.base_url,
                        model=model,
                        eval_name="mgsm_en",
                        num_examples=None,
                        num_threads=1024,
                    )

                    metrics = run_eval(args)
                    print(
                        f"{'=' * 42}\n{model} - metrics={metrics} score={metrics['score']}\n{'=' * 42}\n"
                    )
168
169
170
171
172

                    write_results_to_json(model, metrics, "w" if is_first else "a")
                    is_first = False

                    all_results.append((model, metrics["score"]))
173
                    kill_process_tree(process.pid)
174

175
176
177
178
179
180
181
182
183
184
        try:
            with open("results.json", "r") as f:
                print("\nFinal Results from results.json:")
                print(json.dumps(json.load(f), indent=2))
        except Exception as e:
            print(f"Error reading results.json: {e}")

        # Check all scores after collecting all results
        check_model_scores(all_results)

185
186
187

if __name__ == "__main__":
    unittest.main()