test_nightly_gsm8k_eval.py 5.89 KB
Newer Older
1
2
import json
import os
3
import unittest
4
from datetime import datetime
5
6
7
8
9
10
11
from types import SimpleNamespace

from sglang.srt.utils import kill_child_process
from sglang.test.run_eval import run_eval
from sglang.test.test_utils import (
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1,
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2,
12
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_QUANT_TP1,
13
14
15
16
17
18
19
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1,
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2,
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
    popen_launch_server,
)

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
MODEL_SCORE_THRESHOLDS = {
    "meta-llama/Llama-3.1-8B-Instruct": 0.8316,
    "mistralai/Mistral-7B-Instruct-v0.3": 0.5861,
    "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct": 0.8672,
    "google/gemma-2-27b-it": 0.9227,
    "meta-llama/Llama-3.1-70B-Instruct": 0.9623,
    "mistralai/Mixtral-8x7B-Instruct-v0.1": 0.6415,
    "Qwen/Qwen2-57B-A14B-Instruct": 0.8791,
    "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8": 0.8672,
    "neuralmagic/Mistral-7B-Instruct-v0.3-FP8": 0.5544,
    "neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8": 0.8356,
    "neuralmagic/gemma-2-2b-it-FP8": 0.6059,
    "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8": 0.9504,
    "neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8": 0.6138,
    "neuralmagic/Qwen2-72B-Instruct-FP8": 0.9504,
    "neuralmagic/Qwen2-57B-A14B-Instruct-FP8": 0.8197,
    "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4": 0.8395,
    "hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4": 0.8435,
}

40
41
42
43
44

def parse_models(model_string):
    return [model.strip() for model in model_string.split(",") if model.strip()]


45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
def launch_server(base_url, model, is_fp8, is_tp2):
    other_args = ["--log-level-http", "warning", "--trust-remote-code"]
    if is_fp8:
        if "Llama-3" in model or "gemma-2" in model:
            other_args.extend(["--kv-cache-dtype", "fp8_e5m2"])
        elif "Qwen2-72B-Instruct-FP8" in model:
            other_args.extend(["--quantization", "fp8"])
        else:
            other_args.extend(["--quantization", "fp8", "--kv-cache-dtype", "fp8_e5m2"])
    if is_tp2:
        other_args.extend(["--tp", "2"])
    if "DeepSeek" in model:
        other_args.extend(["--mem-frac", "0.85"])
    if "AWQ" in model:
        other_args.extend(["--quantization", "awq"])
    elif "GPTQ" in model:
        other_args.extend(["--quantization", "gptq"])

    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_args,
    )
    return process


72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
def write_results_to_json(model, metrics, mode="a"):
    result = {
        "timestamp": datetime.now().isoformat(),
        "model": model,
        "metrics": metrics,
        "score": metrics["score"],
    }

    existing_results = []
    if mode == "a" and os.path.exists("results.json"):
        try:
            with open("results.json", "r") as f:
                existing_results = json.load(f)
        except json.JSONDecodeError:
            existing_results = []

    if isinstance(existing_results, list):
        existing_results.append(result)
    else:
        existing_results = [result]

    with open("results.json", "w") as f:
        json.dump(existing_results, f, indent=2)


def check_model_scores(results):
    failed_models = []
    for model, score in results:
        threshold = MODEL_SCORE_THRESHOLDS.get(model)
        if threshold is None:
            print(f"Warning: No threshold defined for model {model}")
            continue

        if score < threshold:
            failed_models.append(
                f"\nScore Check Failed: {model}\n"
                f"Model {model} score ({score:.4f}) is below threshold ({threshold:.4f})"
            )

    if failed_models:
        raise AssertionError("\n".join(failed_models))


115
116
117
118
119
120
121
122
class TestEvalAccuracyLarge(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.model_groups = [
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1), False, False),
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2), False, True),
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1), True, False),
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2), True, True),
123
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_QUANT_TP1), False, False),
124
125
126
127
128
129
130
131
        ]
        cls.base_url = DEFAULT_URL_FOR_TEST

    def setUp(self):
        self.process = None

    def tearDown(self):
        if self.process:
Lianmin Zheng's avatar
Lianmin Zheng committed
132
            kill_child_process(self.process.pid, include_self=True)
133
134

    def test_mgsm_en_all_models(self):
135
136
137
        is_first = True
        all_results = []

138
139
140
        for model_group, is_fp8, is_tp2 in self.model_groups:
            for model in model_group:
                with self.subTest(model=model):
141
                    self.process = launch_server(self.base_url, model, is_fp8, is_tp2)
142
143
144
145
146
147
148
149
150
151
152
153
154

                    args = SimpleNamespace(
                        base_url=self.base_url,
                        model=model,
                        eval_name="mgsm_en",
                        num_examples=None,
                        num_threads=1024,
                    )

                    metrics = run_eval(args)
                    print(
                        f"{'=' * 42}\n{model} - metrics={metrics} score={metrics['score']}\n{'=' * 42}\n"
                    )
155
156
157
158
159

                    write_results_to_json(model, metrics, "w" if is_first else "a")
                    is_first = False

                    all_results.append((model, metrics["score"]))
160
161
162

                    self.tearDown()

163
164
165
166
167
168
169
170
171
172
        try:
            with open("results.json", "r") as f:
                print("\nFinal Results from results.json:")
                print(json.dumps(json.load(f), indent=2))
        except Exception as e:
            print(f"Error reading results.json: {e}")

        # Check all scores after collecting all results
        check_model_scores(all_results)

173
174
175

if __name__ == "__main__":
    unittest.main()