test_vlm_accuracy.py 13.7 KB
Newer Older
1
2
3
4
5
"""
"""

import unittest
from io import BytesIO
6
from typing import List, Optional
7
8
9
10
11
12

import numpy as np
import requests
import torch
import torch.nn.functional as F
from PIL import Image
13
14
15
16
17
18
19
from transformers import (
    AutoModel,
    AutoProcessor,
    AutoTokenizer,
    Gemma3ForConditionalGeneration,
    Qwen2_5_VLForConditionalGeneration,
)
20

21
from sglang import Engine
22
23
from sglang.srt.configs.model_config import ModelConfig
from sglang.srt.conversation import generate_chat_conv
24
25
26
27
from sglang.srt.managers.mm_utils import embed_mm_inputs, init_embedding_cache
from sglang.srt.managers.multimodal_processors.base_processor import (
    BaseMultimodalProcessor,
)
Mick's avatar
Mick committed
28
29
30
31
32
from sglang.srt.managers.schedule_batch import (
    Modality,
    MultimodalDataItem,
    MultimodalInputs,
)
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from sglang.srt.model_executor.model_runner import ModelRunner
from sglang.srt.openai_api.protocol import ChatCompletionRequest
from sglang.srt.server_args import ServerArgs


# Test the logits output between HF and SGLang
class VisionLLMLogitsBase(unittest.IsolatedAsyncioTestCase):
    @classmethod
    def setUpClass(cls):
        cls.image_url = "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
        cls.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        cls.model_path = ""
        cls.chat_template = ""
        cls.processor = ""
        response = requests.get(cls.image_url)
        cls.main_image = Image.open(BytesIO(response.content))

    def compare_outputs(self, sglang_output: torch.Tensor, hf_output: torch.Tensor):
        # Convert to float32 for numerical stability if needed
        hf = hf_output.float()
        sg = sglang_output.float()

        # Basic shape and dtype comparison
        print("\n=== Basic Properties ===")
        print(f"Shapes match: {hf.shape == sg.shape}")
        print(f"HF shape: {hf.shape}, SGLang shape: {sg.shape}")
        print(f"HF dtype: {hf.dtype}, SGLang dtype: {sg.dtype}")

        # Move tensors to CPU for numpy operations
        hf_np = hf.cpu().numpy()
        sg_np = sg.cpu().numpy()

        # Statistical metrics
        print("\n=== Statistical Metrics ===")
        print(f"Mean absolute difference: {torch.mean(torch.abs(hf - sg)).item():.6f}")
        print(f"Max absolute difference: {torch.max(torch.abs(hf - sg)).item():.6f}")
        print(f"Mean squared error: {torch.mean((hf - sg) ** 2).item():.6f}")
        print(
            f"Root mean squared error: {torch.sqrt(torch.mean((hf - sg) ** 2)).item():.6f}"
        )

        # Cosine similarity (across feature dimension)
        cos_sim = F.cosine_similarity(hf, sg)
        print(f"Mean cosine similarity: {torch.mean(cos_sim).item():.6f}")
        print(f"Min cosine similarity: {torch.min(cos_sim).item():.6f}")

        # Find largest absolute differences
        print("\n=== Largest Absolute Differences ===")
        diffs = torch.abs(hf - sg)
        flat_diffs = diffs.flatten()

        # Get indices of top 10 differences
        top_k = 10
        top_values, top_flat_indices = torch.topk(flat_diffs, top_k)

        # Convert flat indices to multidimensional indices
        top_indices = np.unravel_index(top_flat_indices.cpu().numpy(), diffs.shape)

        print(f"\nTop {top_k} largest absolute differences:")
        print(
            "Index".ljust(30)
            + "Difference".ljust(15)
            + "HF Value".ljust(15)
            + "SGLang Value"
        )
        print("-" * 75)

        for i in range(top_k):
            # Get the index tuple for this difference
            idx = tuple(dim[i] for dim in top_indices)
        diff_val = top_values[i].item()
        hf_val = hf[idx].item()
        sg_val = sg[idx].item()

        # Format the index tuple and values
        idx_str = str(idx)
        print(f"{idx_str:<30}{diff_val:<15.6f}{hf_val:<15.6f}{sg_val:.6f}")

        np.testing.assert_allclose(hf_np, sg_np)

113
    def get_completion_request(self) -> ChatCompletionRequest:
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        json_str = f"""
        {{
  "model": "{self.model_path}",
  "messages": [
    {{
      "role": "user",
      "content": [
        {{
          "type": "image_url",
          "image_url": {{
            "url": "{self.image_url}"
          }}
        }},
        {{
          "type": "text",
129
          "text": "What's in this picture?"
130
131
132
133
134
135
136
        }}
      ]
    }}
  ]
}}
        """

137
        return ChatCompletionRequest.model_validate_json(json_str)
138

139
140
141
    def get_processor_output(self, req: Optional[ChatCompletionRequest] = None):
        if req is None:
            req = self.get_completion_request()
142
143
144
145
146
147
148
149
150
151
152
153
154
155
        conv = generate_chat_conv(req, template_name=self.chat_template)
        text = conv.get_prompt()

        # Process inputs using processor
        # FIXME: the formal arguments may differ
        inputs = self.processor(
            text=[text],
            images=[self.main_image],
            return_tensors="pt",
        ).to(self.device)

        return inputs

    def get_sglang_model(self):
Mick's avatar
Mick committed
156
        self.model_runner = ModelRunner(
157
158
159
160
161
            model_config=ModelConfig(self.model_path, model_override_args="{}"),
            mem_fraction_static=0.8,
            gpu_id=0,
            tp_rank=0,
            tp_size=1,
162
163
            pp_rank=0,
            pp_size=1,
164
165
166
167
168
169
            nccl_port=12435,
            server_args=ServerArgs(
                model_path=self.model_path,
                disable_cuda_graph=True,
            ),
        )
Mick's avatar
Mick committed
170
        return self.model_runner.model
171
172
173
174
175
176


class TestMiniCPMVLogits(VisionLLMLogitsBase):
    @classmethod
    def setUpClass(cls):
        super().setUpClass()
177
        cls.model_path = "openbmb/MiniCPM-V-2_6"
178
179
180
181
182
183
184
185
186
        cls.tokenizer = AutoTokenizer.from_pretrained(
            cls.model_path, trust_remote_code=True
        )
        cls.processor = AutoProcessor.from_pretrained(
            cls.model_path, trust_remote_code=True
        )
        cls.chat_template = "minicpmv"

        cls.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
Mick's avatar
Mick committed
187
188
189
190
191
192
193
        cls.hf_model = (
            AutoModel.from_pretrained(
                cls.model_path, torch_dtype=torch.bfloat16, trust_remote_code=True
            )
            .eval()
            .to(cls.device)
        )
194
        init_embedding_cache(0)
195

196
197
198
199
    async def test_vlm_embedding_output(self):
        """
        Compares the embedding output of vlm
        """
200
201
202
        inputs = self.get_processor_output()

        with torch.no_grad():
203
            # hf
204
205
206
207
208
209
            model_inputs = {
                "input_ids": inputs.input_ids,
                "image_bound": inputs.image_bound,
                "pixel_values": inputs.pixel_values,
                "tgt_sizes": inputs.tgt_sizes,
            }
Mick's avatar
Mick committed
210
            (hf_output, _) = self.hf_model.get_vllm_embedding(
211
212
213
214
                model_inputs,
            )
            hf_output = hf_output.squeeze(0)

215
            # sglang
216
217
            model = self.get_sglang_model()
            input_ids = inputs["input_ids"].to(self.device).flatten()
Mick's avatar
Mick committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

            pixel_values = inputs["pixel_values"]
            tgt_sizes = inputs["tgt_sizes"]
            pixel_values_flat: List[torch.Tensor] = []
            tgt_sizes_flat: List[torch.Tensor] = []
            for pixel_b, tgt_b in zip(pixel_values, tgt_sizes):
                # per image
                if len(pixel_b) != len(tgt_b):
                    raise ValueError(
                        "Inconsistent N lengths, found: "
                        f"{len(pixel_b)} vs {len(tgt_b)}"
                    )
                for pixel_n, tgt_n in zip(pixel_b, tgt_b):
                    pixel_values_flat += [pixel_n]
                    tgt_sizes_flat += [tgt_n]
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

            im_start_id, im_end_id = (
                self.tokenizer.im_start_id,
                self.tokenizer.im_end_id,
            )
            slice_start_id, slice_end_id = (
                self.tokenizer.slice_start_id,
                self.tokenizer.slice_end_id,
            )

            image_offsets = BaseMultimodalProcessor.get_mm_items_offset_by_pair(
                input_ids=input_ids, mm_start_id=im_start_id, mm_end_id=im_end_id
            )
            slice_offsets = BaseMultimodalProcessor.get_mm_items_offset_by_pair(
                input_ids=input_ids, mm_start_id=slice_start_id, mm_end_id=slice_end_id
            )
            image_offsets.extend(slice_offsets)
            image_offsets = sorted(image_offsets)

Mick's avatar
Mick committed
252
            sglang_output = embed_mm_inputs(
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
                mm_inputs_list=[
                    MultimodalInputs(
                        mm_items=[
                            MultimodalDataItem(
                                pixel_values=pixel_values_flat,
                                image_offsets=image_offsets,
                                tgt_size=tgt_sizes_flat,
                                modality=Modality.IMAGE,
                                pad_value=self.processor.tokenizer.unk_token_id,
                            )
                        ]
                    ),
                ],
                extend_prefix_lens=[0],
                extend_seq_lens=[input_ids.shape[0]],
268
                input_ids=input_ids,
269
                input_embedding=model.get_input_embeddings(),
Mick's avatar
Mick committed
270
                image_data_embedding_func=model.get_image_feature,
271
272
273
                placeholder_tokens={
                    Modality.IMAGE: self.processor.tokenizer.unk_token_id,
                },
274
275
276
277
278
            )

        self.compare_outputs(sglang_output, hf_output)


279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
class TestQwenVLUnderstandsImage(VisionLLMLogitsBase):

    @classmethod
    def setUpClass(cls):
        super().setUpClass()
        cls.model_path = "Qwen/Qwen2.5-VL-3B-Instruct"
        cls.chat_template = "qwen2-vl"
        cls.processor = AutoProcessor.from_pretrained(
            cls.model_path, trust_remote_code=True, use_fast=True
        )
        cls.visual = (
            Qwen2_5_VLForConditionalGeneration.from_pretrained(
                cls.model_path, torch_dtype=torch.bfloat16
            )
            .eval()
            .visual.to(cls.device)
        )

    def setUp(self):
        self.engine = Engine(
            model_path=self.model_path,
            chat_template=self.chat_template,
            device=self.device.type,
            mem_fraction_static=0.8,
        )

    def tearDown(self):
        self.engine.shutdown()

    async def test_qwen_vl_understands_image(self):
        req = self.get_completion_request()
        conv = generate_chat_conv(req, template_name=self.chat_template)
        text = conv.get_prompt()
        output = await self.engine.async_generate(
            prompt=text,
            image_data=[self.main_image],
            sampling_params=dict(temperature=0.0),
        )
        self.assertIn("taxi", output["text"].lower())

    async def test_qwen_vl_understands_precomputed_features(self):
        req = self.get_completion_request()
        processor_output = self.get_processor_output(req=req)
        with torch.inference_mode():
            precomputed_features = self.visual(
                processor_output["pixel_values"], processor_output["image_grid_thw"]
            )
        output = await self.engine.async_generate(
            input_ids=processor_output["input_ids"][0].detach().cpu().tolist(),
            image_data=[
                dict(
                    modality="IMAGE",
                    image_grid_thws=processor_output["image_grid_thw"],
                    precomputed_features=precomputed_features,
                )
            ],
            sampling_params=dict(temperature=0.0),
        )
        self.assertIn("taxi", output["text"].lower())


class TestGemmaUnderstandsImage(VisionLLMLogitsBase):

    @classmethod
    def setUpClass(cls):
        super().setUpClass()
        cls.model_path = "google/gemma-3-4b-it"
        cls.chat_template = "gemma-it"
        cls.processor = AutoProcessor.from_pretrained(
            cls.model_path, trust_remote_code=True, use_fast=True
        )
        model = Gemma3ForConditionalGeneration.from_pretrained(
            cls.model_path, torch_dtype=torch.bfloat16
        )
        cls.vision_tower = model.vision_tower.eval().to(cls.device)
        cls.mm_projector = model.multi_modal_projector.eval().to(cls.device)

    @classmethod
    def visual(cls, pixel_values):
        vision_outputs = cls.vision_tower(pixel_values=pixel_values).last_hidden_state
        image_features = cls.mm_projector(vision_outputs)
        return image_features

    def setUp(self):
        self.engine = Engine(
            model_path=self.model_path,
            chat_template=self.chat_template,
            device=self.device.type,
            mem_fraction_static=0.5,
            enable_multimodal=True,
        )

    def tearDown(self):
        self.engine.shutdown()

    async def test_gemma_understands_image(self):
        req = self.get_completion_request()
        conv = generate_chat_conv(req, template_name=self.chat_template)
        text = conv.get_prompt()
        output = await self.engine.async_generate(
            prompt=text,
            image_data=[self.main_image],
            sampling_params=dict(temperature=0.0),
        )
        self.assertIn("taxi", output["text"].lower())

    async def test_gemma_understands_precomputed_features(self):
        req = self.get_completion_request()
        processor_output = self.get_processor_output(req=req)
        with torch.inference_mode():
            precomputed_features = self.visual(processor_output["pixel_values"])
        output = await self.engine.async_generate(
            input_ids=processor_output["input_ids"][0].detach().cpu().tolist(),
            image_data=[
                dict(
                    modality="IMAGE",
                    precomputed_features=precomputed_features,
                )
            ],
            sampling_params=dict(temperature=0.0),
        )
        self.assertIn("taxi", output["text"].lower())


403
404
if __name__ == "__main__":
    unittest.main()