Unverified Commit d373a48c authored by Mick's avatar Mick Committed by GitHub
Browse files

fix: second_per_grid_ts should be used to get mrope position (#3682)

parent 98be3bd3
......@@ -880,8 +880,17 @@ class MRotaryEmbedding(RotaryEmbedding):
spatial_merge_size: int,
context_len: int = 0,
seq_len: Optional[int] = None,
second_per_grid_ts: Optional[torch.Tensor] = None,
tokens_per_second: Optional[int] = None,
) -> Tuple[List[List[int]], int]:
"""Get mrope input positions and delta value."""
"""
Get mrope input positions and delta value.
:arg
second_per_grid_ts (`torch.Tensor` of shape `(num_videos)`, *optional*):
The time interval (in seconds) for each grid along the temporal dimension in the 3D position IDs.
"""
if isinstance(image_grid_thw, torch.Tensor):
image_grid_thw = image_grid_thw.tolist()
......@@ -918,6 +927,7 @@ class MRotaryEmbedding(RotaryEmbedding):
)
image_index += 1
remain_images -= 1
second_per_grid_t = 0
ed = ed_image
else:
t, h, w = (
......@@ -925,6 +935,10 @@ class MRotaryEmbedding(RotaryEmbedding):
video_grid_thw[video_index][1],
video_grid_thw[video_index][2],
)
if second_per_grid_ts is not None:
second_per_grid_t = second_per_grid_ts[video_index]
else:
second_per_grid_t = 1.0
video_index += 1
remain_videos -= 1
ed = ed_video
......@@ -941,11 +955,11 @@ class MRotaryEmbedding(RotaryEmbedding):
)
t_index = (
torch.arange(llm_grid_t)
.view(-1, 1)
.expand(-1, llm_grid_h * llm_grid_w)
.flatten()
)
torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w)
* second_per_grid_t
* tokens_per_second
).flatten()
h_index = (
torch.arange(llm_grid_h)
.view(1, -1, 1)
......
......@@ -159,6 +159,10 @@ class ImageInputs:
# QWen2-VL related
image_grid_thws: List[Tuple[int, int, int]] = None
mrope_position_delta: Optional[torch.Tensor] = None
# Qwen2-VL video related
video_token_id: Optional[int] = None
video_grid_thws: List[Tuple[int, int, int]] = None
second_per_grid_ts: Optional[List[torch.Tensor]] = None
# deepseek vl2 related
image_seq_mask: Optional[List[torch.Tensor]] = None
......
......@@ -402,9 +402,16 @@ class ForwardBatch:
extend_start_loc : extend_start_loc + extend_seq_len
],
image_grid_thw=image_inputs.image_grid_thws,
video_grid_thw=image_inputs.video_grid_thws,
image_token_id=image_inputs.im_token_id,
video_token_id=image_inputs.video_token_id,
vision_start_token_id=hf_config.vision_start_token_id,
vision_end_token_id=hf_config.vision_end_token_id,
spatial_merge_size=hf_config.vision_config.spatial_merge_size,
context_len=0,
seq_len=len(self.input_ids),
second_per_grid_ts=image_inputs.second_per_grid_ts,
tokens_per_second=hf_config.vision_config.tokens_per_second,
)
)
batch.image_inputs[i].mrope_position_delta = mrope_position_delta
......
......@@ -258,10 +258,12 @@ class ModelRunner:
if self.model_config.hf_config.architectures == [
"Qwen2VLForConditionalGeneration"
] or self.model_config.hf_config.architectures == [
"Qwen2_5_VLForConditionalGeneration"
]:
# TODO: qwen2-vl does not support radix cache now, set disable_radix_cache=True automatically
# TODO: qwen2-vl series does not support radix cache now, set disable_radix_cache=True automatically
logger.info(
"Automatically turn off --chunked-prefill-size and disable radix cache for qwen2-vl."
"Automatically turn off --chunked-prefill-size and disable radix cache for qwen-vl series."
)
server_args.chunked_prefill_size = -1
server_args.disable_radix_cache = True
......
......@@ -125,12 +125,15 @@ class Qwen2_5_VisionBlock(nn.Module):
if attn_implementation == "sdpa":
use_context_forward = False
softmax_in_single_precision = False
flatten_batch = True
elif attn_implementation == "flash_attention_2":
softmax_in_single_precision = False
use_context_forward = True
flatten_batch = True
elif attn_implementation == "eager":
softmax_in_single_precision = True
use_context_forward = False
flatten_batch = True
self.attn = VisionAttention(
embed_dim=dim,
......@@ -139,7 +142,7 @@ class Qwen2_5_VisionBlock(nn.Module):
use_qkv_parallel=False,
use_context_forward=use_context_forward,
softmax_in_single_precision=softmax_in_single_precision,
flatten_batch=True,
flatten_batch=flatten_batch,
quant_config=quant_config,
prefix=add_prefix("attn", prefix),
)
......@@ -192,9 +195,10 @@ class Qwen2_5_VisionPatchEmbed(nn.Module):
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
target_dtype = self.proj.weight.dtype
L, C = x.shape
x = x.view(L, -1, self.temporal_patch_size, self.patch_size, self.patch_size)
x = self.proj(x).view(L, self.embed_dim)
x = self.proj(x.to(dtype=target_dtype)).view(L, self.embed_dim)
return x
......@@ -246,35 +250,15 @@ class Qwen2_5_VisionRotaryEmbedding(nn.Module):
def __init__(self, dim: int, theta: float = 10000.0) -> None:
super().__init__()
self.dim = dim
self.theta = theta
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
self._seq_len_cached = 0
self._freqs_cached = None
def update_freqs_cache(self, seqlen: int) -> None:
if seqlen > self._seq_len_cached:
seqlen *= 2
self._seq_len_cached = seqlen
self.inv_freq = 1.0 / (
self.theta
** (
torch.arange(
0, self.dim, 2, dtype=torch.float, device=self.inv_freq.device
)
/ self.dim
)
)
seq = torch.arange(
seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype
)
freqs = torch.outer(seq, self.inv_freq)
self._freqs_cached = freqs
def forward(self, seqlen: int) -> torch.Tensor:
self.update_freqs_cache(seqlen)
return self._freqs_cached[:seqlen]
seq = torch.arange(
seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype
)
freqs = torch.outer(seq, self.inv_freq)
return freqs
class Qwen2_5_VisionTransformer(nn.Module):
......@@ -293,7 +277,7 @@ class Qwen2_5_VisionTransformer(nn.Module):
spatial_merge_size: int = vision_config.spatial_merge_size
self.spatial_merge_size = spatial_merge_size
self.spatial_merge_unit: int = spatial_merge_size * spatial_merge_size
in_chans: int = vision_config.in_chans
in_chans: int = vision_config.in_channels
hidden_size: int = vision_config.hidden_size
depth: int = vision_config.depth
num_heads: int = vision_config.num_heads
......@@ -393,27 +377,24 @@ class Qwen2_5_VisionTransformer(nn.Module):
pos_ids = []
for t, h, w in grid_thw:
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
hpos_ids = (
hpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
.permute(0, 2, 1, 3)
.flatten()
hpos_ids = hpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
wpos_ids = (
wpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
.permute(0, 2, 1, 3)
.flatten()
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
hpos_ids = hpos_ids.flatten()
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
wpos_ids = wpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
wpos_ids = wpos_ids.flatten()
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = grid_thw[:, 1:].max()
......@@ -437,7 +418,7 @@ class Qwen2_5_VisionTransformer(nn.Module):
cu_window_seqlens = torch.tensor(
cu_window_seqlens,
device=x.device,
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
dtype=torch.int32,
)
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
......@@ -610,7 +591,8 @@ class Qwen2_5_VLForConditionalGeneration(nn.Module):
start_idx = extend_start_loc_cpu[i]
prefix_len = prefix_lens_cpu[i]
pixel_values = image.pixel_values.clone().detach().requires_grad_(False)
pixel_values = image.pixel_values.to(device="cuda")
image_grid_thws = torch.tensor(
np.array(image.image_grid_thws), device="cuda"
)
......
......@@ -68,7 +68,7 @@ suites = {
TestFile("test_update_weights_from_tensor.py", 48),
TestFile("test_vertex_endpoint.py", 31),
TestFile("test_vision_chunked_prefill.py", 223),
TestFile("test_vision_llm.py", 18.4),
TestFile("test_vlm_accuracy.py", 60),
TestFile("test_vision_openai_server.py", 344),
TestFile("test_fim_completion.py", 120),
TestFile("test_w8a8_quantization.py", 46),
......
......@@ -191,7 +191,7 @@ class TestOpenAIVisionServer(unittest.TestCase):
# from transformers import AutoTokenizer
from decord import VideoReader, cpu
max_frames_num = 12
max_frames_num = 20
vr = VideoReader(video_path, ctx=cpu(0))
total_frame_num = len(vr)
uniform_sampled_frames = np.linspace(
......@@ -226,6 +226,22 @@ class TestOpenAIVisionServer(unittest.TestCase):
return messages
def prepare_video_messages_video_direct(self, video_path):
messages = [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {"url": f"video:{video_path}"},
"modalities": "video",
},
{"type": "text", "text": "Please describe the video in detail."},
],
},
]
return messages
def test_video_chat_completion(self):
url = "https://raw.githubusercontent.com/EvolvingLMMs-Lab/sglang/dev/onevision_local/assets/jobs.mp4"
cache_dir = os.path.expanduser("~/.cache")
......@@ -241,6 +257,7 @@ class TestOpenAIVisionServer(unittest.TestCase):
client = openai.Client(api_key=self.api_key, base_url=self.base_url)
# messages = self.prepare_video_messages_video_direct(file_path)
messages = self.prepare_video_messages(file_path)
video_request = client.chat.completions.create(
......@@ -266,6 +283,7 @@ class TestOpenAIVisionServer(unittest.TestCase):
"man" in video_response
or "person" in video_response
or "individual" in video_response
or "speaker" in video_response
), video_response
assert (
"present" in video_response
......@@ -368,7 +386,7 @@ class TestOpenAIVisionServer(unittest.TestCase):
list(executor.map(self.run_decode_with_image, image_ids))
class TestQWen2VLServer(TestOpenAIVisionServer):
class TestQwen2VLServer(TestOpenAIVisionServer):
@classmethod
def setUpClass(cls):
cls.model = "Qwen/Qwen2-VL-7B-Instruct"
......@@ -382,14 +400,14 @@ class TestQWen2VLServer(TestOpenAIVisionServer):
other_args=[
"--chat-template",
"qwen2-vl",
"--chunked-prefill-size",
"10000",
"--mem-fraction-static",
"0.4",
],
)
cls.base_url += "/v1"
class TestQWen2_5_VLServer(TestOpenAIVisionServer):
class TestQwen2_5_VLServer(TestOpenAIVisionServer):
@classmethod
def setUpClass(cls):
cls.model = "Qwen/Qwen2.5-VL-7B-Instruct"
......@@ -403,9 +421,6 @@ class TestQWen2_5_VLServer(TestOpenAIVisionServer):
other_args=[
"--chat-template",
"qwen2-vl",
# FIXME: workaround to chunked prefill within image embeds
"--chunked-prefill-size",
"10000",
"--mem-fraction-static",
"0.4",
],
......@@ -508,6 +523,8 @@ class TestMinicpmvServer(TestOpenAIVisionServer):
"--trust-remote-code",
"--chat-template",
"minicpmv",
"--mem-fraction-static",
"0.4",
],
)
cls.base_url += "/v1"
......
......@@ -17,8 +17,6 @@ from sglang.srt.model_executor.model_runner import ModelRunner
from sglang.srt.openai_api.protocol import ChatCompletionRequest
from sglang.srt.server_args import ServerArgs
MiniCPMV = "openbmb/MiniCPM-V-2_6"
# Test the logits output between HF and SGLang
class VisionLLMLogitsBase(unittest.IsolatedAsyncioTestCase):
......@@ -155,7 +153,7 @@ class TestMiniCPMVLogits(VisionLLMLogitsBase):
@classmethod
def setUpClass(cls):
super().setUpClass()
cls.model_path = MiniCPMV
cls.model_path = "openbmb/MiniCPM-V-2_6"
cls.tokenizer = AutoTokenizer.from_pretrained(
cls.model_path, trust_remote_code=True
)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment