test_vlm_accuracy.py 6.83 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
"""

import unittest
from io import BytesIO

import numpy as np
import requests
import torch
import torch.nn.functional as F
from PIL import Image
from transformers import AutoModel, AutoProcessor, AutoTokenizer

from sglang.srt.configs.model_config import ModelConfig
from sglang.srt.conversation import generate_chat_conv
16
17
from sglang.srt.managers.mm_utils import embed_image_inputs
from sglang.srt.managers.schedule_batch import ImageInputs
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from sglang.srt.model_executor.model_runner import ModelRunner
from sglang.srt.openai_api.protocol import ChatCompletionRequest
from sglang.srt.server_args import ServerArgs


# Test the logits output between HF and SGLang
class VisionLLMLogitsBase(unittest.IsolatedAsyncioTestCase):
    @classmethod
    def setUpClass(cls):
        cls.image_url = "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
        cls.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        cls.model_path = ""
        cls.chat_template = ""
        cls.processor = ""
        response = requests.get(cls.image_url)
        cls.main_image = Image.open(BytesIO(response.content))

    def compare_outputs(self, sglang_output: torch.Tensor, hf_output: torch.Tensor):
        # Convert to float32 for numerical stability if needed
        hf = hf_output.float()
        sg = sglang_output.float()

        # Basic shape and dtype comparison
        print("\n=== Basic Properties ===")
        print(f"Shapes match: {hf.shape == sg.shape}")
        print(f"HF shape: {hf.shape}, SGLang shape: {sg.shape}")
        print(f"HF dtype: {hf.dtype}, SGLang dtype: {sg.dtype}")

        # Move tensors to CPU for numpy operations
        hf_np = hf.cpu().numpy()
        sg_np = sg.cpu().numpy()

        # Statistical metrics
        print("\n=== Statistical Metrics ===")
        print(f"Mean absolute difference: {torch.mean(torch.abs(hf - sg)).item():.6f}")
        print(f"Max absolute difference: {torch.max(torch.abs(hf - sg)).item():.6f}")
        print(f"Mean squared error: {torch.mean((hf - sg) ** 2).item():.6f}")
        print(
            f"Root mean squared error: {torch.sqrt(torch.mean((hf - sg) ** 2)).item():.6f}"
        )

        # Cosine similarity (across feature dimension)
        cos_sim = F.cosine_similarity(hf, sg)
        print(f"Mean cosine similarity: {torch.mean(cos_sim).item():.6f}")
        print(f"Min cosine similarity: {torch.min(cos_sim).item():.6f}")

        # Find largest absolute differences
        print("\n=== Largest Absolute Differences ===")
        diffs = torch.abs(hf - sg)
        flat_diffs = diffs.flatten()

        # Get indices of top 10 differences
        top_k = 10
        top_values, top_flat_indices = torch.topk(flat_diffs, top_k)

        # Convert flat indices to multidimensional indices
        top_indices = np.unravel_index(top_flat_indices.cpu().numpy(), diffs.shape)

        print(f"\nTop {top_k} largest absolute differences:")
        print(
            "Index".ljust(30)
            + "Difference".ljust(15)
            + "HF Value".ljust(15)
            + "SGLang Value"
        )
        print("-" * 75)

        for i in range(top_k):
            # Get the index tuple for this difference
            idx = tuple(dim[i] for dim in top_indices)
        diff_val = top_values[i].item()
        hf_val = hf[idx].item()
        sg_val = sg[idx].item()

        # Format the index tuple and values
        idx_str = str(idx)
        print(f"{idx_str:<30}{diff_val:<15.6f}{hf_val:<15.6f}{sg_val:.6f}")

        np.testing.assert_allclose(hf_np, sg_np)

    def get_processor_output(self):
        json_str = f"""
        {{
  "model": "{self.model_path}",
  "messages": [
    {{
      "role": "user",
      "content": [
        {{
          "type": "image_url",
          "image_url": {{
            "url": "{self.image_url}"
          }}
        }},
        {{
          "type": "text",
          "text": "Whats in this picture?"
        }}
      ]
    }}
  ]
}}
        """

        req = ChatCompletionRequest.model_validate_json(json_str)

        conv = generate_chat_conv(req, template_name=self.chat_template)

        text = conv.get_prompt()

        # Process inputs using processor
        # FIXME: the formal arguments may differ
        inputs = self.processor(
            text=[text],
            images=[self.main_image],
            return_tensors="pt",
        ).to(self.device)

        return inputs

    def get_sglang_model(self):
        model_runner = ModelRunner(
            model_config=ModelConfig(self.model_path, model_override_args="{}"),
            mem_fraction_static=0.8,
            gpu_id=0,
            tp_rank=0,
            tp_size=1,
            nccl_port=12435,
            server_args=ServerArgs(
                model_path=self.model_path,
                disable_cuda_graph=True,
            ),
        )
        return model_runner.model


class TestMiniCPMVLogits(VisionLLMLogitsBase):
    @classmethod
    def setUpClass(cls):
        super().setUpClass()
158
        cls.model_path = "openbmb/MiniCPM-V-2_6"
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        cls.tokenizer = AutoTokenizer.from_pretrained(
            cls.model_path, trust_remote_code=True
        )
        cls.processor = AutoProcessor.from_pretrained(
            cls.model_path, trust_remote_code=True
        )
        cls.chat_template = "minicpmv"

        cls.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        cls.model = AutoModel.from_pretrained(
            cls.model_path, torch_dtype=torch.bfloat16, trust_remote_code=True
        ).eval()
        cls.model.to(cls.device)

173
174
175
176
    async def test_vlm_embedding_output(self):
        """
        Compares the embedding output of vlm
        """
177
178
179
        inputs = self.get_processor_output()

        with torch.no_grad():
180
            # hf
181
182
183
184
185
186
187
188
189
190
191
            model_inputs = {
                "input_ids": inputs.input_ids,
                "image_bound": inputs.image_bound,
                "pixel_values": inputs.pixel_values,
                "tgt_sizes": inputs.tgt_sizes,
            }
            (hf_output, _) = self.model.get_vllm_embedding(
                model_inputs,
            )
            hf_output = hf_output.squeeze(0)

192
            # sglang
193
194
            model = self.get_sglang_model()
            input_ids = inputs["input_ids"].to(self.device).flatten()
195
196
197
198
199
            sglang_output = embed_image_inputs(
                image_input=ImageInputs(
                    pixel_values=inputs["pixel_values"][0],
                    tgt_sizes=inputs["tgt_sizes"][0],
                ),
200
                input_ids=input_ids,
201
202
203
204
205
                input_embedding=model.get_input_embeddings(),
                image_embedding_func=model.get_image_features,
                placeholder_token_ids=[
                    self.processor.tokenizer.unk_token_id,
                ],
206
207
208
209
210
211
212
            )

        self.compare_outputs(sglang_output, hf_output)


if __name__ == "__main__":
    unittest.main()