wan_audio_runner.py 27.6 KB
Newer Older
wangshankun's avatar
wangshankun committed
1
import gc
PengGao's avatar
PengGao committed
2
3
4
import os
import subprocess
from dataclasses import dataclass
5
from typing import Dict, List, Optional, Tuple
PengGao's avatar
PengGao committed
6

wangshankun's avatar
wangshankun committed
7
8
import numpy as np
import torch
9
import torch.distributed as dist
gushiqiao's avatar
gushiqiao committed
10
import torchaudio as ta
helloyongyang's avatar
helloyongyang committed
11
import torchvision.transforms.functional as TF
wangshankun's avatar
wangshankun committed
12
from PIL import Image
gushiqiao's avatar
gushiqiao committed
13
from einops import rearrange
PengGao's avatar
PengGao committed
14
from loguru import logger
gushiqiao's avatar
gushiqiao committed
15
16
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize
17

18
from lightx2v.models.input_encoders.hf.seko_audio.audio_adapter import AudioAdapter
helloyongyang's avatar
helloyongyang committed
19
from lightx2v.models.input_encoders.hf.seko_audio.audio_encoder import SekoAudioEncoderModel
20
from lightx2v.models.networks.wan.audio_model import WanAudioModel
PengGao's avatar
PengGao committed
21
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
22
from lightx2v.models.runners.wan.wan_runner import WanRunner
wangshankun's avatar
wangshankun committed
23
from lightx2v.models.schedulers.wan.audio.scheduler import ConsistencyModelScheduler
sandy's avatar
sandy committed
24
from lightx2v.models.video_encoders.hf.wan.vae_2_2 import Wan2_2_VAE
25
from lightx2v.utils.envs import *
26
from lightx2v.utils.profiler import ProfilingContext, ProfilingContext4Debug
PengGao's avatar
PengGao committed
27
from lightx2v.utils.registry_factory import RUNNER_REGISTER
sandy's avatar
sandy committed
28
from lightx2v.utils.utils import find_torch_model_path, load_weights, save_to_video, vae_to_comfyui_image
29

wangshankun's avatar
wangshankun committed
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
def get_optimal_patched_size_with_sp(patched_h, patched_w, sp_size):
    assert sp_size > 0 and (sp_size & (sp_size - 1)) == 0, "sp_size must be a power of 2"

    h_ratio, w_ratio = 1, 1
    while sp_size != 1:
        sp_size //= 2
        if patched_h % 2 == 0:
            patched_h //= 2
            h_ratio *= 2
        elif patched_w % 2 == 0:
            patched_w //= 2
            w_ratio *= 2
        else:
            if patched_h > patched_w:
                patched_h //= 2
46
47
                h_ratio *= 2
            else:
48
                patched_w //= 2
49
                w_ratio *= 2
50
    return patched_h * h_ratio, patched_w * w_ratio
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78


def get_crop_bbox(ori_h, ori_w, tgt_h, tgt_w):
    tgt_ar = tgt_h / tgt_w
    ori_ar = ori_h / ori_w
    if abs(ori_ar - tgt_ar) < 0.01:
        return 0, ori_h, 0, ori_w
    if ori_ar > tgt_ar:
        crop_h = int(tgt_ar * ori_w)
        y0 = (ori_h - crop_h) // 2
        y1 = y0 + crop_h
        return y0, y1, 0, ori_w
    else:
        crop_w = int(ori_h / tgt_ar)
        x0 = (ori_w - crop_w) // 2
        x1 = x0 + crop_w
        return 0, ori_h, x0, x1


def isotropic_crop_resize(frames: torch.Tensor, size: tuple):
    """
    frames: (T, C, H, W)
    size: (H, W)
    """
    ori_h, ori_w = frames.shape[2:]
    h, w = size
    y0, y1, x0, x1 = get_crop_bbox(ori_h, ori_w, h, w)
    cropped_frames = frames[:, :, y0:y1, x0:x1]
79
    resized_frames = resize(cropped_frames, [h, w], InterpolationMode.BICUBIC, antialias=True)
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    return resized_frames


def adaptive_resize(img):
    bucket_config = {
        0.667: (np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64), np.array([0.2, 0.5, 0.3])),
        1.0: (np.array([[480, 480], [576, 576], [704, 704], [960, 960]], dtype=np.int64), np.array([0.1, 0.1, 0.5, 0.3])),
        1.5: (np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64)[:, ::-1], np.array([0.2, 0.5, 0.3])),
    }
    ori_height = img.shape[-2]
    ori_weight = img.shape[-1]
    ori_ratio = ori_height / ori_weight
    aspect_ratios = np.array(np.array(list(bucket_config.keys())))
    closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
    closet_ratio = aspect_ratios[closet_aspect_idx]
    if ori_ratio < 1.0:
        target_h, target_w = 480, 832
    elif ori_ratio == 1.0:
        target_h, target_w = 480, 480
    else:
        target_h, target_w = 832, 480
    for resolution in bucket_config[closet_ratio][0]:
        if ori_height * ori_weight >= resolution[0] * resolution[1]:
            target_h, target_w = resolution
    cropped_img = isotropic_crop_resize(img, (target_h, target_w))
    return cropped_img, target_h, target_w


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
@dataclass
class AudioSegment:
    """Data class for audio segment information"""

    audio_array: np.ndarray
    start_frame: int
    end_frame: int
    is_last: bool = False
    useful_length: Optional[int] = None


class FramePreprocessor:
    """Handles frame preprocessing including noise and masking"""

    def __init__(self, noise_mean: float = -3.0, noise_std: float = 0.5, mask_rate: float = 0.1):
        self.noise_mean = noise_mean
        self.noise_std = noise_std
        self.mask_rate = mask_rate

    def add_noise(self, frames: np.ndarray, rnd_state: Optional[np.random.RandomState] = None) -> np.ndarray:
        """Add noise to frames"""
        if self.noise_mean is None or self.noise_std is None:
            return frames

        if rnd_state is None:
            rnd_state = np.random.RandomState()

        shape = frames.shape
        bs = 1 if len(shape) == 4 else shape[0]
        sigma = rnd_state.normal(loc=self.noise_mean, scale=self.noise_std, size=(bs,))
        sigma = np.exp(sigma)
        sigma = np.expand_dims(sigma, axis=tuple(range(1, len(shape))))
        noise = rnd_state.randn(*shape) * sigma
        return frames + noise

    def add_mask(self, frames: np.ndarray, rnd_state: Optional[np.random.RandomState] = None) -> np.ndarray:
        """Add mask to frames"""
        if self.mask_rate is None:
            return frames

        if rnd_state is None:
            rnd_state = np.random.RandomState()

        h, w = frames.shape[-2:]
        mask = rnd_state.rand(h, w) > self.mask_rate
        return frames * mask

    def process_prev_frames(self, frames: torch.Tensor) -> torch.Tensor:
        """Process previous frames with noise and masking"""
        frames_np = frames.cpu().detach().numpy()
        frames_np = self.add_noise(frames_np)
        frames_np = self.add_mask(frames_np)
        return torch.from_numpy(frames_np).to(dtype=frames.dtype, device=frames.device)


class AudioProcessor:
    """Handles audio loading and segmentation"""

    def __init__(self, audio_sr: int = 16000, target_fps: int = 16):
        self.audio_sr = audio_sr
        self.target_fps = target_fps

    def load_audio(self, audio_path: str) -> np.ndarray:
        """Load and resample audio"""
        audio_array, ori_sr = ta.load(audio_path)
        audio_array = ta.functional.resample(audio_array.mean(0), orig_freq=ori_sr, new_freq=self.audio_sr)
        return audio_array.numpy()

    def get_audio_range(self, start_frame: int, end_frame: int) -> Tuple[int, int]:
        """Calculate audio range for given frame range"""
        audio_frame_rate = self.audio_sr / self.target_fps
        return round(start_frame * audio_frame_rate), round((end_frame + 1) * audio_frame_rate)

    def segment_audio(self, audio_array: np.ndarray, expected_frames: int, max_num_frames: int, prev_frame_length: int = 5) -> List[AudioSegment]:
        """Segment audio based on frame requirements"""
        segments = []

        # Calculate intervals
        interval_num = 1
        res_frame_num = 0

        if expected_frames <= max_num_frames:
            interval_num = 1
        else:
            interval_num = max(int((expected_frames - max_num_frames) / (max_num_frames - prev_frame_length)) + 1, 1)
            res_frame_num = expected_frames - interval_num * (max_num_frames - prev_frame_length)
            if res_frame_num > 5:
                interval_num += 1

        # Create segments
        for idx in range(interval_num):
            if idx == 0:
                # First segment
                audio_start, audio_end = self.get_audio_range(0, max_num_frames)
                segment_audio = audio_array[audio_start:audio_end]
                useful_length = None

                if expected_frames < max_num_frames:
                    useful_length = segment_audio.shape[0]
                    max_num_audio_length = int((max_num_frames + 1) / self.target_fps * self.audio_sr)
                    segment_audio = np.concatenate((segment_audio, np.zeros(max_num_audio_length - useful_length)), axis=0)

                segments.append(AudioSegment(segment_audio, 0, max_num_frames, False, useful_length))

            elif res_frame_num > 5 and idx == interval_num - 1:
                # Last segment (might be shorter)
                start_frame = idx * max_num_frames - idx * prev_frame_length
                audio_start, audio_end = self.get_audio_range(start_frame, expected_frames)
                segment_audio = audio_array[audio_start:audio_end]
                useful_length = segment_audio.shape[0]

                max_num_audio_length = int((max_num_frames + 1) / self.target_fps * self.audio_sr)
                segment_audio = np.concatenate((segment_audio, np.zeros(max_num_audio_length - useful_length)), axis=0)

                segments.append(AudioSegment(segment_audio, start_frame, expected_frames, True, useful_length))

            else:
                # Middle segments
                start_frame = idx * max_num_frames - idx * prev_frame_length
                end_frame = (idx + 1) * max_num_frames - idx * prev_frame_length
                audio_start, audio_end = self.get_audio_range(start_frame, end_frame)
                segment_audio = audio_array[audio_start:audio_end]

                segments.append(AudioSegment(segment_audio, start_frame, end_frame, False))

        return segments


helloyongyang's avatar
helloyongyang committed
236
237
238
239
@RUNNER_REGISTER("wan2.1_audio")
class WanAudioRunner(WanRunner):  # type:ignore
    def __init__(self, config):
        super().__init__(config)
240
        self.frame_preprocessor = FramePreprocessor()
helloyongyang's avatar
helloyongyang committed
241
242
243
244

    def init_scheduler(self):
        """Initialize consistency model scheduler"""
        scheduler = ConsistencyModelScheduler(self.config)
245
246
247
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.audio_adapter = self.load_audio_adapter()
            self.model.set_audio_adapter(self.audio_adapter)
248
        scheduler.set_audio_adapter(self.audio_adapter)
helloyongyang's avatar
helloyongyang committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
        self.model.set_scheduler(scheduler)

    def read_audio_input(self):
        """Read audio input"""
        audio_sr = self.config.get("audio_sr", 16000)
        target_fps = self.config.get("target_fps", 16)
        self._audio_processor = AudioProcessor(audio_sr, target_fps)
        audio_array = self._audio_processor.load_audio(self.config["audio_path"])

        video_duration = self.config.get("video_duration", 5)

        audio_len = int(audio_array.shape[0] / audio_sr * target_fps)
        expected_frames = min(max(1, int(video_duration * target_fps)), audio_len)

        # Segment audio
        audio_segments = self._audio_processor.segment_audio(audio_array, expected_frames, self.config.get("target_video_length", 81))

        return audio_segments, expected_frames

    def read_image_input(self, img_path):
        ref_img = Image.open(img_path).convert("RGB")
        ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(0).cuda()

        ref_img, h, w = adaptive_resize(ref_img)
        patched_h = h // self.config.vae_stride[1] // self.config.patch_size[1]
        patched_w = w // self.config.vae_stride[2] // self.config.patch_size[2]

        patched_h, patched_w = get_optimal_patched_size_with_sp(patched_h, patched_w, 1)

        self.config.lat_h = patched_h * self.config.patch_size[1]
        self.config.lat_w = patched_w * self.config.patch_size[2]

        self.config.tgt_h = self.config.lat_h * self.config.vae_stride[1]
        self.config.tgt_w = self.config.lat_w * self.config.vae_stride[2]

        logger.info(f"[wan_audio] tgt_h: {self.config.tgt_h}, tgt_w: {self.config.tgt_w}, lat_h: {self.config.lat_h}, lat_w: {self.config.lat_w}")

        ref_img = torch.nn.functional.interpolate(ref_img, size=(self.config.tgt_h, self.config.tgt_w), mode="bicubic")
        return ref_img

    def run_image_encoder(self, first_frame, last_frame=None):
290
291
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.image_encoder = self.load_image_encoder()
helloyongyang's avatar
helloyongyang committed
292
        clip_encoder_out = self.image_encoder.visual([first_frame]).squeeze(0).to(GET_DTYPE()) if self.config.get("use_image_encoder", True) else None
293
294
295
296
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.image_encoder
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
297
298
299
        return clip_encoder_out

    def run_vae_encoder(self, img):
300
301
302
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.vae_encoder = self.load_vae_encoder()

helloyongyang's avatar
helloyongyang committed
303
        img = rearrange(img, "1 C H W -> 1 C 1 H W")
sandy's avatar
sandy committed
304
305
        vae_encoder_out = self.vae_encoder.encode(img.to(torch.float)).to(GET_DTYPE())

306
307
308
309
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
        return vae_encoder_out

    @ProfilingContext("Run Encoders")
    def _run_input_encoder_local_r2v_audio(self):
        prompt = self.config["prompt_enhanced"] if self.config["use_prompt_enhancer"] else self.config["prompt"]
        img = self.read_image_input(self.config["image_path"])
        clip_encoder_out = self.run_image_encoder(img) if self.config.get("use_image_encoder", True) else None
        vae_encode_out = self.run_vae_encoder(img)
        audio_segments, expected_frames = self.read_audio_input()
        text_encoder_output = self.run_text_encoder(prompt, None)
        torch.cuda.empty_cache()
        gc.collect()
        return {
            "text_encoder_output": text_encoder_output,
            "image_encoder_output": {
                "clip_encoder_out": clip_encoder_out,
                "vae_encoder_out": vae_encode_out,
            },
            "audio_segments": audio_segments,
            "expected_frames": expected_frames,
        }
331
332
333

    def prepare_prev_latents(self, prev_video: Optional[torch.Tensor], prev_frame_length: int) -> Optional[Dict[str, torch.Tensor]]:
        """Prepare previous latents for conditioning"""
wangshankun's avatar
wangshankun committed
334
        device = torch.device("cuda")
335
        dtype = GET_DTYPE()
336
337
338
339
340
        vae_dtype = torch.float

        tgt_h, tgt_w = self.config.tgt_h, self.config.tgt_w
        prev_frames = torch.zeros((1, 3, self.config.target_video_length, tgt_h, tgt_w), device=device)

341
342
343
        if prev_video is not None:
            # Extract and process last frames
            last_frames = prev_video[:, :, -prev_frame_length:].clone().to(device)
sandy's avatar
sandy committed
344
345
            if self.config.model_cls != "wan2.2_audio":
                last_frames = self.frame_preprocessor.process_prev_frames(last_frames)
346
            prev_frames[:, :, :prev_frame_length] = last_frames
sandy's avatar
sandy committed
347
348
349
            prev_len = (prev_frame_length - 1) // 4 + 1
        else:
            prev_len = 0
350

351
352
353
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.vae_encoder = self.load_vae_encoder()

354
        _, nframe, height, width = self.model.scheduler.latents.shape
355
356
        if self.config.model_cls == "wan2.2_audio":
            if prev_video is not None:
sandy's avatar
sandy committed
357
                prev_latents = self.vae_encoder.encode(prev_frames.to(vae_dtype)).to(dtype)
358
            else:
sandy's avatar
sandy committed
359
360
361
362
                prev_latents = None
            prev_mask = self.model.scheduler.mask
        else:
            prev_latents = self.vae_encoder.encode(prev_frames.to(vae_dtype)).to(dtype)
363

364
365
            frames_n = (nframe - 1) * 4 + 1
            prev_mask = torch.ones((1, frames_n, height, width), device=device, dtype=dtype)
sandy's avatar
sandy committed
366
            prev_mask[:, prev_len:] = 0
367
            prev_mask = self._wan_mask_rearrange(prev_mask)
helloyongyang's avatar
fix ci  
helloyongyang committed
368

sandy's avatar
sandy committed
369
370
371
372
        if prev_latents is not None:
            if prev_latents.shape[-2:] != (height, width):
                logger.warning(f"Size mismatch: prev_latents {prev_latents.shape} vs scheduler latents (H={height}, W={width}). Config tgt_h={self.config.tgt_h}, tgt_w={self.config.tgt_w}")
                prev_latents = torch.nn.functional.interpolate(prev_latents, size=(height, width), mode="bilinear", align_corners=False)
373

374
375
376
377
378
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()

sandy's avatar
sandy committed
379
        return {"prev_latents": prev_latents, "prev_mask": prev_mask, "prev_len": prev_len}
380
381
382
383
384
385
386
387
388
389
390
391
392

    def _wan_mask_rearrange(self, mask: torch.Tensor) -> torch.Tensor:
        """Rearrange mask for WAN model"""
        if mask.ndim == 3:
            mask = mask[None]
        assert mask.ndim == 4
        _, t, h, w = mask.shape
        assert t == ((t - 1) // 4 * 4 + 1)
        mask_first_frame = torch.repeat_interleave(mask[:, 0:1], repeats=4, dim=1)
        mask = torch.concat([mask_first_frame, mask[:, 1:]], dim=1)
        mask = mask.view(mask.shape[1] // 4, 4, h, w)
        return mask.transpose(0, 1)

helloyongyang's avatar
helloyongyang committed
393
394
    def get_video_segment_num(self):
        self.video_segment_num = len(self.inputs["audio_segments"])
wangshankun's avatar
wangshankun committed
395

helloyongyang's avatar
helloyongyang committed
396
397
    def init_run(self):
        super().init_run()
wangshankun's avatar
wangshankun committed
398

helloyongyang's avatar
helloyongyang committed
399
400
401
        self.gen_video_list = []
        self.cut_audio_list = []
        self.prev_video = None
wangshankun's avatar
wangshankun committed
402

403
    @ProfilingContext4Debug("Init run segment")
helloyongyang's avatar
helloyongyang committed
404
405
    def init_run_segment(self, segment_idx):
        self.segment_idx = segment_idx
wangshankun's avatar
wangshankun committed
406

helloyongyang's avatar
helloyongyang committed
407
        self.segment = self.inputs["audio_segments"][segment_idx]
wangshankun's avatar
wangshankun committed
408

helloyongyang's avatar
helloyongyang committed
409
410
411
        self.config.seed = self.config.seed + segment_idx
        torch.manual_seed(self.config.seed)
        logger.info(f"Processing segment {segment_idx + 1}/{self.video_segment_num}, seed: {self.config.seed}")
wangshankun's avatar
wangshankun committed
412

413
414
415
416
        if (self.config.get("lazy_load", False) or self.config.get("unload_modules", False)) and not hasattr(self, "audio_encoder"):
            self.audio_encoder = self.load_audio_encoder()

        audio_features = self.audio_encoder.infer(self.segment.audio_array)
helloyongyang's avatar
helloyongyang committed
417
        audio_features = self.audio_adapter.forward_audio_proj(audio_features, self.model.scheduler.latents.shape[1])
PengGao's avatar
PengGao committed
418

helloyongyang's avatar
helloyongyang committed
419
        self.inputs["audio_encoder_output"] = audio_features
sandy's avatar
sandy committed
420
        self.inputs["previmg_encoder_output"] = self.prepare_prev_latents(self.prev_video, prev_frame_length=5)
wangshankun's avatar
wangshankun committed
421

helloyongyang's avatar
helloyongyang committed
422
423
        # Reset scheduler for non-first segments
        if segment_idx > 0:
sandy's avatar
sandy committed
424
            self.model.scheduler.reset(self.inputs["previmg_encoder_output"])
wangshankun's avatar
wangshankun committed
425

426
    @ProfilingContext4Debug("End run segment")
helloyongyang's avatar
helloyongyang committed
427
428
    def end_run_segment(self):
        self.gen_video = torch.clamp(self.gen_video, -1, 1).to(torch.float)
wangshankun's avatar
wangshankun committed
429

helloyongyang's avatar
helloyongyang committed
430
431
432
        # Extract relevant frames
        start_frame = 0 if self.segment_idx == 0 else 5
        start_audio_frame = 0 if self.segment_idx == 0 else int(6 * self._audio_processor.audio_sr / self.config.get("target_fps", 16))
wangshankun's avatar
wangshankun committed
433

helloyongyang's avatar
helloyongyang committed
434
435
436
437
438
439
440
        if self.segment.is_last and self.segment.useful_length:
            end_frame = self.segment.end_frame - self.segment.start_frame
            self.gen_video_list.append(self.gen_video[:, :, start_frame:end_frame].cpu())
            self.cut_audio_list.append(self.segment.audio_array[start_audio_frame : self.segment.useful_length])
        elif self.segment.useful_length and self.inputs["expected_frames"] < self.config.get("target_video_length", 81):
            self.gen_video_list.append(self.gen_video[:, :, start_frame : self.inputs["expected_frames"]].cpu())
            self.cut_audio_list.append(self.segment.audio_array[start_audio_frame : self.segment.useful_length])
wangshankun's avatar
wangshankun committed
441
        else:
helloyongyang's avatar
helloyongyang committed
442
443
444
445
446
447
448
449
450
451
            self.gen_video_list.append(self.gen_video[:, :, start_frame:].cpu())
            self.cut_audio_list.append(self.segment.audio_array[start_audio_frame:])

        # Update prev_video for next iteration
        self.prev_video = self.gen_video

        # Clean up GPU memory after each segment
        del self.gen_video
        torch.cuda.empty_cache()

452
    @ProfilingContext4Debug("Process after vae decoder")
helloyongyang's avatar
helloyongyang committed
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
    def process_images_after_vae_decoder(self, save_video=True):
        # Merge results
        gen_lvideo = torch.cat(self.gen_video_list, dim=2).float()
        merge_audio = np.concatenate(self.cut_audio_list, axis=0).astype(np.float32)

        comfyui_images = vae_to_comfyui_image(gen_lvideo)

        # Apply frame interpolation if configured
        if "video_frame_interpolation" in self.config and self.vfi_model is not None:
            target_fps = self.config["video_frame_interpolation"]["target_fps"]
            logger.info(f"Interpolating frames from {self.config.get('fps', 16)} to {target_fps}")
            comfyui_images = self.vfi_model.interpolate_frames(
                comfyui_images,
                source_fps=self.config.get("fps", 16),
                target_fps=target_fps,
            )
469

helloyongyang's avatar
helloyongyang committed
470
471
472
473
474
        if save_video:
            if "video_frame_interpolation" in self.config and self.config["video_frame_interpolation"].get("target_fps"):
                fps = self.config["video_frame_interpolation"]["target_fps"]
            else:
                fps = self.config.get("fps", 16)
475

helloyongyang's avatar
helloyongyang committed
476
477
            if not dist.is_initialized() or dist.get_rank() == 0:
                logger.info(f"🎬 Start to save video 🎬")
478

helloyongyang's avatar
helloyongyang committed
479
480
                self._save_video_with_audio(comfyui_images, merge_audio, fps)
                logger.info(f"✅ Video saved successfully to: {self.config.save_video_path} ✅")
481

helloyongyang's avatar
helloyongyang committed
482
483
484
        # Convert audio to ComfyUI format
        audio_waveform = torch.from_numpy(merge_audio).unsqueeze(0).unsqueeze(0)
        comfyui_audio = {"waveform": audio_waveform, "sample_rate": self._audio_processor.audio_sr}
485

helloyongyang's avatar
helloyongyang committed
486
        return {"video": comfyui_images, "audio": comfyui_audio}
487

helloyongyang's avatar
helloyongyang committed
488
489
490
    def init_modules(self):
        super().init_modules()
        self.run_input_encoder = self._run_input_encoder_local_r2v_audio
491
492
493
494
495
496
497
498
499
500
501
502
503

    def _save_video_with_audio(self, images, audio_array, fps):
        """Save video with audio"""
        import tempfile

        with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as video_tmp:
            video_path = video_tmp.name

        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as audio_tmp:
            audio_path = audio_tmp.name

        try:
            save_to_video(images, video_path, fps)
504
            ta.save(audio_path, torch.tensor(audio_array[None]), sample_rate=self._audio_processor.audio_sr)  # type: ignore
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

            output_path = self.config.get("save_video_path")
            parent_dir = os.path.dirname(output_path)
            if parent_dir and not os.path.exists(parent_dir):
                os.makedirs(parent_dir, exist_ok=True)

            subprocess.call(["/usr/bin/ffmpeg", "-y", "-i", video_path, "-i", audio_path, output_path])

            logger.info(f"Saved video with audio to: {output_path}")

        finally:
            # Clean up temp files
            if os.path.exists(video_path):
                os.remove(video_path)
            if os.path.exists(audio_path):
                os.remove(audio_path)
wangshankun's avatar
wangshankun committed
521
522

    def load_transformer(self):
523
        """Load transformer with LoRA support"""
wangshankun's avatar
wangshankun committed
524
        base_model = WanAudioModel(self.config.model_path, self.config, self.init_device)
525
        if self.config.get("lora_configs") and self.config.lora_configs:
wangshankun's avatar
wangshankun committed
526
527
            assert not self.config.get("dit_quantized", False) or self.config.mm_config.get("weight_auto_quant", False)
            lora_wrapper = WanLoraWrapper(base_model)
528
529
530
531
532
533
            for lora_config in self.config.lora_configs:
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
                lora_name = lora_wrapper.load_lora(lora_path)
                lora_wrapper.apply_lora(lora_name, strength)
                logger.info(f"Loaded LoRA: {lora_name} with strength: {strength}")
wangshankun's avatar
wangshankun committed
534

wangshankun's avatar
wangshankun committed
535
536
        return base_model

helloyongyang's avatar
helloyongyang committed
537
    def load_audio_encoder(self):
538
539
540
        audio_encoder_path = os.path.join(self.config["model_path"], "audio_encoder")
        audio_encoder_offload = self.config.get("audio_encoder_cpu_offload", self.config.get("cpu_offload", False))
        model = SekoAudioEncoderModel(audio_encoder_path, self.config["audio_sr"], audio_encoder_offload)
helloyongyang's avatar
helloyongyang committed
541
        return model
542

helloyongyang's avatar
helloyongyang committed
543
    def load_audio_adapter(self):
544
545
546
547
548
        audio_adapter_offload = self.config.get("audio_adapter_cpu_offload", self.config.get("cpu_offload", False))
        if audio_adapter_offload:
            device = torch.device("cpu")
        else:
            device = torch.device("cuda")
helloyongyang's avatar
helloyongyang committed
549
        audio_adapter = AudioAdapter(
sandy's avatar
sandy committed
550
            attention_head_dim=self.config["dim"] // self.config["num_heads"],
helloyongyang's avatar
helloyongyang committed
551
552
553
554
555
556
557
558
559
            num_attention_heads=self.config["num_heads"],
            base_num_layers=self.config["num_layers"],
            interval=1,
            audio_feature_dim=1024,
            time_freq_dim=256,
            projection_transformer_layers=4,
            mlp_dims=(1024, 1024, 32 * 1024),
            quantized=self.config.get("adapter_quantized", False),
            quant_scheme=self.config.get("adapter_quant_scheme", None),
560
            cpu_offload=audio_adapter_offload,
helloyongyang's avatar
helloyongyang committed
561
        )
562
        audio_adapter.to(device)
helloyongyang's avatar
helloyongyang committed
563
564
565
566
567
568
569
        if self.config.get("adapter_quantized", False):
            if self.config.get("adapter_quant_scheme", None) == "fp8":
                model_name = "audio_adapter_fp8.safetensors"
            elif self.config.get("adapter_quant_scheme", None) == "int8":
                model_name = "audio_adapter_int8.safetensors"
            else:
                raise ValueError(f"Unsupported quant_scheme: {self.config.get('adapter_quant_scheme', None)}")
wangshankun's avatar
wangshankun committed
570
        else:
helloyongyang's avatar
helloyongyang committed
571
            model_name = "audio_adapter.safetensors"
572
573
574

        weights_dict = load_weights(os.path.join(self.config["model_path"], model_name), cpu_offload=audio_adapter_offload)
        audio_adapter.load_state_dict(weights_dict, strict=False)
helloyongyang's avatar
helloyongyang committed
575
        return audio_adapter.to(dtype=GET_DTYPE())
wangshankun's avatar
wangshankun committed
576

helloyongyang's avatar
helloyongyang committed
577
578
579
580
581
582
    @ProfilingContext("Load models")
    def load_model(self):
        super().load_model()
        self.audio_encoder = self.load_audio_encoder()
        self.audio_adapter = self.load_audio_adapter()
        self.model.set_audio_adapter(self.audio_adapter)
wangshankun's avatar
wangshankun committed
583
584

    def set_target_shape(self):
585
        """Set target shape for generation"""
wangshankun's avatar
wangshankun committed
586
587
        ret = {}
        num_channels_latents = 16
wangshankun's avatar
wangshankun committed
588
589
        if self.config.model_cls == "wan2.2_audio":
            num_channels_latents = self.config.num_channels_latents
590

wangshankun's avatar
wangshankun committed
591
592
593
594
595
596
597
598
599
600
601
        if self.config.task == "i2v":
            self.config.target_shape = (
                num_channels_latents,
                (self.config.target_video_length - 1) // self.config.vae_stride[0] + 1,
                self.config.lat_h,
                self.config.lat_w,
            )
            ret["lat_h"] = self.config.lat_h
            ret["lat_w"] = self.config.lat_w
        else:
            error_msg = "t2v task is not supported in WanAudioRunner"
602
            assert False, error_msg
wangshankun's avatar
wangshankun committed
603
604
605

        ret["target_shape"] = self.config.target_shape
        return ret
sandy's avatar
sandy committed
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650


@RUNNER_REGISTER("wan2.2_audio")
class Wan22AudioRunner(WanAudioRunner):
    def __init__(self, config):
        super().__init__(config)

    def load_vae_decoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")
        vae_config = {
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.2_VAE.pth"),
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
        vae_decoder = Wan2_2_VAE(**vae_config)
        return vae_decoder

    def load_vae_encoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")
        vae_config = {
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.2_VAE.pth"),
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
        if self.config.task != "i2v":
            return None
        else:
            return Wan2_2_VAE(**vae_config)

    def load_vae(self):
        vae_encoder = self.load_vae_encoder()
        vae_decoder = self.load_vae_decoder()
        return vae_encoder, vae_decoder