gradio_demo_zh.py 45.5 KB
Newer Older
gushiqiao's avatar
gushiqiao committed
1
2
3
4
5
6
7
8
9
10
import os
import gradio as gr
import argparse
import json
import torch
import gc
from easydict import EasyDict
from datetime import datetime
from loguru import logger

gushiqiao's avatar
gushiqiao committed
11
12
import importlib.util
import psutil
gushiqiao's avatar
gushiqiao committed
13
import random
gushiqiao's avatar
gushiqiao committed
14
15
16
17
18
19
20
21
22
23

logger.add(
    "inference_logs.log",
    rotation="100 MB",
    encoding="utf-8",
    enqueue=True,
    backtrace=True,
    diagnose=True,
)

gushiqiao's avatar
gushiqiao committed
24
25
26
27
28
29
MAX_NUMPY_SEED = 2**32 - 1


def generate_random_seed():
    return random.randint(0, MAX_NUMPY_SEED)

gushiqiao's avatar
gushiqiao committed
30

gushiqiao's avatar
gushiqiao committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
def is_module_installed(module_name):
    try:
        spec = importlib.util.find_spec(module_name)
        return spec is not None
    except ModuleNotFoundError:
        return False


def get_available_quant_ops():
    available_ops = []

    vllm_installed = is_module_installed("vllm")
    if vllm_installed:
        available_ops.append(("vllm", True))
    else:
        available_ops.append(("vllm", False))

    sgl_installed = is_module_installed("sgl_kernel")
    if sgl_installed:
        available_ops.append(("sgl", True))
    else:
        available_ops.append(("sgl", False))

    q8f_installed = is_module_installed("q8_kernels")
    if q8f_installed:
        available_ops.append(("q8f", True))
    else:
        available_ops.append(("q8f", False))

    return available_ops


def get_available_attn_ops():
    available_ops = []

    vllm_installed = is_module_installed("flash_attn")
    if vllm_installed:
        available_ops.append(("flash_attn2", True))
    else:
        available_ops.append(("flash_attn2", False))

    sgl_installed = is_module_installed("flash_attn_interface")
    if sgl_installed:
        available_ops.append(("flash_attn3", True))
    else:
        available_ops.append(("flash_attn3", False))

    q8f_installed = is_module_installed("sageattention")
    if q8f_installed:
        available_ops.append(("sage_attn2", True))
    else:
        available_ops.append(("sage_attn2", False))

gushiqiao's avatar
gushiqiao committed
84
85
86
87
88
89
    torch_installed = is_module_installed("torch")
    if torch_installed:
        available_ops.append(("torch_sdpa", True))
    else:
        available_ops.append(("torch_sdpa", False))

gushiqiao's avatar
gushiqiao committed
90
91
92
93
94
95
96
97
98
    return available_ops


def get_gpu_memory(gpu_idx=0):
    if not torch.cuda.is_available():
        return 0
    try:
        with torch.cuda.device(gpu_idx):
            memory_info = torch.cuda.mem_get_info()
gushiqiao's avatar
gushiqiao committed
99
            total_memory = memory_info[1] / (1024**3)  # Convert bytes to GB
gushiqiao's avatar
gushiqiao committed
100
101
102
103
104
105
106
107
108
            return total_memory
    except Exception as e:
        logger.warning(f"获取GPU内存失败: {e}")
        return 0


def get_cpu_memory():
    available_bytes = psutil.virtual_memory().available
    return available_bytes / 1024**3
gushiqiao's avatar
gushiqiao committed
109
110


gushiqiao's avatar
gushiqiao committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
def cleanup_memory():
    gc.collect()

    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

    try:
        import psutil

        if hasattr(psutil, "virtual_memory"):
            if os.name == "posix":
                try:
                    os.system("sync")
                except:  # noqa
                    pass
    except:  # noqa
        pass


gushiqiao's avatar
gushiqiao committed
131
132
133
134
135
136
def generate_unique_filename(base_dir="./saved_videos"):
    os.makedirs(base_dir, exist_ok=True)
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    return os.path.join(base_dir, f"{model_cls}_{timestamp}.mp4")


gushiqiao's avatar
gushiqiao committed
137
138
139
140
141
142
143
144
def is_fp8_supported_gpu():
    if not torch.cuda.is_available():
        return False
    compute_capability = torch.cuda.get_device_capability(0)
    major, minor = compute_capability
    return (major == 8 and minor == 9) or (major >= 9)


gushiqiao's avatar
gushiqiao committed
145
146
147
148
149
150
151
152
153
154
155
156
def is_ada_architecture_gpu():
    if not torch.cuda.is_available():
        return False
    try:
        gpu_name = torch.cuda.get_device_name(0).upper()
        ada_keywords = ["RTX 40", "RTX40", "4090", "4080", "4070", "4060"]
        return any(keyword in gpu_name for keyword in ada_keywords)
    except Exception as e:
        logger.warning(f"Failed to get GPU name: {e}")
        return False


gushiqiao's avatar
gushiqiao committed
157
158
global_runner = None
current_config = None
gushiqiao's avatar
gushiqiao committed
159
160
161
162
163
cur_dit_quant_scheme = None
cur_clip_quant_scheme = None
cur_t5_quant_scheme = None
cur_precision_mode = None
cur_enable_teacache = None
gushiqiao's avatar
gushiqiao committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

available_quant_ops = get_available_quant_ops()
quant_op_choices = []
for op_name, is_installed in available_quant_ops:
    status_text = "✅ 已安装" if is_installed else "❌ 未安装"
    display_text = f"{op_name} ({status_text})"
    quant_op_choices.append((op_name, display_text))

available_attn_ops = get_available_attn_ops()
attn_op_choices = []
for op_name, is_installed in available_attn_ops:
    status_text = "✅ 已安装" if is_installed else "❌ 未安装"
    display_text = f"{op_name} ({status_text})"
    attn_op_choices.append((op_name, display_text))


gushiqiao's avatar
gushiqiao committed
180
181
182
183
184
185
186
187
188
189
190
191
def run_inference(
    prompt,
    negative_prompt,
    save_video_path,
    torch_compile,
    infer_steps,
    num_frames,
    resolution,
    seed,
    sample_shift,
    enable_teacache,
    teacache_thresh,
gushiqiao's avatar
gushiqiao committed
192
    use_ret_steps,
gushiqiao's avatar
gushiqiao committed
193
194
195
196
197
198
199
200
201
202
203
204
    enable_cfg,
    cfg_scale,
    dit_quant_scheme,
    t5_quant_scheme,
    clip_quant_scheme,
    fps,
    use_tiny_vae,
    use_tiling_vae,
    lazy_load,
    precision_mode,
    cpu_offload,
    offload_granularity,
gushiqiao's avatar
gushiqiao committed
205
    offload_ratio,
gushiqiao's avatar
gushiqiao committed
206
207
    t5_cpu_offload,
    unload_modules,
gushiqiao's avatar
gushiqiao committed
208
209
210
211
    t5_offload_granularity,
    attention_type,
    quant_op,
    rotary_chunk,
gushiqiao's avatar
gushiqiao committed
212
    rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
213
    clean_cuda_cache,
gushiqiao's avatar
gushiqiao committed
214
    image_path=None,
gushiqiao's avatar
gushiqiao committed
215
):
gushiqiao's avatar
gushiqiao committed
216
217
    cleanup_memory()

gushiqiao's avatar
gushiqiao committed
218
219
220
    quant_op = quant_op.split("(")[0].strip()
    attention_type = attention_type.split("(")[0].strip()

gushiqiao's avatar
gushiqiao committed
221
    global global_runner, current_config, model_path, task
gushiqiao's avatar
gushiqiao committed
222
    global cur_dit_quant_scheme, cur_clip_quant_scheme, cur_t5_quant_scheme, cur_precision_mode, cur_enable_teacache
gushiqiao's avatar
gushiqiao committed
223
224
225
226
227
228

    if os.path.exists(os.path.join(model_path, "config.json")):
        with open(os.path.join(model_path, "config.json"), "r") as f:
            model_config = json.load(f)

    if task == "t2v":
gushiqiao's avatar
gushiqiao committed
229
        if model_size == "1.3b":
gushiqiao's avatar
gushiqiao committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
            # 1.3B
            coefficient = [
                [
                    -5.21862437e04,
                    9.23041404e03,
                    -5.28275948e02,
                    1.36987616e01,
                    -4.99875664e-02,
                ],
                [
                    2.39676752e03,
                    -1.31110545e03,
                    2.01331979e02,
                    -8.29855975e00,
                    1.37887774e-01,
                ],
            ]
        else:
            # 14B
            coefficient = [
                [
                    -3.03318725e05,
                    4.90537029e04,
                    -2.65530556e03,
                    5.87365115e01,
                    -3.15583525e-01,
                ],
                [
                    -5784.54975374,
                    5449.50911966,
                    -1811.16591783,
                    256.27178429,
                    -13.02252404,
                ],
            ]
    elif task == "i2v":
        if resolution in [
            "1280x720",
            "720x1280",
            "1280x544",
            "544x1280",
            "1104x832",
            "832x1104",
            "960x960",
        ]:
            # 720p
            coefficient = [
                [
                    8.10705460e03,
                    2.13393892e03,
                    -3.72934672e02,
                    1.66203073e01,
                    -4.17769401e-02,
                ],
                [-114.36346466, 65.26524496, -18.82220707, 4.91518089, -0.23412683],
            ]
        else:
            # 480p
            coefficient = [
                [
                    2.57151496e05,
                    -3.54229917e04,
                    1.40286849e03,
                    -1.35890334e01,
                    1.32517977e-01,
                ],
                [
                    -3.02331670e02,
                    2.23948934e02,
                    -5.25463970e01,
                    5.87348440e00,
                    -2.01973289e-01,
                ],
            ]

    save_video_path = generate_unique_filename()

    is_dit_quant = dit_quant_scheme != "bf16"
    is_t5_quant = t5_quant_scheme != "bf16"
    if is_t5_quant:
gushiqiao's avatar
gushiqiao committed
310
311
        t5_path = os.path.join(model_path, t5_quant_scheme)
        t5_quant_ckpt = os.path.join(t5_path, f"models_t5_umt5-xxl-enc-{t5_quant_scheme}.pth")
gushiqiao's avatar
gushiqiao committed
312
313
314
    else:
        t5_quant_ckpt = None

gushiqiao's avatar
gushiqiao committed
315
    is_clip_quant = clip_quant_scheme != "fp16"
gushiqiao's avatar
gushiqiao committed
316
    if is_clip_quant:
gushiqiao's avatar
gushiqiao committed
317
318
        clip_path = os.path.join(model_path, clip_quant_scheme)
        clip_quant_ckpt = os.path.join(clip_path, f"clip-{clip_quant_scheme}.pth")
gushiqiao's avatar
gushiqiao committed
319
320
321
    else:
        clip_quant_ckpt = None

gushiqiao's avatar
gushiqiao committed
322
323
    needs_reinit = (
        lazy_load
gushiqiao's avatar
gushiqiao committed
324
        or unload_modules
gushiqiao's avatar
gushiqiao committed
325
326
327
328
329
330
331
332
333
334
335
336
337
        or global_runner is None
        or current_config is None
        or cur_dit_quant_scheme is None
        or cur_dit_quant_scheme != dit_quant_scheme
        or cur_clip_quant_scheme is None
        or cur_clip_quant_scheme != clip_quant_scheme
        or cur_t5_quant_scheme is None
        or cur_t5_quant_scheme != t5_quant_scheme
        or cur_precision_mode is None
        or cur_precision_mode != precision_mode
        or cur_enable_teacache is None
        or cur_enable_teacache != enable_teacache
    )
gushiqiao's avatar
gushiqiao committed
338
339
340
341
342
343
344
345
346
347
348
349
350
351

    if torch_compile:
        os.environ["ENABLE_GRAPH_MODE"] = "true"
    else:
        os.environ["ENABLE_GRAPH_MODE"] = "false"
    if precision_mode == "bf16":
        os.environ["DTYPE"] = "BF16"
    else:
        os.environ.pop("DTYPE", None)

    if is_dit_quant:
        if quant_op == "vllm":
            mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Vllm"
        elif quant_op == "sgl":
gushiqiao's avatar
gushiqiao committed
352
353
354
355
            if dit_quant_scheme == "int8":
                mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Sgl-ActVllm"
            else:
                mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Sgl"
gushiqiao's avatar
gushiqiao committed
356
357
        elif quant_op == "q8f":
            mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Q8F"
gushiqiao's avatar
gushiqiao committed
358
359

        dit_quantized_ckpt = os.path.join(model_path, dit_quant_scheme)
gushiqiao's avatar
gushiqiao committed
360
361
362
        if os.path.exists(os.path.join(dit_quantized_ckpt, "config.json")):
            with open(os.path.join(dit_quantized_ckpt, "config.json"), "r") as f:
                quant_model_config = json.load(f)
gushiqiao's avatar
gushiqiao committed
363
364
        else:
            quant_model_config = {}
gushiqiao's avatar
gushiqiao committed
365
366
    else:
        mm_type = "Default"
gushiqiao's avatar
gushiqiao committed
367
        dit_quantized_ckpt = None
gushiqiao's avatar
gushiqiao committed
368
        quant_model_config = {}
gushiqiao's avatar
gushiqiao committed
369
370
371
372
373
374

    config = {
        "infer_steps": infer_steps,
        "target_video_length": num_frames,
        "target_width": int(resolution.split("x")[0]),
        "target_height": int(resolution.split("x")[1]),
gushiqiao's avatar
gushiqiao committed
375
376
377
        "self_attn_1_type": attention_type,
        "cross_attn_1_type": attention_type,
        "cross_attn_2_type": attention_type,
gushiqiao's avatar
gushiqiao committed
378
379
380
381
382
383
        "seed": seed,
        "enable_cfg": enable_cfg,
        "sample_guide_scale": cfg_scale,
        "sample_shift": sample_shift,
        "cpu_offload": cpu_offload,
        "offload_granularity": offload_granularity,
gushiqiao's avatar
gushiqiao committed
384
        "offload_ratio": offload_ratio,
gushiqiao's avatar
gushiqiao committed
385
        "t5_offload_granularity": t5_offload_granularity,
gushiqiao's avatar
gushiqiao committed
386
        "dit_quantized_ckpt": dit_quantized_ckpt,
gushiqiao's avatar
gushiqiao committed
387
388
389
390
391
        "mm_config": {
            "mm_type": mm_type,
        },
        "fps": fps,
        "feature_caching": "Tea" if enable_teacache else "NoCaching",
gushiqiao's avatar
gushiqiao committed
392
393
        "coefficients": coefficient[0] if use_ret_steps else coefficient[1],
        "use_ret_steps": use_ret_steps,
gushiqiao's avatar
gushiqiao committed
394
        "teacache_thresh": teacache_thresh,
gushiqiao's avatar
gushiqiao committed
395
396
        "t5_cpu_offload": t5_cpu_offload,
        "unload_modules": unload_modules,
gushiqiao's avatar
gushiqiao committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
        "t5_quantized": is_t5_quant,
        "t5_quantized_ckpt": t5_quant_ckpt,
        "t5_quant_scheme": t5_quant_scheme,
        "clip_quantized": is_clip_quant,
        "clip_quantized_ckpt": clip_quant_ckpt,
        "clip_quant_scheme": clip_quant_scheme,
        "use_tiling_vae": use_tiling_vae,
        "tiny_vae": use_tiny_vae,
        "tiny_vae_path": (os.path.join(model_path, "taew2_1.pth") if use_tiny_vae else None),
        "lazy_load": lazy_load,
        "do_mm_calib": False,
        "parallel_attn_type": None,
        "parallel_vae": False,
        "max_area": False,
        "vae_stride": (4, 8, 8),
        "patch_size": (1, 2, 2),
        "lora_path": None,
        "strength_model": 1.0,
        "use_prompt_enhancer": False,
        "text_len": 512,
        "rotary_chunk": rotary_chunk,
gushiqiao's avatar
gushiqiao committed
418
        "rotary_chunk_size": rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
419
        "clean_cuda_cache": clean_cuda_cache,
gushiqiao's avatar
gushiqiao committed
420
        "denoising_step_list": [1000, 750, 500, 250],
gushiqiao's avatar
gushiqiao committed
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
    }

    args = argparse.Namespace(
        model_cls=model_cls,
        task=task,
        model_path=model_path,
        prompt_enhancer=None,
        prompt=prompt,
        negative_prompt=negative_prompt,
        image_path=image_path,
        save_video_path=save_video_path,
    )

    config.update({k: v for k, v in vars(args).items()})
    config = EasyDict(config)
    config.update(model_config)
gushiqiao's avatar
gushiqiao committed
437
    config.update(quant_model_config)
gushiqiao's avatar
gushiqiao committed
438
439
440
441

    logger.info(f"使用模型: {model_path}")
    logger.info(f"推理配置:\n{json.dumps(config, indent=4, ensure_ascii=False)}")

gushiqiao's avatar
gushiqiao committed
442
    # Initialize or reuse the runner
gushiqiao's avatar
gushiqiao committed
443
444
445
446
447
448
449
    runner = global_runner
    if needs_reinit:
        if runner is not None:
            del runner
            torch.cuda.empty_cache()
            gc.collect()

gushiqiao's avatar
gushiqiao committed
450
451
        from lightx2v.infer import init_runner  # noqa

gushiqiao's avatar
gushiqiao committed
452
453
        runner = init_runner(config)
        current_config = config
gushiqiao's avatar
gushiqiao committed
454
455
456
457
458
        cur_dit_quant_scheme = dit_quant_scheme
        cur_clip_quant_scheme = clip_quant_scheme
        cur_t5_quant_scheme = t5_quant_scheme
        cur_precision_mode = precision_mode
        cur_enable_teacache = enable_teacache
gushiqiao's avatar
gushiqiao committed
459
460
461

        if not lazy_load:
            global_runner = runner
gushiqiao's avatar
gushiqiao committed
462
463
    else:
        runner.config = config
gushiqiao's avatar
gushiqiao committed
464

465
    runner.run_pipeline()
gushiqiao's avatar
gushiqiao committed
466

gushiqiao's avatar
gushiqiao committed
467
468
469
470
471
472
473
474
475
    del config, args, model_config, quant_model_config
    if "dit_quantized_ckpt" in locals():
        del dit_quantized_ckpt
    if "t5_quant_ckpt" in locals():
        del t5_quant_ckpt
    if "clip_quant_ckpt" in locals():
        del clip_quant_ckpt

    cleanup_memory()
gushiqiao's avatar
gushiqiao committed
476
477
478
479

    return save_video_path


gushiqiao's avatar
gushiqiao committed
480
481
482
483
484
485
def handle_lazy_load_change(lazy_load_enabled):
    """Handle lazy_load checkbox change to automatically enable unload_modules"""
    return gr.update(value=lazy_load_enabled)


def auto_configure(enable_auto_config, resolution):
gushiqiao's avatar
gushiqiao committed
486
487
488
489
490
491
492
493
494
    default_config = {
        "torch_compile_val": False,
        "lazy_load_val": False,
        "rotary_chunk_val": False,
        "rotary_chunk_size_val": 100,
        "clean_cuda_cache_val": False,
        "cpu_offload_val": False,
        "offload_granularity_val": "block",
        "offload_ratio_val": 1,
gushiqiao's avatar
gushiqiao committed
495
496
        "t5_cpu_offload_val": False,
        "unload_modules_val": False,
gushiqiao's avatar
gushiqiao committed
497
498
499
500
501
502
503
504
505
506
507
508
509
        "t5_offload_granularity_val": "model",
        "attention_type_val": attn_op_choices[0][1],
        "quant_op_val": quant_op_choices[0][1],
        "dit_quant_scheme_val": "bf16",
        "t5_quant_scheme_val": "bf16",
        "clip_quant_scheme_val": "fp16",
        "precision_mode_val": "fp32",
        "use_tiny_vae_val": False,
        "use_tiling_vae_val": False,
        "enable_teacache_val": False,
        "teacache_thresh_val": 0.26,
        "use_ret_steps_val": False,
    }
gushiqiao's avatar
gushiqiao committed
510

gushiqiao's avatar
gushiqiao committed
511
512
513
514
515
516
517
518
519
520
521
    if not enable_auto_config:
        return tuple(gr.update(value=default_config[key]) for key in default_config)

    gpu_memory = round(get_gpu_memory())
    cpu_memory = round(get_cpu_memory())

    if is_fp8_supported_gpu():
        quant_type = "fp8"
    else:
        quant_type = "int8"

gushiqiao's avatar
gushiqiao committed
522
    attn_priority = ["sage_attn2", "flash_attn3", "flash_attn2", "torch_sdpa"]
gushiqiao's avatar
gushiqiao committed
523
524
525
526
527

    if is_ada_architecture_gpu():
        quant_op_priority = ["q8f", "vllm", "sgl"]
    else:
        quant_op_priority = ["sgl", "vllm", "q8f"]
gushiqiao's avatar
gushiqiao committed
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556

    for op in attn_priority:
        if dict(available_attn_ops).get(op):
            default_config["attention_type_val"] = dict(attn_op_choices)[op]
            break

    for op in quant_op_priority:
        if dict(available_quant_ops).get(op):
            default_config["quant_op_val"] = dict(quant_op_choices)[op]
            break

    if resolution in [
        "1280x720",
        "720x1280",
        "1280x544",
        "544x1280",
        "1104x832",
        "832x1104",
        "960x960",
    ]:
        res = "720p"
    elif resolution in [
        "960x544",
        "544x960",
    ]:
        res = "540p"
    else:
        res = "480p"

gushiqiao's avatar
gushiqiao committed
557
    if model_size == "14b":
gushiqiao's avatar
gushiqiao committed
558
559
560
561
562
563
564
        is_14b = True
    else:
        is_14b = False

    if res == "720p" and is_14b:
        gpu_rules = [
            (80, {}),
gushiqiao's avatar
gushiqiao committed
565
566
567
            (48, {"cpu_offload_val": True, "offload_ratio_val": 0.5, "t5_cpu_offload_val": True}),
            (40, {"cpu_offload_val": True, "offload_ratio_val": 0.8, "t5_cpu_offload_val": True}),
            (32, {"cpu_offload_val": True, "offload_ratio_val": 1, "t5_cpu_offload_val": True}),
gushiqiao's avatar
gushiqiao committed
568
569
570
571
            (
                24,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
572
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
573
574
575
576
577
578
579
580
581
582
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                },
            ),
            (
                16,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
583
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
584
585
586
587
588
589
590
591
592
593
594
595
596
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                },
            ),
            (
                12,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
597
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
598
599
600
601
602
603
604
605
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                    "clean_cuda_cache_val": True,
gushiqiao's avatar
gushiqiao committed
606
                    "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
607
608
609
610
611
612
                },
            ),
            (
                8,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
613
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
614
615
616
617
618
619
620
621
622
623
624
625
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                    "clean_cuda_cache_val": True,
                    "t5_quant_scheme_val": quant_type,
                    "clip_quant_scheme_val": quant_type,
                    "dit_quant_scheme_val": quant_type,
                    "lazy_load_val": True,
gushiqiao's avatar
gushiqiao committed
626
                    "unload_modules_val": True,
gushiqiao's avatar
gushiqiao committed
627
                    "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
628
629
630
                },
            ),
        ]
gushiqiao's avatar
gushiqiao committed
631

gushiqiao's avatar
gushiqiao committed
632
633
634
    elif is_14b:
        gpu_rules = [
            (80, {}),
gushiqiao's avatar
gushiqiao committed
635
636
637
            (48, {"cpu_offload_val": True, "offload_ratio_val": 0.2, "t5_cpu_offload_val": True}),
            (40, {"cpu_offload_val": True, "offload_ratio_val": 0.5, "t5_cpu_offload_val": True}),
            (24, {"cpu_offload_val": True, "offload_ratio_val": 0.8, "t5_cpu_offload_val": True}),
gushiqiao's avatar
gushiqiao committed
638
639
640
641
            (
                16,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
642
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
643
644
645
646
647
648
649
650
651
652
653
654
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "block",
                },
            ),
            (
                8,
                (
                    {
                        "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
655
                        "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
656
657
658
659
660
661
662
663
664
                        "offload_ratio_val": 1,
                        "t5_offload_granularity_val": "block",
                        "precision_mode_val": "bf16",
                        "use_tiling_vae_val": True,
                        "offload_granularity_val": "phase",
                        "t5_quant_scheme_val": quant_type,
                        "clip_quant_scheme_val": quant_type,
                        "dit_quant_scheme_val": quant_type,
                        "lazy_load_val": True,
gushiqiao's avatar
gushiqiao committed
665
                        "unload_modules_val": True,
gushiqiao's avatar
gushiqiao committed
666
667
                        "rotary_chunk_val": True,
                        "rotary_chunk_size_val": 10000,
gushiqiao's avatar
gushiqiao committed
668
                        "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
669
670
671
672
                    }
                    if res == "540p"
                    else {
                        "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
673
                        "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
674
675
676
677
678
679
680
681
682
                        "offload_ratio_val": 1,
                        "t5_offload_granularity_val": "block",
                        "precision_mode_val": "bf16",
                        "use_tiling_vae_val": True,
                        "offload_granularity_val": "phase",
                        "t5_quant_scheme_val": quant_type,
                        "clip_quant_scheme_val": quant_type,
                        "dit_quant_scheme_val": quant_type,
                        "lazy_load_val": True,
gushiqiao's avatar
gushiqiao committed
683
                        "unload_modules_val": True,
gushiqiao's avatar
gushiqiao committed
684
                        "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
685
686
687
688
689
                    }
                ),
            ),
        ]

gushiqiao's avatar
gushiqiao committed
690
    else:
gushiqiao's avatar
gushiqiao committed
691
692
693
694
695
696
697
698
699
700
701
        gpu_rules = [
            (24, {}),
            (
                8,
                {
                    "t5_cpu_offload_val": True,
                    "t5_offload_granularity_val": "block",
                    "t5_quant_scheme_val": quant_type,
                },
            ),
        ]
gushiqiao's avatar
gushiqiao committed
702

gushiqiao's avatar
gushiqiao committed
703
704
705
706
707
708
709
    if is_14b:
        cpu_rules = [
            (128, {}),
            (64, {"dit_quant_scheme_val": quant_type}),
            (32, {"dit_quant_scheme_val": quant_type, "lazy_load_val": True}),
            (
                16,
gushiqiao's avatar
gushiqiao committed
710
711
712
713
714
                {
                    "dit_quant_scheme_val": quant_type,
                    "t5_quant_scheme_val": quant_type,
                    "clip_quant_scheme_val": quant_type,
                    "lazy_load_val": True,
gushiqiao's avatar
gushiqiao committed
715
                    "unload_modules_val": True,
gushiqiao's avatar
gushiqiao committed
716
                },
gushiqiao's avatar
gushiqiao committed
717
718
            ),
        ]
gushiqiao's avatar
gushiqiao committed
719
    else:
gushiqiao's avatar
gushiqiao committed
720
721
722
723
724
725
726
727
728
729
730
        cpu_rules = [
            (64, {}),
            (
                16,
                {
                    "t5_quant_scheme_val": quant_type,
                    "unload_modules_val": True,
                    "use_tiny_vae_val": True,
                },
            ),
        ]
gushiqiao's avatar
gushiqiao committed
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745

    for threshold, updates in gpu_rules:
        if gpu_memory >= threshold:
            default_config.update(updates)
            break

    for threshold, updates in cpu_rules:
        if cpu_memory >= threshold:
            default_config.update(updates)
            break

    return tuple(gr.update(value=default_config[key]) for key in default_config)


def main():
gushiqiao's avatar
gushiqiao committed
746
    def toggle_image_input(task):
gushiqiao's avatar
gushiqiao committed
747
        return gr.update(visible=(task == "i2v"))
gushiqiao's avatar
gushiqiao committed
748
749

    with gr.Blocks(
gushiqiao's avatar
gushiqiao committed
750
        title="Lightx2v (轻量级视频推理和生成引擎)",
gushiqiao's avatar
gushiqiao committed
751
752
753
754
755
756
        css="""
        .main-content { max-width: 1400px; margin: auto; }
        .output-video { max-height: 650px; }
        .warning { color: #ff6b6b; font-weight: bold; }
        .advanced-options { background: #f9f9ff; border-radius: 10px; padding: 15px; }
        .tab-button { font-size: 16px; padding: 10px 20px; }
gushiqiao's avatar
gushiqiao committed
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
        .auto-config-title {
            background: linear-gradient(45deg, #ff6b6b, #4ecdc4);
            background-clip: text;
            -webkit-background-clip: text;
            color: transparent;
            text-align: center;
            margin: 0 !important;
            padding: 8px;
            border: 2px solid #4ecdc4;
            border-radius: 8px;
            background-color: #f0f8ff;
        }
        .auto-config-checkbox {
            border: 2px solid #ff6b6b !important;
            border-radius: 8px !important;
            padding: 10px !important;
            background: linear-gradient(135deg, #fff5f5, #f0fff0) !important;
            box-shadow: 0 2px 8px rgba(255, 107, 107, 0.2) !important;
        }
        .auto-config-checkbox label {
            font-size: 16px !important;
            font-weight: bold !important;
            color: #2c3e50 !important;
        }
gushiqiao's avatar
gushiqiao committed
781
782
783
784
785
786
    """,
    ) as demo:
        gr.Markdown(f"# 🎬 {model_cls} 视频生成器")
        gr.Markdown(f"### 使用模型: {model_path}")

        with gr.Tabs() as tabs:
gushiqiao's avatar
gushiqiao committed
787
            with gr.Tab("基本设置", id=1):
gushiqiao's avatar
gushiqiao committed
788
789
790
791
792
                with gr.Row():
                    with gr.Column(scale=4):
                        with gr.Group():
                            gr.Markdown("## 📥 输入参数")

gushiqiao's avatar
gushiqiao committed
793
794
795
796
797
798
799
800
801
                            if task == "i2v":
                                with gr.Row():
                                    image_path = gr.Image(
                                        label="输入图像",
                                        type="filepath",
                                        height=300,
                                        interactive=True,
                                        visible=True,
                                    )
gushiqiao's avatar
gushiqiao committed
802
803
804
805
806
807
808
809
810
811
812
813
814

                            with gr.Row():
                                with gr.Column():
                                    prompt = gr.Textbox(
                                        label="提示词",
                                        lines=3,
                                        placeholder="描述视频内容...",
                                        max_lines=5,
                                    )
                                with gr.Column():
                                    negative_prompt = gr.Textbox(
                                        label="负向提示词",
                                        lines=3,
gushiqiao's avatar
gushiqiao committed
815
                                        placeholder="不希望出现在视频中的内容...",
gushiqiao's avatar
gushiqiao committed
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
                                        max_lines=5,
                                        value="镜头晃动,色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走",
                                    )
                                with gr.Column():
                                    resolution = gr.Dropdown(
                                        choices=[
                                            # 720p
                                            ("1280x720 (16:9, 720p)", "1280x720"),
                                            ("720x1280 (9:16, 720p)", "720x1280"),
                                            ("1280x544 (21:9, 720p)", "1280x544"),
                                            ("544x1280 (9:21, 720p)", "544x1280"),
                                            ("1104x832 (4:3, 720p)", "1104x832"),
                                            ("832x1104 (3:4, 720p)", "832x1104"),
                                            ("960x960 (1:1, 720p)", "960x960"),
                                            # 480p
                                            ("960x544 (16:9, 540p)", "960x544"),
                                            ("544x960 (9:16, 540p)", "544x960"),
                                            ("832x480 (16:9, 480p)", "832x480"),
                                            ("480x832 (9:16, 480p)", "480x832"),
                                            ("832x624 (4:3, 480p)", "832x624"),
                                            ("624x832 (3:4, 480p)", "624x832"),
                                            ("720x720 (1:1, 480p)", "720x720"),
                                            ("512x512 (1:1, 480p)", "512x512"),
                                        ],
                                        value="832x480",
                                        label="最大分辨率",
                                    )
gushiqiao's avatar
gushiqiao committed
843
844

                                with gr.Column():
gushiqiao's avatar
gushiqiao committed
845
846
847
848
849
850
851
852
                                    with gr.Group():
                                        gr.Markdown("### 🚀 **智能配置推荐**", elem_classes=["auto-config-title"])
                                        enable_auto_config = gr.Checkbox(
                                            label="🎯 **自动配置推理选项**",
                                            value=False,
                                            info="💡 **智能优化GPU设置以匹配当前分辨率。修改分辨率后,请重新勾选此选项,否则可能导致性能下降或运行失败。**",
                                            elem_classes=["auto-config-checkbox"],
                                        )
gushiqiao's avatar
gushiqiao committed
853
                                with gr.Column(scale=9):
gushiqiao's avatar
gushiqiao committed
854
855
                                    seed = gr.Slider(
                                        label="随机种子",
gushiqiao's avatar
gushiqiao committed
856
857
                                        minimum=0,
                                        maximum=MAX_NUMPY_SEED,
gushiqiao's avatar
gushiqiao committed
858
                                        step=1,
gushiqiao's avatar
gushiqiao committed
859
                                        value=generate_random_seed(),
gushiqiao's avatar
gushiqiao committed
860
                                    )
gushiqiao's avatar
gushiqiao committed
861
                                with gr.Column(scale=1):
gushiqiao's avatar
gushiqiao committed
862
                                    randomize_btn = gr.Button("🎲 随机化", variant="secondary")
gushiqiao's avatar
gushiqiao committed
863
864

                                randomize_btn.click(fn=generate_random_seed, inputs=None, outputs=seed)
gushiqiao's avatar
gushiqiao committed
865

gushiqiao's avatar
gushiqiao committed
866
                                with gr.Column():
gushiqiao's avatar
gushiqiao committed
867
868
                                    # 根据模型类别设置默认推理步数
                                    default_infer_steps = 4 if model_cls == "wan2.1_distill" else 40
gushiqiao's avatar
gushiqiao committed
869
870
871
872
873
                                    infer_steps = gr.Slider(
                                        label="推理步数",
                                        minimum=1,
                                        maximum=100,
                                        step=1,
gushiqiao's avatar
gushiqiao committed
874
                                        value=default_infer_steps,
gushiqiao's avatar
gushiqiao committed
875
                                        info="视频生成的推理步数。增加步数可能提高质量但降低速度。",
gushiqiao's avatar
gushiqiao committed
876
877
                                    )

gushiqiao's avatar
gushiqiao committed
878
879
                            # 根据模型类别设置默认CFG
                            default_enable_cfg = False if model_cls == "wan2.1_distill" else True
gushiqiao's avatar
gushiqiao committed
880
881
                            enable_cfg = gr.Checkbox(
                                label="启用无分类器引导",
gushiqiao's avatar
gushiqiao committed
882
                                value=default_enable_cfg,
gushiqiao's avatar
gushiqiao committed
883
884
885
886
887
888
889
890
                                info="启用无分类器引导以控制提示词强度",
                            )
                            cfg_scale = gr.Slider(
                                label="CFG缩放因子",
                                minimum=1,
                                maximum=10,
                                step=1,
                                value=5,
gushiqiao's avatar
gushiqiao committed
891
                                info="控制提示词的影响强度。值越高,提示词的影响越大。",
gushiqiao's avatar
gushiqiao committed
892
893
894
895
896
897
898
                            )
                            sample_shift = gr.Slider(
                                label="分布偏移",
                                value=5,
                                minimum=0,
                                maximum=10,
                                step=1,
gushiqiao's avatar
gushiqiao committed
899
                                info="控制样本分布偏移的程度。值越大表示偏移越明显。",
gushiqiao's avatar
gushiqiao committed
900
901
                            )

gushiqiao's avatar
gushiqiao committed
902
903
904
905
906
907
                            fps = gr.Slider(
                                label="每秒帧数(FPS)",
                                minimum=8,
                                maximum=30,
                                step=1,
                                value=16,
gushiqiao's avatar
gushiqiao committed
908
                                info="视频的每秒帧数。较高的FPS会产生更流畅的视频。",
gushiqiao's avatar
gushiqiao committed
909
910
911
912
913
914
915
                            )
                            num_frames = gr.Slider(
                                label="总帧数",
                                minimum=16,
                                maximum=120,
                                step=1,
                                value=81,
gushiqiao's avatar
gushiqiao committed
916
                                info="视频中的总帧数。更多帧数会产生更长的视频。",
gushiqiao's avatar
gushiqiao committed
917
                            )
gushiqiao's avatar
gushiqiao committed
918

gushiqiao's avatar
gushiqiao committed
919
920
921
922
923
                        save_video_path = gr.Textbox(
                            label="输出视频路径",
                            value=generate_unique_filename(),
                            info="必须包含.mp4扩展名。如果留空或使用默认值,将自动生成唯一文件名。",
                        )
gushiqiao's avatar
gushiqiao committed
924
925
926
927
928
929
930
931
932
933
                    with gr.Column(scale=6):
                        gr.Markdown("## 📤 生成的视频")
                        output_video = gr.Video(
                            label="结果",
                            height=624,
                            width=360,
                            autoplay=True,
                            elem_classes=["output-video"],
                        )

gushiqiao's avatar
gushiqiao committed
934
                        infer_btn = gr.Button("生成视频", variant="primary", size="lg")
gushiqiao's avatar
gushiqiao committed
935

gushiqiao's avatar
gushiqiao committed
936
937
            with gr.Tab("⚙️ 高级选项", id=2):
                with gr.Group(elem_classes="advanced-options"):
gushiqiao's avatar
gushiqiao committed
938
                    gr.Markdown("### GPU内存优化")
gushiqiao's avatar
gushiqiao committed
939
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
940
941
                        rotary_chunk = gr.Checkbox(
                            label="分块旋转位置编码",
gushiqiao's avatar
gushiqiao committed
942
                            value=False,
gushiqiao's avatar
gushiqiao committed
943
                            info="启用时,将旋转位置编码分块处理以节省GPU内存。",
gushiqiao's avatar
gushiqiao committed
944
945
                        )

gushiqiao's avatar
gushiqiao committed
946
947
948
949
950
951
                        rotary_chunk_size = gr.Slider(
                            label="旋转编码块大小",
                            value=100,
                            minimum=100,
                            maximum=10000,
                            step=100,
gushiqiao's avatar
gushiqiao committed
952
                            info="控制应用旋转编码的块大小。较大的值可能提高性能但增加内存使用。仅在'rotary_chunk'勾选时有效。",
gushiqiao's avatar
gushiqiao committed
953
                        )
gushiqiao's avatar
gushiqiao committed
954
955
956
957
958
                        unload_modules = gr.Checkbox(
                            label="卸载模块",
                            value=False,
                            info="推理后卸载模块(T5、CLIP、DIT等)以减少GPU/CPU内存使用",
                        )
gushiqiao's avatar
gushiqiao committed
959
                        clean_cuda_cache = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
960
                            label="清理CUDA内存缓存",
gushiqiao's avatar
gushiqiao committed
961
                            value=False,
gushiqiao's avatar
gushiqiao committed
962
                            info="启用时,及时释放GPU内存但会减慢推理速度。",
gushiqiao's avatar
gushiqiao committed
963
964
                        )

gushiqiao's avatar
gushiqiao committed
965
                    gr.Markdown("### 异步卸载")
gushiqiao's avatar
gushiqiao committed
966
967
968
969
                    with gr.Row():
                        cpu_offload = gr.Checkbox(
                            label="CPU卸载",
                            value=False,
gushiqiao's avatar
gushiqiao committed
970
                            info="将模型计算的一部分从GPU卸载到CPU以减少GPU内存使用",
gushiqiao's avatar
gushiqiao committed
971
                        )
gushiqiao's avatar
gushiqiao committed
972
973
974
975

                        lazy_load = gr.Checkbox(
                            label="启用延迟加载",
                            value=False,
gushiqiao's avatar
gushiqiao committed
976
                            info="在推理过程中延迟加载模型组件。需要CPU加载和DIT量化。",
gushiqiao's avatar
gushiqiao committed
977
978
                        )

gushiqiao's avatar
gushiqiao committed
979
                        offload_granularity = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
980
                            label="Dit卸载粒度",
gushiqiao's avatar
gushiqiao committed
981
                            choices=["block", "phase"],
gushiqiao's avatar
gushiqiao committed
982
                            value="phase",
gushiqiao's avatar
gushiqiao committed
983
                            info="设置Dit模型卸载粒度:块或计算阶段",
gushiqiao's avatar
gushiqiao committed
984
985
986
987
988
989
990
991
                        )
                        offload_ratio = gr.Slider(
                            label="Dit模型卸载比例",
                            minimum=0.0,
                            maximum=1.0,
                            step=0.1,
                            value=1.0,
                            info="控制将多少Dit模型卸载到CPU",
gushiqiao's avatar
gushiqiao committed
992
                        )
gushiqiao's avatar
gushiqiao committed
993
994
995
996
997
                        t5_cpu_offload = gr.Checkbox(
                            label="T5 CPU卸载",
                            value=False,
                            info="将T5编码器模型卸载到CPU以减少GPU内存使用",
                        )
gushiqiao's avatar
gushiqiao committed
998
                        t5_offload_granularity = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
999
                            label="T5编码器卸载粒度",
gushiqiao's avatar
gushiqiao committed
1000
                            choices=["model", "block"],
gushiqiao's avatar
gushiqiao committed
1001
1002
                            value="model",
                            info="控制将T5编码器模型卸载到CPU时的粒度",
gushiqiao's avatar
gushiqiao committed
1003
1004
1005
1006
                        )

                    gr.Markdown("### 低精度量化")
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
1007
1008
1009
1010
                        torch_compile = gr.Checkbox(
                            label="Torch编译",
                            value=False,
                            info="使用torch.compile加速推理过程",
gushiqiao's avatar
gushiqiao committed
1011
1012
                        )

gushiqiao's avatar
gushiqiao committed
1013
1014
1015
1016
1017
1018
                        attention_type = gr.Dropdown(
                            label="注意力算子",
                            choices=[op[1] for op in attn_op_choices],
                            value=attn_op_choices[0][1],
                            info="使用适当的注意力算子加速推理",
                        )
gushiqiao's avatar
gushiqiao committed
1019
                        quant_op = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
1020
1021
1022
1023
1024
                            label="量化矩阵乘法算子",
                            choices=[op[1] for op in quant_op_choices],
                            value=quant_op_choices[0][1],
                            info="选择量化矩阵乘法算子以加速推理",
                            interactive=True,
gushiqiao's avatar
gushiqiao committed
1025
1026
1027
1028
1029
                        )
                        dit_quant_scheme = gr.Dropdown(
                            label="Dit",
                            choices=["fp8", "int8", "bf16"],
                            value="bf16",
gushiqiao's avatar
gushiqiao committed
1030
                            info="Dit模型的量化精度",
gushiqiao's avatar
gushiqiao committed
1031
1032
                        )
                        t5_quant_scheme = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
1033
                            label="T5编码器",
gushiqiao's avatar
gushiqiao committed
1034
1035
                            choices=["fp8", "int8", "bf16"],
                            value="bf16",
gushiqiao's avatar
gushiqiao committed
1036
                            info="T5编码器模型的量化精度",
gushiqiao's avatar
gushiqiao committed
1037
1038
                        )
                        clip_quant_scheme = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
1039
                            label="Clip编码器",
gushiqiao's avatar
gushiqiao committed
1040
1041
                            choices=["fp8", "int8", "fp16"],
                            value="fp16",
gushiqiao's avatar
gushiqiao committed
1042
                            info="Clip编码器的量化精度",
gushiqiao's avatar
gushiqiao committed
1043
1044
                        )
                        precision_mode = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
1045
                            label="敏感层精度模式",
gushiqiao's avatar
gushiqiao committed
1046
                            choices=["fp32", "bf16"],
gushiqiao's avatar
gushiqiao committed
1047
                            value="fp32",
gushiqiao's avatar
gushiqiao committed
1048
                            info="选择用于关键模型组件(如归一化和嵌入层)的数值精度。FP32提供更高精度,而BF16在兼容硬件上提高性能。",
gushiqiao's avatar
gushiqiao committed
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
                        )

                    gr.Markdown("### 变分自编码器(VAE)")
                    with gr.Row():
                        use_tiny_vae = gr.Checkbox(
                            label="使用轻量级VAE",
                            value=False,
                            info="使用轻量级VAE模型加速解码过程",
                        )
                        use_tiling_vae = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
1059
                            label="VAE分块推理",
gushiqiao's avatar
gushiqiao committed
1060
                            value=False,
gushiqiao's avatar
gushiqiao committed
1061
                            info="使用VAE分块推理以减少GPU内存使用",
gushiqiao's avatar
gushiqiao committed
1062
1063
1064
1065
1066
                        )

                    gr.Markdown("### 特征缓存")
                    with gr.Row():
                        enable_teacache = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
1067
                            label="Tea Cache",
gushiqiao's avatar
gushiqiao committed
1068
1069
1070
1071
1072
1073
1074
1075
                            value=False,
                            info="在推理过程中缓存特征以减少推理步数",
                        )
                        teacache_thresh = gr.Slider(
                            label="Tea Cache阈值",
                            value=0.26,
                            minimum=0,
                            maximum=1,
gushiqiao's avatar
gushiqiao committed
1076
1077
1078
1079
1080
1081
                            info="较高的加速可能导致质量下降 —— 设置为0.1提供约2.0倍加速,设置为0.2提供约3.0倍加速",
                        )
                        use_ret_steps = gr.Checkbox(
                            label="仅缓存关键步骤",
                            value=False,
                            info="勾选时,仅在调度器返回结果的关键步骤写入缓存;未勾选时,在所有步骤写入缓存以确保最高质量",
gushiqiao's avatar
gushiqiao committed
1082
1083
                        )

gushiqiao's avatar
gushiqiao committed
1084
1085
                enable_auto_config.change(
                    fn=auto_configure,
gushiqiao's avatar
gushiqiao committed
1086
                    inputs=[enable_auto_config, resolution],
gushiqiao's avatar
gushiqiao committed
1087
1088
1089
1090
1091
1092
1093
1094
1095
                    outputs=[
                        torch_compile,
                        lazy_load,
                        rotary_chunk,
                        rotary_chunk_size,
                        clean_cuda_cache,
                        cpu_offload,
                        offload_granularity,
                        offload_ratio,
gushiqiao's avatar
gushiqiao committed
1096
1097
                        t5_cpu_offload,
                        unload_modules,
gushiqiao's avatar
gushiqiao committed
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
                        t5_offload_granularity,
                        attention_type,
                        quant_op,
                        dit_quant_scheme,
                        t5_quant_scheme,
                        clip_quant_scheme,
                        precision_mode,
                        use_tiny_vae,
                        use_tiling_vae,
                        enable_teacache,
                        teacache_thresh,
                        use_ret_steps,
                    ],
                )
gushiqiao's avatar
gushiqiao committed
1112
1113
1114
1115
1116
1117

                lazy_load.change(
                    fn=handle_lazy_load_change,
                    inputs=[lazy_load],
                    outputs=[unload_modules],
                )
gushiqiao's avatar
gushiqiao committed
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
        if task == "i2v":
            infer_btn.click(
                fn=run_inference,
                inputs=[
                    prompt,
                    negative_prompt,
                    save_video_path,
                    torch_compile,
                    infer_steps,
                    num_frames,
                    resolution,
                    seed,
                    sample_shift,
                    enable_teacache,
                    teacache_thresh,
                    use_ret_steps,
                    enable_cfg,
                    cfg_scale,
                    dit_quant_scheme,
                    t5_quant_scheme,
                    clip_quant_scheme,
                    fps,
                    use_tiny_vae,
                    use_tiling_vae,
                    lazy_load,
                    precision_mode,
                    cpu_offload,
                    offload_granularity,
                    offload_ratio,
gushiqiao's avatar
gushiqiao committed
1147
1148
                    t5_cpu_offload,
                    unload_modules,
gushiqiao's avatar
gushiqiao committed
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
                    t5_offload_granularity,
                    attention_type,
                    quant_op,
                    rotary_chunk,
                    rotary_chunk_size,
                    clean_cuda_cache,
                    image_path,
                ],
                outputs=output_video,
            )
        else:
            infer_btn.click(
                fn=run_inference,
                inputs=[
                    prompt,
                    negative_prompt,
                    save_video_path,
                    torch_compile,
                    infer_steps,
                    num_frames,
                    resolution,
                    seed,
                    sample_shift,
                    enable_teacache,
                    teacache_thresh,
                    use_ret_steps,
                    enable_cfg,
                    cfg_scale,
                    dit_quant_scheme,
                    t5_quant_scheme,
                    clip_quant_scheme,
                    fps,
                    use_tiny_vae,
                    use_tiling_vae,
                    lazy_load,
                    precision_mode,
                    cpu_offload,
                    offload_granularity,
                    offload_ratio,
gushiqiao's avatar
gushiqiao committed
1188
1189
                    t5_cpu_offload,
                    unload_modules,
gushiqiao's avatar
gushiqiao committed
1190
1191
1192
1193
1194
1195
1196
1197
1198
                    t5_offload_granularity,
                    attention_type,
                    quant_op,
                    rotary_chunk,
                    rotary_chunk_size,
                    clean_cuda_cache,
                ],
                outputs=output_video,
            )
gushiqiao's avatar
gushiqiao committed
1199

gushiqiao's avatar
gushiqiao committed
1200
    demo.launch(share=True, server_port=args.server_port, server_name=args.server_name, inbrowser=True)
gushiqiao's avatar
gushiqiao committed
1201
1202
1203


if __name__ == "__main__":
gushiqiao's avatar
gushiqiao committed
1204
1205
1206
1207
1208
    parser = argparse.ArgumentParser(description="轻量级视频生成")
    parser.add_argument("--model_path", type=str, required=True, help="模型文件夹路径")
    parser.add_argument(
        "--model_cls",
        type=str,
gushiqiao's avatar
gushiqiao committed
1209
        choices=["wan2.1", "wan2.1_distill"],
gushiqiao's avatar
gushiqiao committed
1210
        default="wan2.1",
gushiqiao's avatar
gushiqiao committed
1211
        help="要使用的模型类别 (wan2.1: 标准模型, wan2.1_distill: 蒸馏模型,推理更快)",
gushiqiao's avatar
gushiqiao committed
1212
    )
gushiqiao's avatar
gushiqiao committed
1213
    parser.add_argument("--model_size", type=str, required=True, choices=["14b", "1.3b"], help="模型大小:14b 或 1.3b")
gushiqiao's avatar
gushiqiao committed
1214
    parser.add_argument("--task", type=str, required=True, choices=["i2v", "t2v"], help="指定任务类型。'i2v'用于图像到视频转换,'t2v'用于文本到视频生成。")
gushiqiao's avatar
gushiqiao committed
1215
1216
1217
1218
    parser.add_argument("--server_port", type=int, default=7862, help="服务器端口")
    parser.add_argument("--server_name", type=str, default="0.0.0.0", help="服务器IP")
    args = parser.parse_args()

gushiqiao's avatar
gushiqiao committed
1219
    global model_path, model_cls, model_size
gushiqiao's avatar
gushiqiao committed
1220
1221
    model_path = args.model_path
    model_cls = args.model_cls
gushiqiao's avatar
gushiqiao committed
1222
    model_size = args.model_size
gushiqiao's avatar
gushiqiao committed
1223
    task = args.task
gushiqiao's avatar
gushiqiao committed
1224

gushiqiao's avatar
gushiqiao committed
1225
    main()