gradio_demo_zh.py 37.8 KB
Newer Older
gushiqiao's avatar
gushiqiao committed
1
2
3
4
5
6
7
8
9
10
11
import os
import gradio as gr
import asyncio
import argparse
import json
import torch
import gc
from easydict import EasyDict
from datetime import datetime
from loguru import logger

gushiqiao's avatar
gushiqiao committed
12
13
import importlib.util
import psutil
gushiqiao's avatar
gushiqiao committed
14
15
16
17
18
19
20
21
22
23
24
25


logger.add(
    "inference_logs.log",
    rotation="100 MB",
    encoding="utf-8",
    enqueue=True,
    backtrace=True,
    diagnose=True,
)


gushiqiao's avatar
gushiqiao committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def is_module_installed(module_name):
    """检查模块是否已安装"""
    try:
        spec = importlib.util.find_spec(module_name)
        return spec is not None
    except ModuleNotFoundError:
        return False


def get_available_quant_ops():
    available_ops = []

    vllm_installed = is_module_installed("vllm")
    if vllm_installed:
        available_ops.append(("vllm", True))
    else:
        available_ops.append(("vllm", False))

    sgl_installed = is_module_installed("sgl_kernel")
    if sgl_installed:
        available_ops.append(("sgl", True))
    else:
        available_ops.append(("sgl", False))

    q8f_installed = is_module_installed("q8_kernels")
    if q8f_installed:
        available_ops.append(("q8f", True))
    else:
        available_ops.append(("q8f", False))

    return available_ops


def get_available_attn_ops():
    available_ops = []

    vllm_installed = is_module_installed("flash_attn")
    if vllm_installed:
        available_ops.append(("flash_attn2", True))
    else:
        available_ops.append(("flash_attn2", False))

    sgl_installed = is_module_installed("flash_attn_interface")
    if sgl_installed:
        available_ops.append(("flash_attn3", True))
    else:
        available_ops.append(("flash_attn3", False))

    q8f_installed = is_module_installed("sageattention")
    if q8f_installed:
        available_ops.append(("sage_attn2", True))
    else:
        available_ops.append(("sage_attn2", False))

    return available_ops


def get_gpu_memory(gpu_idx=0):
    if not torch.cuda.is_available():
        return 0
    try:
        with torch.cuda.device(gpu_idx):
            memory_info = torch.cuda.mem_get_info()
            total_memory = memory_info[1] / (1024**3)
            return total_memory
    except Exception as e:
        logger.warning(f"获取GPU内存失败: {e}")
        return 0


def get_cpu_memory():
    available_bytes = psutil.virtual_memory().available
    return available_bytes / 1024**3
gushiqiao's avatar
gushiqiao committed
99
100
101
102
103
104
105
106


def generate_unique_filename(base_dir="./saved_videos"):
    os.makedirs(base_dir, exist_ok=True)
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    return os.path.join(base_dir, f"{model_cls}_{timestamp}.mp4")


gushiqiao's avatar
gushiqiao committed
107
108
109
110
111
112
113
114
def is_fp8_supported_gpu():
    if not torch.cuda.is_available():
        return False
    compute_capability = torch.cuda.get_device_capability(0)
    major, minor = compute_capability
    return (major == 8 and minor == 9) or (major >= 9)


gushiqiao's avatar
gushiqiao committed
115
116
117
118
119
120
def update_precision_mode(dit_quant_scheme):
    if dit_quant_scheme != "bf16":
        return "bf16"
    return "fp32"


gushiqiao's avatar
gushiqiao committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
global_runner = None
current_config = None

available_quant_ops = get_available_quant_ops()
quant_op_choices = []
for op_name, is_installed in available_quant_ops:
    status_text = "✅ 已安装" if is_installed else "❌ 未安装"
    display_text = f"{op_name} ({status_text})"
    quant_op_choices.append((op_name, display_text))

available_attn_ops = get_available_attn_ops()
attn_op_choices = []
for op_name, is_installed in available_attn_ops:
    status_text = "✅ 已安装" if is_installed else "❌ 未安装"
    display_text = f"{op_name} ({status_text})"
    attn_op_choices.append((op_name, display_text))


gushiqiao's avatar
gushiqiao committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
def run_inference(
    model_type,
    task,
    prompt,
    negative_prompt,
    image_path,
    save_video_path,
    torch_compile,
    infer_steps,
    num_frames,
    resolution,
    seed,
    sample_shift,
    enable_teacache,
    teacache_thresh,
gushiqiao's avatar
gushiqiao committed
154
    use_ret_steps,
gushiqiao's avatar
gushiqiao committed
155
156
157
158
159
160
161
162
163
164
165
166
    enable_cfg,
    cfg_scale,
    dit_quant_scheme,
    t5_quant_scheme,
    clip_quant_scheme,
    fps,
    use_tiny_vae,
    use_tiling_vae,
    lazy_load,
    precision_mode,
    cpu_offload,
    offload_granularity,
gushiqiao's avatar
gushiqiao committed
167
    offload_ratio,
gushiqiao's avatar
gushiqiao committed
168
169
170
171
    t5_offload_granularity,
    attention_type,
    quant_op,
    rotary_chunk,
gushiqiao's avatar
gushiqiao committed
172
    rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
173
174
    clean_cuda_cache,
):
gushiqiao's avatar
gushiqiao committed
175
176
177
    quant_op = quant_op.split("(")[0].strip()
    attention_type = attention_type.split("(")[0].strip()

gushiqiao's avatar
gushiqiao committed
178
179
180
181
182
183
    global global_runner, current_config, model_path

    if os.path.exists(os.path.join(model_path, "config.json")):
        with open(os.path.join(model_path, "config.json"), "r") as f:
            model_config = json.load(f)

gushiqiao's avatar
gushiqiao committed
184
    if task == "图像生成视频":
gushiqiao's avatar
gushiqiao committed
185
        task = "i2v"
gushiqiao's avatar
gushiqiao committed
186
187
    elif task == "文本生成视频":
        task = "t2v"
gushiqiao's avatar
gushiqiao committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

    if task == "t2v":
        if model_type == "Wan2.1 1.3B":
            # 1.3B
            coefficient = [
                [
                    -5.21862437e04,
                    9.23041404e03,
                    -5.28275948e02,
                    1.36987616e01,
                    -4.99875664e-02,
                ],
                [
                    2.39676752e03,
                    -1.31110545e03,
                    2.01331979e02,
                    -8.29855975e00,
                    1.37887774e-01,
                ],
            ]
        else:
            # 14B
            coefficient = [
                [
                    -3.03318725e05,
                    4.90537029e04,
                    -2.65530556e03,
                    5.87365115e01,
                    -3.15583525e-01,
                ],
                [
                    -5784.54975374,
                    5449.50911966,
                    -1811.16591783,
                    256.27178429,
                    -13.02252404,
                ],
            ]
    elif task == "i2v":
        if resolution in [
            "1280x720",
            "720x1280",
            "1280x544",
            "544x1280",
            "1104x832",
            "832x1104",
            "960x960",
        ]:
            # 720p
            coefficient = [
                [
                    8.10705460e03,
                    2.13393892e03,
                    -3.72934672e02,
                    1.66203073e01,
                    -4.17769401e-02,
                ],
                [-114.36346466, 65.26524496, -18.82220707, 4.91518089, -0.23412683],
            ]
        else:
            # 480p
            coefficient = [
                [
                    2.57151496e05,
                    -3.54229917e04,
                    1.40286849e03,
                    -1.35890334e01,
                    1.32517977e-01,
                ],
                [
                    -3.02331670e02,
                    2.23948934e02,
                    -5.25463970e01,
                    5.87348440e00,
                    -2.01973289e-01,
                ],
            ]

    save_video_path = generate_unique_filename()

    is_dit_quant = dit_quant_scheme != "bf16"
    is_t5_quant = t5_quant_scheme != "bf16"
    if is_t5_quant:
gushiqiao's avatar
gushiqiao committed
271
272
        t5_path = os.path.join(model_path, t5_quant_scheme)
        t5_quant_ckpt = os.path.join(t5_path, f"models_t5_umt5-xxl-enc-{t5_quant_scheme}.pth")
gushiqiao's avatar
gushiqiao committed
273
274
275
    else:
        t5_quant_ckpt = None

gushiqiao's avatar
gushiqiao committed
276
    is_clip_quant = clip_quant_scheme != "fp16"
gushiqiao's avatar
gushiqiao committed
277
    if is_clip_quant:
gushiqiao's avatar
gushiqiao committed
278
279
        clip_path = os.path.join(model_path, clip_quant_scheme)
        clip_quant_ckpt = os.path.join(clip_path, f"clip-{clip_quant_scheme}.pth")
gushiqiao's avatar
gushiqiao committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    else:
        clip_quant_ckpt = None

    needs_reinit = lazy_load or global_runner is None or current_config is None or current_config.get("model_path") != model_path

    if torch_compile:
        os.environ["ENABLE_GRAPH_MODE"] = "true"
    else:
        os.environ["ENABLE_GRAPH_MODE"] = "false"
    if precision_mode == "bf16":
        os.environ["DTYPE"] = "BF16"
    else:
        os.environ.pop("DTYPE", None)

    if is_dit_quant:
        if quant_op == "vllm":
            mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Vllm"
        elif quant_op == "sgl":
            mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Sgl"
        elif quant_op == "q8f":
            mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Q8F"
gushiqiao's avatar
gushiqiao committed
301
302

        dit_quantized_ckpt = os.path.join(model_path, dit_quant_scheme)
gushiqiao's avatar
gushiqiao committed
303
304
305
        if os.path.exists(os.path.join(dit_quantized_ckpt, "config.json")):
            with open(os.path.join(dit_quantized_ckpt, "config.json"), "r") as f:
                quant_model_config = json.load(f)
gushiqiao's avatar
gushiqiao committed
306
307
    else:
        mm_type = "Default"
gushiqiao's avatar
gushiqiao committed
308
        dit_quantized_ckpt = None
gushiqiao's avatar
gushiqiao committed
309
        quant_model_config = {}
gushiqiao's avatar
gushiqiao committed
310
311
312
313
314
315

    config = {
        "infer_steps": infer_steps,
        "target_video_length": num_frames,
        "target_width": int(resolution.split("x")[0]),
        "target_height": int(resolution.split("x")[1]),
gushiqiao's avatar
gushiqiao committed
316
317
318
        "self_attn_1_type": attention_type,
        "cross_attn_1_type": attention_type,
        "cross_attn_2_type": attention_type,
gushiqiao's avatar
gushiqiao committed
319
320
321
322
323
324
        "seed": seed,
        "enable_cfg": enable_cfg,
        "sample_guide_scale": cfg_scale,
        "sample_shift": sample_shift,
        "cpu_offload": cpu_offload,
        "offload_granularity": offload_granularity,
gushiqiao's avatar
gushiqiao committed
325
        "offload_ratio": offload_ratio,
gushiqiao's avatar
gushiqiao committed
326
        "t5_offload_granularity": t5_offload_granularity,
gushiqiao's avatar
gushiqiao committed
327
        "dit_quantized_ckpt": dit_quantized_ckpt,
gushiqiao's avatar
gushiqiao committed
328
329
330
331
332
        "mm_config": {
            "mm_type": mm_type,
        },
        "fps": fps,
        "feature_caching": "Tea" if enable_teacache else "NoCaching",
gushiqiao's avatar
gushiqiao committed
333
334
        "coefficients": coefficient[0] if use_ret_steps else coefficient[1],
        "use_ret_steps": use_ret_steps,
gushiqiao's avatar
gushiqiao committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
        "teacache_thresh": teacache_thresh,
        "t5_quantized": is_t5_quant,
        "t5_quantized_ckpt": t5_quant_ckpt,
        "t5_quant_scheme": t5_quant_scheme,
        "clip_quantized": is_clip_quant,
        "clip_quantized_ckpt": clip_quant_ckpt,
        "clip_quant_scheme": clip_quant_scheme,
        "use_tiling_vae": use_tiling_vae,
        "tiny_vae": use_tiny_vae,
        "tiny_vae_path": (os.path.join(model_path, "taew2_1.pth") if use_tiny_vae else None),
        "lazy_load": lazy_load,
        "do_mm_calib": False,
        "parallel_attn_type": None,
        "parallel_vae": False,
        "max_area": False,
        "vae_stride": (4, 8, 8),
        "patch_size": (1, 2, 2),
        "lora_path": None,
        "strength_model": 1.0,
        "use_prompt_enhancer": False,
        "text_len": 512,
        "rotary_chunk": rotary_chunk,
gushiqiao's avatar
gushiqiao committed
357
        "rotary_chunk_size": rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
        "clean_cuda_cache": clean_cuda_cache,
    }

    args = argparse.Namespace(
        model_cls=model_cls,
        task=task,
        model_path=model_path,
        prompt_enhancer=None,
        prompt=prompt,
        negative_prompt=negative_prompt,
        image_path=image_path,
        save_video_path=save_video_path,
    )

    config.update({k: v for k, v in vars(args).items()})
    config = EasyDict(config)
    config["mode"] = "infer"
    config.update(model_config)
gushiqiao's avatar
gushiqiao committed
376
    config.update(quant_model_config)
gushiqiao's avatar
gushiqiao committed
377
378
379
380
381
382
383
384
385
386
387

    logger.info(f"使用模型: {model_path}")
    logger.info(f"推理配置:\n{json.dumps(config, indent=4, ensure_ascii=False)}")

    runner = global_runner
    if needs_reinit:
        if runner is not None:
            del runner
            torch.cuda.empty_cache()
            gc.collect()

gushiqiao's avatar
gushiqiao committed
388
389
        from lightx2v.infer import init_runner  # noqa

gushiqiao's avatar
gushiqiao committed
390
391
392
393
394
        runner = init_runner(config)
        current_config = config

        if not lazy_load:
            global_runner = runner
gushiqiao's avatar
gushiqiao committed
395
396
    else:
        runner.config = config
gushiqiao's avatar
gushiqiao committed
397
398
399
400
401
402
403
404
405
406
407

    asyncio.run(runner.run_pipeline())

    if lazy_load:
        del runner
        torch.cuda.empty_cache()
        gc.collect()

    return save_video_path


gushiqiao's avatar
gushiqiao committed
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
def auto_configure(enable_auto_config, model_type, resolution):
    default_config = {
        "torch_compile_val": False,
        "lazy_load_val": False,
        "rotary_chunk_val": False,
        "rotary_chunk_size_val": 100,
        "clean_cuda_cache_val": False,
        "cpu_offload_val": False,
        "offload_granularity_val": "block",
        "offload_ratio_val": 1,
        "t5_offload_granularity_val": "model",
        "attention_type_val": attn_op_choices[0][1],
        "quant_op_val": quant_op_choices[0][1],
        "dit_quant_scheme_val": "bf16",
        "t5_quant_scheme_val": "bf16",
        "clip_quant_scheme_val": "fp16",
        "precision_mode_val": "fp32",
        "use_tiny_vae_val": False,
        "use_tiling_vae_val": False,
        "enable_teacache_val": False,
        "teacache_thresh_val": 0.26,
        "use_ret_steps_val": False,
    }
gushiqiao's avatar
gushiqiao committed
431

gushiqiao's avatar
gushiqiao committed
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
    if not enable_auto_config:
        return tuple(gr.update(value=default_config[key]) for key in default_config)

    gpu_memory = round(get_gpu_memory())
    cpu_memory = round(get_cpu_memory())

    if is_fp8_supported_gpu():
        quant_type = "fp8"
    else:
        quant_type = "int8"

    attn_priority = ["sage_attn2", "flash_attn3", "flash_attn2"]
    quant_op_priority = ["sgl", "vllm", "q8f"]

    for op in attn_priority:
        if dict(available_attn_ops).get(op):
            default_config["attention_type_val"] = dict(attn_op_choices)[op]
            break

    for op in quant_op_priority:
        if dict(available_quant_ops).get(op):
            default_config["quant_op_val"] = dict(quant_op_choices)[op]
            break

    if resolution in [
        "1280x720",
        "720x1280",
        "1280x544",
        "544x1280",
        "1104x832",
        "832x1104",
        "960x960",
    ]:
        res = "720p"
    elif resolution in [
        "960x544",
        "544x960",
    ]:
        res = "540p"
    else:
        res = "480p"

    if model_type in ["Wan2.1 14B"]:
        is_14b = True
    else:
        is_14b = False

    if res == "720p" and is_14b:
        gpu_rules = [
            (80, {}),
            (48, {"cpu_offload_val": True, "offload_ratio_val": 0.5}),
            (40, {"cpu_offload_val": True, "offload_ratio_val": 0.8}),
            (32, {"cpu_offload_val": True, "offload_ratio_val": 1}),
            (
                24,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                },
            ),
            (
                16,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                },
            ),
            (
                12,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                    "clean_cuda_cache_val": True,
                },
            ),
            (
                8,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                    "clean_cuda_cache_val": True,
                    "t5_quant_scheme_val": quant_type,
                    "clip_quant_scheme_val": quant_type,
                    "dit_quant_scheme_val": quant_type,
                    "lazy_load_val": True,
                },
            ),
        ]
gushiqiao's avatar
gushiqiao committed
541

gushiqiao's avatar
gushiqiao committed
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
    elif is_14b:
        gpu_rules = [
            (80, {}),
            (48, {"cpu_offload_val": True, "offload_ratio_val": 0.2}),
            (40, {"cpu_offload_val": True, "offload_ratio_val": 0.5}),
            (24, {"cpu_offload_val": True, "offload_ratio_val": 0.8}),
            (
                16,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "block",
                },
            ),
            (
                8,
                (
                    {
                        "cpu_offload_val": True,
                        "offload_ratio_val": 1,
                        "t5_offload_granularity_val": "block",
                        "precision_mode_val": "bf16",
                        "use_tiling_vae_val": True,
                        "offload_granularity_val": "phase",
                        "t5_quant_scheme_val": quant_type,
                        "clip_quant_scheme_val": quant_type,
                        "dit_quant_scheme_val": quant_type,
                        "lazy_load_val": True,
                        "rotary_chunk_val": True,
                        "rotary_chunk_size_val": 10000,
                    }
                    if res == "540p"
                    else {
                        "cpu_offload_val": True,
                        "offload_ratio_val": 1,
                        "t5_offload_granularity_val": "block",
                        "precision_mode_val": "bf16",
                        "use_tiling_vae_val": True,
                        "offload_granularity_val": "phase",
                        "t5_quant_scheme_val": quant_type,
                        "clip_quant_scheme_val": quant_type,
                        "dit_quant_scheme_val": quant_type,
                        "lazy_load_val": True,
                    }
                ),
            ),
        ]

    if is_14b:
        cpu_rules = [
            (128, {}),
            (64, {"dit_quant_scheme_val": quant_type}),
            (32, {"dit_quant_scheme_val": quant_type, "lazy_load_val": True}),
            (
                16,
gushiqiao's avatar
gushiqiao committed
600
                {"dit_quant_scheme_val": quant_type, "t5_quant_scheme_val": quant_type, "clip_quant_scheme_val": quant_type, "lazy_load_val": True},
gushiqiao's avatar
gushiqiao committed
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
            ),
        ]

    for threshold, updates in gpu_rules:
        if gpu_memory >= threshold:
            default_config.update(updates)
            break

    for threshold, updates in cpu_rules:
        if cpu_memory >= threshold:
            default_config.update(updates)
            break

    return tuple(gr.update(value=default_config[key]) for key in default_config)


def main():
gushiqiao's avatar
gushiqiao committed
618
    def update_model_type(task_type):
gushiqiao's avatar
gushiqiao committed
619
        if task_type == "图像生成视频":
gushiqiao's avatar
gushiqiao committed
620
            return gr.update(choices=["Wan2.1 14B"], value="Wan2.1 14B")
gushiqiao's avatar
gushiqiao committed
621
        elif task_type == "文本生成视频":
gushiqiao's avatar
gushiqiao committed
622
623
624
            return gr.update(choices=["Wan2.1 14B", "Wan2.1 1.3B"], value="Wan2.1 14B")

    def toggle_image_input(task):
gushiqiao's avatar
gushiqiao committed
625
        return gr.update(visible=(task == "图像生成视频"))
gushiqiao's avatar
gushiqiao committed
626
627

    with gr.Blocks(
gushiqiao's avatar
gushiqiao committed
628
        title="Lightx2v (轻量级视频生成推理引擎)",
gushiqiao's avatar
gushiqiao committed
629
630
631
632
633
634
635
636
637
638
639
640
        css="""
        .main-content { max-width: 1400px; margin: auto; }
        .output-video { max-height: 650px; }
        .warning { color: #ff6b6b; font-weight: bold; }
        .advanced-options { background: #f9f9ff; border-radius: 10px; padding: 15px; }
        .tab-button { font-size: 16px; padding: 10px 20px; }
    """,
    ) as demo:
        gr.Markdown(f"# 🎬 {model_cls} 视频生成器")
        gr.Markdown(f"### 使用模型: {model_path}")

        with gr.Tabs() as tabs:
gushiqiao's avatar
gushiqiao committed
641
            with gr.Tab("基本设置", id=1):
gushiqiao's avatar
gushiqiao committed
642
643
644
645
646
647
648
                with gr.Row():
                    with gr.Column(scale=4):
                        with gr.Group():
                            gr.Markdown("## 📥 输入参数")

                            with gr.Row():
                                task = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
649
650
                                    choices=["图像生成视频", "文本生成视频"],
                                    value="图像生成视频",
gushiqiao's avatar
gushiqiao committed
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
                                    label="任务类型",
                                )
                                model_type = gr.Dropdown(
                                    choices=["Wan2.1 14B"],
                                    value="Wan2.1 14B",
                                    label="模型类型",
                                )
                                task.change(
                                    fn=update_model_type,
                                    inputs=task,
                                    outputs=model_type,
                                )

                            with gr.Row():
                                image_path = gr.Image(
gushiqiao's avatar
gushiqiao committed
666
                                    label="输入图像",
gushiqiao's avatar
gushiqiao committed
667
668
669
                                    type="filepath",
                                    height=300,
                                    interactive=True,
gushiqiao's avatar
gushiqiao committed
670
                                    visible=True,
gushiqiao's avatar
gushiqiao committed
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
                                )

                                task.change(
                                    fn=toggle_image_input,
                                    inputs=task,
                                    outputs=image_path,
                                )

                            with gr.Row():
                                with gr.Column():
                                    prompt = gr.Textbox(
                                        label="提示词",
                                        lines=3,
                                        placeholder="描述视频内容...",
                                        max_lines=5,
                                    )
                                with gr.Column():
                                    negative_prompt = gr.Textbox(
                                        label="负向提示词",
                                        lines=3,
gushiqiao's avatar
gushiqiao committed
691
                                        placeholder="不希望出现在视频中的内容...",
gushiqiao's avatar
gushiqiao committed
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
                                        max_lines=5,
                                        value="镜头晃动,色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走",
                                    )
                                with gr.Column():
                                    resolution = gr.Dropdown(
                                        choices=[
                                            # 720p
                                            ("1280x720 (16:9, 720p)", "1280x720"),
                                            ("720x1280 (9:16, 720p)", "720x1280"),
                                            ("1280x544 (21:9, 720p)", "1280x544"),
                                            ("544x1280 (9:21, 720p)", "544x1280"),
                                            ("1104x832 (4:3, 720p)", "1104x832"),
                                            ("832x1104 (3:4, 720p)", "832x1104"),
                                            ("960x960 (1:1, 720p)", "960x960"),
                                            # 480p
                                            ("960x544 (16:9, 540p)", "960x544"),
                                            ("544x960 (9:16, 540p)", "544x960"),
                                            ("832x480 (16:9, 480p)", "832x480"),
                                            ("480x832 (9:16, 480p)", "480x832"),
                                            ("832x624 (4:3, 480p)", "832x624"),
                                            ("624x832 (3:4, 480p)", "624x832"),
                                            ("720x720 (1:1, 480p)", "720x720"),
                                            ("512x512 (1:1, 480p)", "512x512"),
                                        ],
                                        value="832x480",
                                        label="最大分辨率",
                                    )
                                with gr.Column():
                                    seed = gr.Slider(
                                        label="随机种子",
                                        minimum=-10000000,
                                        maximum=10000000,
                                        step=1,
                                        value=42,
                                    )
                                    infer_steps = gr.Slider(
                                        label="推理步数",
                                        minimum=1,
                                        maximum=100,
                                        step=1,
gushiqiao's avatar
gushiqiao committed
732
733
                                        value=40,
                                        info="视频生成的推理步数。增加步数可能提高质量但降低速度",
gushiqiao's avatar
gushiqiao committed
734
735
                                    )

gushiqiao's avatar
gushiqiao committed
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
                            enable_cfg = gr.Checkbox(
                                label="启用无分类器引导",
                                value=True,
                                info="启用无分类器引导以控制提示词强度",
                            )
                            cfg_scale = gr.Slider(
                                label="CFG缩放因子",
                                minimum=1,
                                maximum=10,
                                step=1,
                                value=5,
                                info="控制提示词的影响强度。值越高,提示词的影响越大",
                            )
                            sample_shift = gr.Slider(
                                label="分布偏移",
                                value=5,
                                minimum=0,
                                maximum=10,
                                step=1,
                                info="控制样本分布偏移的程度。值越大表示偏移越明显",
gushiqiao's avatar
gushiqiao committed
756
757
                            )

gushiqiao's avatar
gushiqiao committed
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
                            fps = gr.Slider(
                                label="每秒帧数(FPS)",
                                minimum=8,
                                maximum=30,
                                step=1,
                                value=16,
                                info="视频的每秒帧数。较高的FPS会产生更流畅的视频",
                            )
                            num_frames = gr.Slider(
                                label="总帧数",
                                minimum=16,
                                maximum=120,
                                step=1,
                                value=81,
                                info="视频中的总帧数。更多帧数会产生更长的视频",
                            )
gushiqiao's avatar
gushiqiao committed
774

gushiqiao's avatar
gushiqiao committed
775
776
777
778
779
                        save_video_path = gr.Textbox(
                            label="输出视频路径",
                            value=generate_unique_filename(),
                            info="必须包含.mp4扩展名。如果留空或使用默认值,将自动生成唯一文件名。",
                        )
gushiqiao's avatar
gushiqiao committed
780
781
782
783
784
785
786
787
788
789
                    with gr.Column(scale=6):
                        gr.Markdown("## 📤 生成的视频")
                        output_video = gr.Video(
                            label="结果",
                            height=624,
                            width=360,
                            autoplay=True,
                            elem_classes=["output-video"],
                        )

gushiqiao's avatar
gushiqiao committed
790
                        infer_btn = gr.Button("生成视频", variant="primary", size="lg")
gushiqiao's avatar
gushiqiao committed
791

gushiqiao's avatar
gushiqiao committed
792
793
            with gr.Tab("⚙️ 高级选项", id=2):
                with gr.Group(elem_classes="advanced-options"):
gushiqiao's avatar
gushiqiao committed
794
                    gr.Markdown("### 自动配置")
gushiqiao's avatar
gushiqiao committed
795
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
796
797
                        enable_auto_config = gr.Checkbox(
                            label="自动配置",
gushiqiao's avatar
gushiqiao committed
798
                            value=False,
gushiqiao's avatar
gushiqiao committed
799
                            info="自动调整优化设置以适应您的GPU",
gushiqiao's avatar
gushiqiao committed
800
801
                        )

gushiqiao's avatar
gushiqiao committed
802
                    gr.Markdown("### GPU内存优化")
gushiqiao's avatar
gushiqiao committed
803
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
804
805
                        rotary_chunk = gr.Checkbox(
                            label="分块旋转位置编码",
gushiqiao's avatar
gushiqiao committed
806
                            value=False,
gushiqiao's avatar
gushiqiao committed
807
                            info="启用时,将旋转位置编码分块处理以节省GPU内存。",
gushiqiao's avatar
gushiqiao committed
808
809
                        )

gushiqiao's avatar
gushiqiao committed
810
811
812
813
814
815
816
                        rotary_chunk_size = gr.Slider(
                            label="旋转编码块大小",
                            value=100,
                            minimum=100,
                            maximum=10000,
                            step=100,
                            info="控制应用旋转编码的块大小, 较大的值可能提高性能但增加内存使用, 仅在'rotary_chunk'勾选时有效",
gushiqiao's avatar
gushiqiao committed
817
818
819
                        )

                        clean_cuda_cache = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
820
                            label="清理CUDA内存缓存",
gushiqiao's avatar
gushiqiao committed
821
                            value=False,
gushiqiao's avatar
gushiqiao committed
822
                            info="及时释放GPU内存, 但会减慢推理速度。",
gushiqiao's avatar
gushiqiao committed
823
824
                        )

gushiqiao's avatar
gushiqiao committed
825
                    gr.Markdown("### 异步卸载")
gushiqiao's avatar
gushiqiao committed
826
827
828
829
                    with gr.Row():
                        cpu_offload = gr.Checkbox(
                            label="CPU卸载",
                            value=False,
gushiqiao's avatar
gushiqiao committed
830
                            info="将模型计算的一部分从GPU卸载到CPU以减少GPU内存使用",
gushiqiao's avatar
gushiqiao committed
831
                        )
gushiqiao's avatar
gushiqiao committed
832
833
834
835
836
837
838

                        lazy_load = gr.Checkbox(
                            label="启用延迟加载",
                            value=False,
                            info="在推理过程中延迟加载模型组件, 仅在'cpu_offload'勾选和使用量化Dit模型时有效",
                        )

gushiqiao's avatar
gushiqiao committed
839
                        offload_granularity = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
840
                            label="Dit卸载粒度",
gushiqiao's avatar
gushiqiao committed
841
                            choices=["block", "phase"],
gushiqiao's avatar
gushiqiao committed
842
843
844
845
846
847
848
849
850
851
                            value="phase",
                            info="设置Dit模型卸载粒度: 块或计算阶段",
                        )
                        offload_ratio = gr.Slider(
                            label="Dit模型卸载比例",
                            minimum=0.0,
                            maximum=1.0,
                            step=0.1,
                            value=1.0,
                            info="控制将多少Dit模型卸载到CPU",
gushiqiao's avatar
gushiqiao committed
852
853
                        )
                        t5_offload_granularity = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
854
                            label="T5编码器卸载粒度",
gushiqiao's avatar
gushiqiao committed
855
                            choices=["model", "block"],
gushiqiao's avatar
gushiqiao committed
856
857
                            value="model",
                            info="控制将T5编码器模型卸载到CPU时的粒度",
gushiqiao's avatar
gushiqiao committed
858
859
860
861
                        )

                    gr.Markdown("### 低精度量化")
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
862
863
864
865
                        torch_compile = gr.Checkbox(
                            label="Torch编译",
                            value=False,
                            info="使用torch.compile加速推理过程",
gushiqiao's avatar
gushiqiao committed
866
867
                        )

gushiqiao's avatar
gushiqiao committed
868
869
870
871
872
873
                        attention_type = gr.Dropdown(
                            label="注意力算子",
                            choices=[op[1] for op in attn_op_choices],
                            value=attn_op_choices[0][1],
                            info="使用适当的注意力算子加速推理",
                        )
gushiqiao's avatar
gushiqiao committed
874
                        quant_op = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
875
876
877
878
879
                            label="量化矩阵乘法算子",
                            choices=[op[1] for op in quant_op_choices],
                            value=quant_op_choices[0][1],
                            info="选择量化矩阵乘法算子以加速推理",
                            interactive=True,
gushiqiao's avatar
gushiqiao committed
880
881
882
883
884
                        )
                        dit_quant_scheme = gr.Dropdown(
                            label="Dit",
                            choices=["fp8", "int8", "bf16"],
                            value="bf16",
gushiqiao's avatar
gushiqiao committed
885
                            info="Dit模型的推理精度",
gushiqiao's avatar
gushiqiao committed
886
887
                        )
                        t5_quant_scheme = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
888
                            label="T5编码器",
gushiqiao's avatar
gushiqiao committed
889
890
                            choices=["fp8", "int8", "bf16"],
                            value="bf16",
gushiqiao's avatar
gushiqiao committed
891
                            info="T5编码器模型的推理精度",
gushiqiao's avatar
gushiqiao committed
892
893
                        )
                        clip_quant_scheme = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
894
                            label="Clip编码器",
gushiqiao's avatar
gushiqiao committed
895
896
                            choices=["fp8", "int8", "fp16"],
                            value="fp16",
gushiqiao's avatar
gushiqiao committed
897
                            info="Clip编码器的推理精度",
gushiqiao's avatar
gushiqiao committed
898
899
                        )
                        precision_mode = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
900
                            label="敏感层精度",
gushiqiao's avatar
gushiqiao committed
901
                            choices=["fp32", "bf16"],
gushiqiao's avatar
gushiqiao committed
902
                            value="fp32",
gushiqiao's avatar
gushiqiao committed
903
                            info="选择用于敏感层(如norm层和embedding层)的数值精度",
gushiqiao's avatar
gushiqiao committed
904
905
906
907
908
909
910
911
912
913
                        )

                    gr.Markdown("### 变分自编码器(VAE)")
                    with gr.Row():
                        use_tiny_vae = gr.Checkbox(
                            label="使用轻量级VAE",
                            value=False,
                            info="使用轻量级VAE模型加速解码过程",
                        )
                        use_tiling_vae = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
914
                            label="VAE分块推理",
gushiqiao's avatar
gushiqiao committed
915
                            value=False,
gushiqiao's avatar
gushiqiao committed
916
                            info="使用VAE分块推理以减少GPU内存使用",
gushiqiao's avatar
gushiqiao committed
917
918
919
920
921
                        )

                    gr.Markdown("### 特征缓存")
                    with gr.Row():
                        enable_teacache = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
922
                            label="Tea Cache",
gushiqiao's avatar
gushiqiao committed
923
924
925
926
927
928
929
930
                            value=False,
                            info="在推理过程中缓存特征以减少推理步数",
                        )
                        teacache_thresh = gr.Slider(
                            label="Tea Cache阈值",
                            value=0.26,
                            minimum=0,
                            maximum=1,
gushiqiao's avatar
gushiqiao committed
931
932
933
934
935
936
                            info="较高的加速可能导致质量下降 —— 设置为0.1提供约2.0倍加速,设置为0.2提供约3.0倍加速",
                        )
                        use_ret_steps = gr.Checkbox(
                            label="仅缓存关键步骤",
                            value=False,
                            info="勾选时,仅在调度器返回结果的关键步骤写入缓存;未勾选时,在所有步骤写入缓存以确保最高质量",
gushiqiao's avatar
gushiqiao committed
937
938
                        )

gushiqiao's avatar
gushiqiao committed
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
                enable_auto_config.change(
                    fn=auto_configure,
                    inputs=[enable_auto_config, model_type, resolution],
                    outputs=[
                        torch_compile,
                        lazy_load,
                        rotary_chunk,
                        rotary_chunk_size,
                        clean_cuda_cache,
                        cpu_offload,
                        offload_granularity,
                        offload_ratio,
                        t5_offload_granularity,
                        attention_type,
                        quant_op,
                        dit_quant_scheme,
                        t5_quant_scheme,
                        clip_quant_scheme,
                        precision_mode,
                        use_tiny_vae,
                        use_tiling_vae,
                        enable_teacache,
                        teacache_thresh,
                        use_ret_steps,
                    ],
                )

gushiqiao's avatar
gushiqiao committed
966
967
                dit_quant_scheme.change(fn=update_precision_mode, inputs=[dit_quant_scheme], outputs=[precision_mode])

gushiqiao's avatar
gushiqiao committed
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
        infer_btn.click(
            fn=run_inference,
            inputs=[
                model_type,
                task,
                prompt,
                negative_prompt,
                image_path,
                save_video_path,
                torch_compile,
                infer_steps,
                num_frames,
                resolution,
                seed,
                sample_shift,
                enable_teacache,
                teacache_thresh,
gushiqiao's avatar
gushiqiao committed
985
                use_ret_steps,
gushiqiao's avatar
gushiqiao committed
986
987
988
989
990
991
992
993
994
995
996
997
                enable_cfg,
                cfg_scale,
                dit_quant_scheme,
                t5_quant_scheme,
                clip_quant_scheme,
                fps,
                use_tiny_vae,
                use_tiling_vae,
                lazy_load,
                precision_mode,
                cpu_offload,
                offload_granularity,
gushiqiao's avatar
gushiqiao committed
998
                offload_ratio,
gushiqiao's avatar
gushiqiao committed
999
1000
1001
1002
                t5_offload_granularity,
                attention_type,
                quant_op,
                rotary_chunk,
gushiqiao's avatar
gushiqiao committed
1003
                rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
1004
1005
1006
1007
1008
1009
1010
1011
1012
                clean_cuda_cache,
            ],
            outputs=output_video,
        )

    demo.launch(share=True, server_port=args.server_port, server_name=args.server_name)


if __name__ == "__main__":
gushiqiao's avatar
gushiqiao committed
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
    parser = argparse.ArgumentParser(description="轻量级视频生成")
    parser.add_argument("--model_path", type=str, required=True, help="模型文件夹路径")
    parser.add_argument(
        "--model_cls",
        type=str,
        choices=["wan2.1"],
        default="wan2.1",
        help="要使用的模型类别",
    )
    parser.add_argument("--server_port", type=int, default=7862, help="服务器端口")
    parser.add_argument("--server_name", type=str, default="0.0.0.0", help="服务器IP")
    args = parser.parse_args()

    global model_path, model_cls
    model_path = args.model_path
    model_cls = args.model_cls

gushiqiao's avatar
gushiqiao committed
1030
    main()