gradio_demo_zh.py 43.2 KB
Newer Older
gushiqiao's avatar
gushiqiao committed
1
2
3
4
5
6
7
8
9
10
import os
import gradio as gr
import argparse
import json
import torch
import gc
from easydict import EasyDict
from datetime import datetime
from loguru import logger

gushiqiao's avatar
gushiqiao committed
11
12
import importlib.util
import psutil
gushiqiao's avatar
gushiqiao committed
13
import random
gushiqiao's avatar
gushiqiao committed
14
15
16
17
18
19
20
21
22
23

logger.add(
    "inference_logs.log",
    rotation="100 MB",
    encoding="utf-8",
    enqueue=True,
    backtrace=True,
    diagnose=True,
)

gushiqiao's avatar
gushiqiao committed
24
25
26
27
28
29
MAX_NUMPY_SEED = 2**32 - 1


def generate_random_seed():
    return random.randint(0, MAX_NUMPY_SEED)

gushiqiao's avatar
gushiqiao committed
30

gushiqiao's avatar
gushiqiao committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
def is_module_installed(module_name):
    try:
        spec = importlib.util.find_spec(module_name)
        return spec is not None
    except ModuleNotFoundError:
        return False


def get_available_quant_ops():
    available_ops = []

    vllm_installed = is_module_installed("vllm")
    if vllm_installed:
        available_ops.append(("vllm", True))
    else:
        available_ops.append(("vllm", False))

    sgl_installed = is_module_installed("sgl_kernel")
    if sgl_installed:
        available_ops.append(("sgl", True))
    else:
        available_ops.append(("sgl", False))

    q8f_installed = is_module_installed("q8_kernels")
    if q8f_installed:
        available_ops.append(("q8f", True))
    else:
        available_ops.append(("q8f", False))

    return available_ops


def get_available_attn_ops():
    available_ops = []

    vllm_installed = is_module_installed("flash_attn")
    if vllm_installed:
        available_ops.append(("flash_attn2", True))
    else:
        available_ops.append(("flash_attn2", False))

    sgl_installed = is_module_installed("flash_attn_interface")
    if sgl_installed:
        available_ops.append(("flash_attn3", True))
    else:
        available_ops.append(("flash_attn3", False))

    q8f_installed = is_module_installed("sageattention")
    if q8f_installed:
        available_ops.append(("sage_attn2", True))
    else:
        available_ops.append(("sage_attn2", False))

gushiqiao's avatar
gushiqiao committed
84
85
86
87
88
89
    torch_installed = is_module_installed("torch")
    if torch_installed:
        available_ops.append(("torch_sdpa", True))
    else:
        available_ops.append(("torch_sdpa", False))

gushiqiao's avatar
gushiqiao committed
90
91
92
93
94
95
96
97
98
    return available_ops


def get_gpu_memory(gpu_idx=0):
    if not torch.cuda.is_available():
        return 0
    try:
        with torch.cuda.device(gpu_idx):
            memory_info = torch.cuda.mem_get_info()
gushiqiao's avatar
gushiqiao committed
99
            total_memory = memory_info[1] / (1024**3)  # Convert bytes to GB
gushiqiao's avatar
gushiqiao committed
100
101
102
103
104
105
106
107
108
            return total_memory
    except Exception as e:
        logger.warning(f"获取GPU内存失败: {e}")
        return 0


def get_cpu_memory():
    available_bytes = psutil.virtual_memory().available
    return available_bytes / 1024**3
gushiqiao's avatar
gushiqiao committed
109
110


gushiqiao's avatar
gushiqiao committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
def cleanup_memory():
    gc.collect()

    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

    try:
        import psutil

        if hasattr(psutil, "virtual_memory"):
            if os.name == "posix":
                try:
                    os.system("sync")
                except:  # noqa
                    pass
    except:  # noqa
        pass


gushiqiao's avatar
gushiqiao committed
131
132
133
134
135
136
def generate_unique_filename(base_dir="./saved_videos"):
    os.makedirs(base_dir, exist_ok=True)
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    return os.path.join(base_dir, f"{model_cls}_{timestamp}.mp4")


gushiqiao's avatar
gushiqiao committed
137
138
139
140
141
142
143
144
145
146
def is_fp8_supported_gpu():
    if not torch.cuda.is_available():
        return False
    compute_capability = torch.cuda.get_device_capability(0)
    major, minor = compute_capability
    return (major == 8 and minor == 9) or (major >= 9)


global_runner = None
current_config = None
gushiqiao's avatar
gushiqiao committed
147
148
149
150
151
cur_dit_quant_scheme = None
cur_clip_quant_scheme = None
cur_t5_quant_scheme = None
cur_precision_mode = None
cur_enable_teacache = None
gushiqiao's avatar
gushiqiao committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

available_quant_ops = get_available_quant_ops()
quant_op_choices = []
for op_name, is_installed in available_quant_ops:
    status_text = "✅ 已安装" if is_installed else "❌ 未安装"
    display_text = f"{op_name} ({status_text})"
    quant_op_choices.append((op_name, display_text))

available_attn_ops = get_available_attn_ops()
attn_op_choices = []
for op_name, is_installed in available_attn_ops:
    status_text = "✅ 已安装" if is_installed else "❌ 未安装"
    display_text = f"{op_name} ({status_text})"
    attn_op_choices.append((op_name, display_text))


gushiqiao's avatar
gushiqiao committed
168
169
170
171
172
173
174
175
176
177
178
179
def run_inference(
    prompt,
    negative_prompt,
    save_video_path,
    torch_compile,
    infer_steps,
    num_frames,
    resolution,
    seed,
    sample_shift,
    enable_teacache,
    teacache_thresh,
gushiqiao's avatar
gushiqiao committed
180
    use_ret_steps,
gushiqiao's avatar
gushiqiao committed
181
182
183
184
185
186
187
188
189
190
191
192
    enable_cfg,
    cfg_scale,
    dit_quant_scheme,
    t5_quant_scheme,
    clip_quant_scheme,
    fps,
    use_tiny_vae,
    use_tiling_vae,
    lazy_load,
    precision_mode,
    cpu_offload,
    offload_granularity,
gushiqiao's avatar
gushiqiao committed
193
    offload_ratio,
gushiqiao's avatar
gushiqiao committed
194
195
    t5_cpu_offload,
    unload_modules,
gushiqiao's avatar
gushiqiao committed
196
197
198
199
    t5_offload_granularity,
    attention_type,
    quant_op,
    rotary_chunk,
gushiqiao's avatar
gushiqiao committed
200
    rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
201
    clean_cuda_cache,
gushiqiao's avatar
gushiqiao committed
202
    image_path=None,
gushiqiao's avatar
gushiqiao committed
203
):
gushiqiao's avatar
gushiqiao committed
204
205
    cleanup_memory()

gushiqiao's avatar
gushiqiao committed
206
207
208
    quant_op = quant_op.split("(")[0].strip()
    attention_type = attention_type.split("(")[0].strip()

gushiqiao's avatar
gushiqiao committed
209
    global global_runner, current_config, model_path, task
gushiqiao's avatar
gushiqiao committed
210
    global cur_dit_quant_scheme, cur_clip_quant_scheme, cur_t5_quant_scheme, cur_precision_mode, cur_enable_teacache
gushiqiao's avatar
gushiqiao committed
211
212
213
214
215
216

    if os.path.exists(os.path.join(model_path, "config.json")):
        with open(os.path.join(model_path, "config.json"), "r") as f:
            model_config = json.load(f)

    if task == "t2v":
gushiqiao's avatar
gushiqiao committed
217
        if model_size == "1.3b":
gushiqiao's avatar
gushiqiao committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
            # 1.3B
            coefficient = [
                [
                    -5.21862437e04,
                    9.23041404e03,
                    -5.28275948e02,
                    1.36987616e01,
                    -4.99875664e-02,
                ],
                [
                    2.39676752e03,
                    -1.31110545e03,
                    2.01331979e02,
                    -8.29855975e00,
                    1.37887774e-01,
                ],
            ]
        else:
            # 14B
            coefficient = [
                [
                    -3.03318725e05,
                    4.90537029e04,
                    -2.65530556e03,
                    5.87365115e01,
                    -3.15583525e-01,
                ],
                [
                    -5784.54975374,
                    5449.50911966,
                    -1811.16591783,
                    256.27178429,
                    -13.02252404,
                ],
            ]
    elif task == "i2v":
        if resolution in [
            "1280x720",
            "720x1280",
            "1280x544",
            "544x1280",
            "1104x832",
            "832x1104",
            "960x960",
        ]:
            # 720p
            coefficient = [
                [
                    8.10705460e03,
                    2.13393892e03,
                    -3.72934672e02,
                    1.66203073e01,
                    -4.17769401e-02,
                ],
                [-114.36346466, 65.26524496, -18.82220707, 4.91518089, -0.23412683],
            ]
        else:
            # 480p
            coefficient = [
                [
                    2.57151496e05,
                    -3.54229917e04,
                    1.40286849e03,
                    -1.35890334e01,
                    1.32517977e-01,
                ],
                [
                    -3.02331670e02,
                    2.23948934e02,
                    -5.25463970e01,
                    5.87348440e00,
                    -2.01973289e-01,
                ],
            ]

    save_video_path = generate_unique_filename()

    is_dit_quant = dit_quant_scheme != "bf16"
    is_t5_quant = t5_quant_scheme != "bf16"
    if is_t5_quant:
gushiqiao's avatar
gushiqiao committed
298
299
        t5_path = os.path.join(model_path, t5_quant_scheme)
        t5_quant_ckpt = os.path.join(t5_path, f"models_t5_umt5-xxl-enc-{t5_quant_scheme}.pth")
gushiqiao's avatar
gushiqiao committed
300
301
302
    else:
        t5_quant_ckpt = None

gushiqiao's avatar
gushiqiao committed
303
    is_clip_quant = clip_quant_scheme != "fp16"
gushiqiao's avatar
gushiqiao committed
304
    if is_clip_quant:
gushiqiao's avatar
gushiqiao committed
305
306
        clip_path = os.path.join(model_path, clip_quant_scheme)
        clip_quant_ckpt = os.path.join(clip_path, f"clip-{clip_quant_scheme}.pth")
gushiqiao's avatar
gushiqiao committed
307
308
309
    else:
        clip_quant_ckpt = None

gushiqiao's avatar
gushiqiao committed
310
311
    needs_reinit = (
        lazy_load
gushiqiao's avatar
gushiqiao committed
312
        or unload_modules
gushiqiao's avatar
gushiqiao committed
313
314
315
316
317
318
319
320
321
322
323
324
325
        or global_runner is None
        or current_config is None
        or cur_dit_quant_scheme is None
        or cur_dit_quant_scheme != dit_quant_scheme
        or cur_clip_quant_scheme is None
        or cur_clip_quant_scheme != clip_quant_scheme
        or cur_t5_quant_scheme is None
        or cur_t5_quant_scheme != t5_quant_scheme
        or cur_precision_mode is None
        or cur_precision_mode != precision_mode
        or cur_enable_teacache is None
        or cur_enable_teacache != enable_teacache
    )
gushiqiao's avatar
gushiqiao committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339

    if torch_compile:
        os.environ["ENABLE_GRAPH_MODE"] = "true"
    else:
        os.environ["ENABLE_GRAPH_MODE"] = "false"
    if precision_mode == "bf16":
        os.environ["DTYPE"] = "BF16"
    else:
        os.environ.pop("DTYPE", None)

    if is_dit_quant:
        if quant_op == "vllm":
            mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Vllm"
        elif quant_op == "sgl":
gushiqiao's avatar
gushiqiao committed
340
341
342
343
            if dit_quant_scheme == "int8":
                mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Sgl-ActVllm"
            else:
                mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Sgl"
gushiqiao's avatar
gushiqiao committed
344
345
        elif quant_op == "q8f":
            mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Q8F"
gushiqiao's avatar
gushiqiao committed
346
347

        dit_quantized_ckpt = os.path.join(model_path, dit_quant_scheme)
gushiqiao's avatar
gushiqiao committed
348
349
350
        if os.path.exists(os.path.join(dit_quantized_ckpt, "config.json")):
            with open(os.path.join(dit_quantized_ckpt, "config.json"), "r") as f:
                quant_model_config = json.load(f)
gushiqiao's avatar
gushiqiao committed
351
352
        else:
            quant_model_config = {}
gushiqiao's avatar
gushiqiao committed
353
354
    else:
        mm_type = "Default"
gushiqiao's avatar
gushiqiao committed
355
        dit_quantized_ckpt = None
gushiqiao's avatar
gushiqiao committed
356
        quant_model_config = {}
gushiqiao's avatar
gushiqiao committed
357
358
359
360
361
362

    config = {
        "infer_steps": infer_steps,
        "target_video_length": num_frames,
        "target_width": int(resolution.split("x")[0]),
        "target_height": int(resolution.split("x")[1]),
gushiqiao's avatar
gushiqiao committed
363
364
365
        "self_attn_1_type": attention_type,
        "cross_attn_1_type": attention_type,
        "cross_attn_2_type": attention_type,
gushiqiao's avatar
gushiqiao committed
366
367
368
369
370
371
        "seed": seed,
        "enable_cfg": enable_cfg,
        "sample_guide_scale": cfg_scale,
        "sample_shift": sample_shift,
        "cpu_offload": cpu_offload,
        "offload_granularity": offload_granularity,
gushiqiao's avatar
gushiqiao committed
372
        "offload_ratio": offload_ratio,
gushiqiao's avatar
gushiqiao committed
373
        "t5_offload_granularity": t5_offload_granularity,
gushiqiao's avatar
gushiqiao committed
374
        "dit_quantized_ckpt": dit_quantized_ckpt,
gushiqiao's avatar
gushiqiao committed
375
376
377
378
379
        "mm_config": {
            "mm_type": mm_type,
        },
        "fps": fps,
        "feature_caching": "Tea" if enable_teacache else "NoCaching",
gushiqiao's avatar
gushiqiao committed
380
381
        "coefficients": coefficient[0] if use_ret_steps else coefficient[1],
        "use_ret_steps": use_ret_steps,
gushiqiao's avatar
gushiqiao committed
382
        "teacache_thresh": teacache_thresh,
gushiqiao's avatar
gushiqiao committed
383
384
        "t5_cpu_offload": t5_cpu_offload,
        "unload_modules": unload_modules,
gushiqiao's avatar
gushiqiao committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
        "t5_quantized": is_t5_quant,
        "t5_quantized_ckpt": t5_quant_ckpt,
        "t5_quant_scheme": t5_quant_scheme,
        "clip_quantized": is_clip_quant,
        "clip_quantized_ckpt": clip_quant_ckpt,
        "clip_quant_scheme": clip_quant_scheme,
        "use_tiling_vae": use_tiling_vae,
        "tiny_vae": use_tiny_vae,
        "tiny_vae_path": (os.path.join(model_path, "taew2_1.pth") if use_tiny_vae else None),
        "lazy_load": lazy_load,
        "do_mm_calib": False,
        "parallel_attn_type": None,
        "parallel_vae": False,
        "max_area": False,
        "vae_stride": (4, 8, 8),
        "patch_size": (1, 2, 2),
        "lora_path": None,
        "strength_model": 1.0,
        "use_prompt_enhancer": False,
        "text_len": 512,
        "rotary_chunk": rotary_chunk,
gushiqiao's avatar
gushiqiao committed
406
        "rotary_chunk_size": rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
        "clean_cuda_cache": clean_cuda_cache,
    }

    args = argparse.Namespace(
        model_cls=model_cls,
        task=task,
        model_path=model_path,
        prompt_enhancer=None,
        prompt=prompt,
        negative_prompt=negative_prompt,
        image_path=image_path,
        save_video_path=save_video_path,
    )

    config.update({k: v for k, v in vars(args).items()})
    config = EasyDict(config)
    config.update(model_config)
gushiqiao's avatar
gushiqiao committed
424
    config.update(quant_model_config)
gushiqiao's avatar
gushiqiao committed
425
426
427
428

    logger.info(f"使用模型: {model_path}")
    logger.info(f"推理配置:\n{json.dumps(config, indent=4, ensure_ascii=False)}")

gushiqiao's avatar
gushiqiao committed
429
    # Initialize or reuse the runner
gushiqiao's avatar
gushiqiao committed
430
431
432
433
434
435
436
    runner = global_runner
    if needs_reinit:
        if runner is not None:
            del runner
            torch.cuda.empty_cache()
            gc.collect()

gushiqiao's avatar
gushiqiao committed
437
438
        from lightx2v.infer import init_runner  # noqa

gushiqiao's avatar
gushiqiao committed
439
440
        runner = init_runner(config)
        current_config = config
gushiqiao's avatar
gushiqiao committed
441
442
443
444
445
        cur_dit_quant_scheme = dit_quant_scheme
        cur_clip_quant_scheme = clip_quant_scheme
        cur_t5_quant_scheme = t5_quant_scheme
        cur_precision_mode = precision_mode
        cur_enable_teacache = enable_teacache
gushiqiao's avatar
gushiqiao committed
446
447
448

        if not lazy_load:
            global_runner = runner
gushiqiao's avatar
gushiqiao committed
449
450
    else:
        runner.config = config
gushiqiao's avatar
gushiqiao committed
451

452
    runner.run_pipeline()
gushiqiao's avatar
gushiqiao committed
453

gushiqiao's avatar
gushiqiao committed
454
455
456
457
458
459
460
461
462
    del config, args, model_config, quant_model_config
    if "dit_quantized_ckpt" in locals():
        del dit_quantized_ckpt
    if "t5_quant_ckpt" in locals():
        del t5_quant_ckpt
    if "clip_quant_ckpt" in locals():
        del clip_quant_ckpt

    cleanup_memory()
gushiqiao's avatar
gushiqiao committed
463
464
465
466

    return save_video_path


gushiqiao's avatar
gushiqiao committed
467
468
469
470
471
472
def handle_lazy_load_change(lazy_load_enabled):
    """Handle lazy_load checkbox change to automatically enable unload_modules"""
    return gr.update(value=lazy_load_enabled)


def auto_configure(enable_auto_config, resolution):
gushiqiao's avatar
gushiqiao committed
473
474
475
476
477
478
479
480
481
    default_config = {
        "torch_compile_val": False,
        "lazy_load_val": False,
        "rotary_chunk_val": False,
        "rotary_chunk_size_val": 100,
        "clean_cuda_cache_val": False,
        "cpu_offload_val": False,
        "offload_granularity_val": "block",
        "offload_ratio_val": 1,
gushiqiao's avatar
gushiqiao committed
482
483
        "t5_cpu_offload_val": False,
        "unload_modules_val": False,
gushiqiao's avatar
gushiqiao committed
484
485
486
487
488
489
490
491
492
493
494
495
496
        "t5_offload_granularity_val": "model",
        "attention_type_val": attn_op_choices[0][1],
        "quant_op_val": quant_op_choices[0][1],
        "dit_quant_scheme_val": "bf16",
        "t5_quant_scheme_val": "bf16",
        "clip_quant_scheme_val": "fp16",
        "precision_mode_val": "fp32",
        "use_tiny_vae_val": False,
        "use_tiling_vae_val": False,
        "enable_teacache_val": False,
        "teacache_thresh_val": 0.26,
        "use_ret_steps_val": False,
    }
gushiqiao's avatar
gushiqiao committed
497

gushiqiao's avatar
gushiqiao committed
498
499
500
501
502
503
504
505
506
507
508
    if not enable_auto_config:
        return tuple(gr.update(value=default_config[key]) for key in default_config)

    gpu_memory = round(get_gpu_memory())
    cpu_memory = round(get_cpu_memory())

    if is_fp8_supported_gpu():
        quant_type = "fp8"
    else:
        quant_type = "int8"

gushiqiao's avatar
gushiqiao committed
509
    attn_priority = ["sage_attn2", "flash_attn3", "flash_attn2", "torch_sdpa"]
gushiqiao's avatar
gushiqiao committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
    quant_op_priority = ["sgl", "vllm", "q8f"]

    for op in attn_priority:
        if dict(available_attn_ops).get(op):
            default_config["attention_type_val"] = dict(attn_op_choices)[op]
            break

    for op in quant_op_priority:
        if dict(available_quant_ops).get(op):
            default_config["quant_op_val"] = dict(quant_op_choices)[op]
            break

    if resolution in [
        "1280x720",
        "720x1280",
        "1280x544",
        "544x1280",
        "1104x832",
        "832x1104",
        "960x960",
    ]:
        res = "720p"
    elif resolution in [
        "960x544",
        "544x960",
    ]:
        res = "540p"
    else:
        res = "480p"

gushiqiao's avatar
gushiqiao committed
540
    if model_size == "14b":
gushiqiao's avatar
gushiqiao committed
541
542
543
544
545
546
547
        is_14b = True
    else:
        is_14b = False

    if res == "720p" and is_14b:
        gpu_rules = [
            (80, {}),
gushiqiao's avatar
gushiqiao committed
548
549
550
            (48, {"cpu_offload_val": True, "offload_ratio_val": 0.5, "t5_cpu_offload_val": True}),
            (40, {"cpu_offload_val": True, "offload_ratio_val": 0.8, "t5_cpu_offload_val": True}),
            (32, {"cpu_offload_val": True, "offload_ratio_val": 1, "t5_cpu_offload_val": True}),
gushiqiao's avatar
gushiqiao committed
551
552
553
554
            (
                24,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
555
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
556
557
558
559
560
561
562
563
564
565
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                },
            ),
            (
                16,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
566
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
567
568
569
570
571
572
573
574
575
576
577
578
579
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                },
            ),
            (
                12,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
580
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
581
582
583
584
585
586
587
588
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                    "clean_cuda_cache_val": True,
gushiqiao's avatar
gushiqiao committed
589
                    "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
590
591
592
593
594
595
                },
            ),
            (
                8,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
596
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
597
598
599
600
601
602
603
604
605
606
607
608
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                    "clean_cuda_cache_val": True,
                    "t5_quant_scheme_val": quant_type,
                    "clip_quant_scheme_val": quant_type,
                    "dit_quant_scheme_val": quant_type,
                    "lazy_load_val": True,
gushiqiao's avatar
gushiqiao committed
609
                    "unload_modules_val": True,
gushiqiao's avatar
gushiqiao committed
610
                    "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
611
612
613
                },
            ),
        ]
gushiqiao's avatar
gushiqiao committed
614

gushiqiao's avatar
gushiqiao committed
615
616
617
    elif is_14b:
        gpu_rules = [
            (80, {}),
gushiqiao's avatar
gushiqiao committed
618
619
620
            (48, {"cpu_offload_val": True, "offload_ratio_val": 0.2, "t5_cpu_offload_val": True}),
            (40, {"cpu_offload_val": True, "offload_ratio_val": 0.5, "t5_cpu_offload_val": True}),
            (24, {"cpu_offload_val": True, "offload_ratio_val": 0.8, "t5_cpu_offload_val": True}),
gushiqiao's avatar
gushiqiao committed
621
622
623
624
            (
                16,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
625
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
626
627
628
629
630
631
632
633
634
635
636
637
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "block",
                },
            ),
            (
                8,
                (
                    {
                        "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
638
                        "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
639
640
641
642
643
644
645
646
647
                        "offload_ratio_val": 1,
                        "t5_offload_granularity_val": "block",
                        "precision_mode_val": "bf16",
                        "use_tiling_vae_val": True,
                        "offload_granularity_val": "phase",
                        "t5_quant_scheme_val": quant_type,
                        "clip_quant_scheme_val": quant_type,
                        "dit_quant_scheme_val": quant_type,
                        "lazy_load_val": True,
gushiqiao's avatar
gushiqiao committed
648
                        "unload_modules_val": True,
gushiqiao's avatar
gushiqiao committed
649
650
                        "rotary_chunk_val": True,
                        "rotary_chunk_size_val": 10000,
gushiqiao's avatar
gushiqiao committed
651
                        "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
652
653
654
655
                    }
                    if res == "540p"
                    else {
                        "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
656
                        "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
657
658
659
660
661
662
663
664
665
                        "offload_ratio_val": 1,
                        "t5_offload_granularity_val": "block",
                        "precision_mode_val": "bf16",
                        "use_tiling_vae_val": True,
                        "offload_granularity_val": "phase",
                        "t5_quant_scheme_val": quant_type,
                        "clip_quant_scheme_val": quant_type,
                        "dit_quant_scheme_val": quant_type,
                        "lazy_load_val": True,
gushiqiao's avatar
gushiqiao committed
666
                        "unload_modules_val": True,
gushiqiao's avatar
gushiqiao committed
667
                        "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
668
669
670
671
672
                    }
                ),
            ),
        ]

gushiqiao's avatar
gushiqiao committed
673
    else:
gushiqiao's avatar
gushiqiao committed
674
675
676
677
678
679
680
681
682
683
684
        gpu_rules = [
            (24, {}),
            (
                8,
                {
                    "t5_cpu_offload_val": True,
                    "t5_offload_granularity_val": "block",
                    "t5_quant_scheme_val": quant_type,
                },
            ),
        ]
gushiqiao's avatar
gushiqiao committed
685

gushiqiao's avatar
gushiqiao committed
686
687
688
689
690
691
692
    if is_14b:
        cpu_rules = [
            (128, {}),
            (64, {"dit_quant_scheme_val": quant_type}),
            (32, {"dit_quant_scheme_val": quant_type, "lazy_load_val": True}),
            (
                16,
gushiqiao's avatar
gushiqiao committed
693
694
695
696
697
                {
                    "dit_quant_scheme_val": quant_type,
                    "t5_quant_scheme_val": quant_type,
                    "clip_quant_scheme_val": quant_type,
                    "lazy_load_val": True,
gushiqiao's avatar
gushiqiao committed
698
                    "unload_modules_val": True,
gushiqiao's avatar
gushiqiao committed
699
                },
gushiqiao's avatar
gushiqiao committed
700
701
            ),
        ]
gushiqiao's avatar
gushiqiao committed
702
    else:
gushiqiao's avatar
gushiqiao committed
703
704
705
706
707
708
709
710
711
712
713
        cpu_rules = [
            (64, {}),
            (
                16,
                {
                    "t5_quant_scheme_val": quant_type,
                    "unload_modules_val": True,
                    "use_tiny_vae_val": True,
                },
            ),
        ]
gushiqiao's avatar
gushiqiao committed
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

    for threshold, updates in gpu_rules:
        if gpu_memory >= threshold:
            default_config.update(updates)
            break

    for threshold, updates in cpu_rules:
        if cpu_memory >= threshold:
            default_config.update(updates)
            break

    return tuple(gr.update(value=default_config[key]) for key in default_config)


def main():
gushiqiao's avatar
gushiqiao committed
729
    def toggle_image_input(task):
gushiqiao's avatar
gushiqiao committed
730
        return gr.update(visible=(task == "i2v"))
gushiqiao's avatar
gushiqiao committed
731
732

    with gr.Blocks(
gushiqiao's avatar
gushiqiao committed
733
        title="Lightx2v (轻量级视频推理和生成引擎)",
gushiqiao's avatar
gushiqiao committed
734
735
736
737
738
739
740
741
742
743
744
745
        css="""
        .main-content { max-width: 1400px; margin: auto; }
        .output-video { max-height: 650px; }
        .warning { color: #ff6b6b; font-weight: bold; }
        .advanced-options { background: #f9f9ff; border-radius: 10px; padding: 15px; }
        .tab-button { font-size: 16px; padding: 10px 20px; }
    """,
    ) as demo:
        gr.Markdown(f"# 🎬 {model_cls} 视频生成器")
        gr.Markdown(f"### 使用模型: {model_path}")

        with gr.Tabs() as tabs:
gushiqiao's avatar
gushiqiao committed
746
            with gr.Tab("基本设置", id=1):
gushiqiao's avatar
gushiqiao committed
747
748
749
750
751
                with gr.Row():
                    with gr.Column(scale=4):
                        with gr.Group():
                            gr.Markdown("## 📥 输入参数")

gushiqiao's avatar
gushiqiao committed
752
753
754
755
756
757
758
759
760
                            if task == "i2v":
                                with gr.Row():
                                    image_path = gr.Image(
                                        label="输入图像",
                                        type="filepath",
                                        height=300,
                                        interactive=True,
                                        visible=True,
                                    )
gushiqiao's avatar
gushiqiao committed
761
762
763
764
765
766
767
768
769
770
771
772
773

                            with gr.Row():
                                with gr.Column():
                                    prompt = gr.Textbox(
                                        label="提示词",
                                        lines=3,
                                        placeholder="描述视频内容...",
                                        max_lines=5,
                                    )
                                with gr.Column():
                                    negative_prompt = gr.Textbox(
                                        label="负向提示词",
                                        lines=3,
gushiqiao's avatar
gushiqiao committed
774
                                        placeholder="不希望出现在视频中的内容...",
gushiqiao's avatar
gushiqiao committed
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
                                        max_lines=5,
                                        value="镜头晃动,色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走",
                                    )
                                with gr.Column():
                                    resolution = gr.Dropdown(
                                        choices=[
                                            # 720p
                                            ("1280x720 (16:9, 720p)", "1280x720"),
                                            ("720x1280 (9:16, 720p)", "720x1280"),
                                            ("1280x544 (21:9, 720p)", "1280x544"),
                                            ("544x1280 (9:21, 720p)", "544x1280"),
                                            ("1104x832 (4:3, 720p)", "1104x832"),
                                            ("832x1104 (3:4, 720p)", "832x1104"),
                                            ("960x960 (1:1, 720p)", "960x960"),
                                            # 480p
                                            ("960x544 (16:9, 540p)", "960x544"),
                                            ("544x960 (9:16, 540p)", "544x960"),
                                            ("832x480 (16:9, 480p)", "832x480"),
                                            ("480x832 (9:16, 480p)", "480x832"),
                                            ("832x624 (4:3, 480p)", "832x624"),
                                            ("624x832 (3:4, 480p)", "624x832"),
                                            ("720x720 (1:1, 480p)", "720x720"),
                                            ("512x512 (1:1, 480p)", "512x512"),
                                        ],
                                        value="832x480",
                                        label="最大分辨率",
                                    )
gushiqiao's avatar
gushiqiao committed
802
803
804
805
806

                                with gr.Column():
                                    enable_auto_config = gr.Checkbox(
                                        label="自动配置推理选项", value=False, info="自动优化GPU设置以匹配当前分辨率。修改分辨率后,请重新勾选此选项,否则可能导致性能下降或运行失败。"
                                    )
gushiqiao's avatar
gushiqiao committed
807
                                with gr.Column(scale=9):
gushiqiao's avatar
gushiqiao committed
808
809
                                    seed = gr.Slider(
                                        label="随机种子",
gushiqiao's avatar
gushiqiao committed
810
811
                                        minimum=0,
                                        maximum=MAX_NUMPY_SEED,
gushiqiao's avatar
gushiqiao committed
812
                                        step=1,
gushiqiao's avatar
gushiqiao committed
813
                                        value=generate_random_seed(),
gushiqiao's avatar
gushiqiao committed
814
                                    )
gushiqiao's avatar
gushiqiao committed
815
                                with gr.Column(scale=1):
gushiqiao's avatar
gushiqiao committed
816
                                    randomize_btn = gr.Button("🎲 随机化", variant="secondary")
gushiqiao's avatar
gushiqiao committed
817
818

                                randomize_btn.click(fn=generate_random_seed, inputs=None, outputs=seed)
gushiqiao's avatar
gushiqiao committed
819

gushiqiao's avatar
gushiqiao committed
820
                                with gr.Column():
gushiqiao's avatar
gushiqiao committed
821
822
823
824
825
                                    infer_steps = gr.Slider(
                                        label="推理步数",
                                        minimum=1,
                                        maximum=100,
                                        step=1,
gushiqiao's avatar
gushiqiao committed
826
                                        value=40,
gushiqiao's avatar
gushiqiao committed
827
                                        info="视频生成的推理步数。增加步数可能提高质量但降低速度。",
gushiqiao's avatar
gushiqiao committed
828
829
                                    )

gushiqiao's avatar
gushiqiao committed
830
831
832
833
834
835
836
837
838
839
840
                            enable_cfg = gr.Checkbox(
                                label="启用无分类器引导",
                                value=True,
                                info="启用无分类器引导以控制提示词强度",
                            )
                            cfg_scale = gr.Slider(
                                label="CFG缩放因子",
                                minimum=1,
                                maximum=10,
                                step=1,
                                value=5,
gushiqiao's avatar
gushiqiao committed
841
                                info="控制提示词的影响强度。值越高,提示词的影响越大。",
gushiqiao's avatar
gushiqiao committed
842
843
844
845
846
847
848
                            )
                            sample_shift = gr.Slider(
                                label="分布偏移",
                                value=5,
                                minimum=0,
                                maximum=10,
                                step=1,
gushiqiao's avatar
gushiqiao committed
849
                                info="控制样本分布偏移的程度。值越大表示偏移越明显。",
gushiqiao's avatar
gushiqiao committed
850
851
                            )

gushiqiao's avatar
gushiqiao committed
852
853
854
855
856
857
                            fps = gr.Slider(
                                label="每秒帧数(FPS)",
                                minimum=8,
                                maximum=30,
                                step=1,
                                value=16,
gushiqiao's avatar
gushiqiao committed
858
                                info="视频的每秒帧数。较高的FPS会产生更流畅的视频。",
gushiqiao's avatar
gushiqiao committed
859
860
861
862
863
864
865
                            )
                            num_frames = gr.Slider(
                                label="总帧数",
                                minimum=16,
                                maximum=120,
                                step=1,
                                value=81,
gushiqiao's avatar
gushiqiao committed
866
                                info="视频中的总帧数。更多帧数会产生更长的视频。",
gushiqiao's avatar
gushiqiao committed
867
                            )
gushiqiao's avatar
gushiqiao committed
868

gushiqiao's avatar
gushiqiao committed
869
870
871
872
873
                        save_video_path = gr.Textbox(
                            label="输出视频路径",
                            value=generate_unique_filename(),
                            info="必须包含.mp4扩展名。如果留空或使用默认值,将自动生成唯一文件名。",
                        )
gushiqiao's avatar
gushiqiao committed
874
875
876
877
878
879
880
881
882
883
                    with gr.Column(scale=6):
                        gr.Markdown("## 📤 生成的视频")
                        output_video = gr.Video(
                            label="结果",
                            height=624,
                            width=360,
                            autoplay=True,
                            elem_classes=["output-video"],
                        )

gushiqiao's avatar
gushiqiao committed
884
                        infer_btn = gr.Button("生成视频", variant="primary", size="lg")
gushiqiao's avatar
gushiqiao committed
885

gushiqiao's avatar
gushiqiao committed
886
887
            with gr.Tab("⚙️ 高级选项", id=2):
                with gr.Group(elem_classes="advanced-options"):
gushiqiao's avatar
gushiqiao committed
888
                    gr.Markdown("### GPU内存优化")
gushiqiao's avatar
gushiqiao committed
889
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
890
891
                        rotary_chunk = gr.Checkbox(
                            label="分块旋转位置编码",
gushiqiao's avatar
gushiqiao committed
892
                            value=False,
gushiqiao's avatar
gushiqiao committed
893
                            info="启用时,将旋转位置编码分块处理以节省GPU内存。",
gushiqiao's avatar
gushiqiao committed
894
895
                        )

gushiqiao's avatar
gushiqiao committed
896
897
898
899
900
901
                        rotary_chunk_size = gr.Slider(
                            label="旋转编码块大小",
                            value=100,
                            minimum=100,
                            maximum=10000,
                            step=100,
gushiqiao's avatar
gushiqiao committed
902
                            info="控制应用旋转编码的块大小。较大的值可能提高性能但增加内存使用。仅在'rotary_chunk'勾选时有效。",
gushiqiao's avatar
gushiqiao committed
903
                        )
gushiqiao's avatar
gushiqiao committed
904
905
906
907
908
                        unload_modules = gr.Checkbox(
                            label="卸载模块",
                            value=False,
                            info="推理后卸载模块(T5、CLIP、DIT等)以减少GPU/CPU内存使用",
                        )
gushiqiao's avatar
gushiqiao committed
909
                        clean_cuda_cache = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
910
                            label="清理CUDA内存缓存",
gushiqiao's avatar
gushiqiao committed
911
                            value=False,
gushiqiao's avatar
gushiqiao committed
912
                            info="启用时,及时释放GPU内存但会减慢推理速度。",
gushiqiao's avatar
gushiqiao committed
913
914
                        )

gushiqiao's avatar
gushiqiao committed
915
                    gr.Markdown("### 异步卸载")
gushiqiao's avatar
gushiqiao committed
916
917
918
919
                    with gr.Row():
                        cpu_offload = gr.Checkbox(
                            label="CPU卸载",
                            value=False,
gushiqiao's avatar
gushiqiao committed
920
                            info="将模型计算的一部分从GPU卸载到CPU以减少GPU内存使用",
gushiqiao's avatar
gushiqiao committed
921
                        )
gushiqiao's avatar
gushiqiao committed
922
923
924
925

                        lazy_load = gr.Checkbox(
                            label="启用延迟加载",
                            value=False,
gushiqiao's avatar
gushiqiao committed
926
                            info="在推理过程中延迟加载模型组件。需要CPU加载和DIT量化。",
gushiqiao's avatar
gushiqiao committed
927
928
                        )

gushiqiao's avatar
gushiqiao committed
929
                        offload_granularity = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
930
                            label="Dit卸载粒度",
gushiqiao's avatar
gushiqiao committed
931
                            choices=["block", "phase"],
gushiqiao's avatar
gushiqiao committed
932
                            value="phase",
gushiqiao's avatar
gushiqiao committed
933
                            info="设置Dit模型卸载粒度:块或计算阶段",
gushiqiao's avatar
gushiqiao committed
934
935
936
937
938
939
940
941
                        )
                        offload_ratio = gr.Slider(
                            label="Dit模型卸载比例",
                            minimum=0.0,
                            maximum=1.0,
                            step=0.1,
                            value=1.0,
                            info="控制将多少Dit模型卸载到CPU",
gushiqiao's avatar
gushiqiao committed
942
                        )
gushiqiao's avatar
gushiqiao committed
943
944
945
946
947
                        t5_cpu_offload = gr.Checkbox(
                            label="T5 CPU卸载",
                            value=False,
                            info="将T5编码器模型卸载到CPU以减少GPU内存使用",
                        )
gushiqiao's avatar
gushiqiao committed
948
                        t5_offload_granularity = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
949
                            label="T5编码器卸载粒度",
gushiqiao's avatar
gushiqiao committed
950
                            choices=["model", "block"],
gushiqiao's avatar
gushiqiao committed
951
952
                            value="model",
                            info="控制将T5编码器模型卸载到CPU时的粒度",
gushiqiao's avatar
gushiqiao committed
953
954
955
956
                        )

                    gr.Markdown("### 低精度量化")
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
957
958
959
960
                        torch_compile = gr.Checkbox(
                            label="Torch编译",
                            value=False,
                            info="使用torch.compile加速推理过程",
gushiqiao's avatar
gushiqiao committed
961
962
                        )

gushiqiao's avatar
gushiqiao committed
963
964
965
966
967
968
                        attention_type = gr.Dropdown(
                            label="注意力算子",
                            choices=[op[1] for op in attn_op_choices],
                            value=attn_op_choices[0][1],
                            info="使用适当的注意力算子加速推理",
                        )
gushiqiao's avatar
gushiqiao committed
969
                        quant_op = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
970
971
972
973
974
                            label="量化矩阵乘法算子",
                            choices=[op[1] for op in quant_op_choices],
                            value=quant_op_choices[0][1],
                            info="选择量化矩阵乘法算子以加速推理",
                            interactive=True,
gushiqiao's avatar
gushiqiao committed
975
976
977
978
979
                        )
                        dit_quant_scheme = gr.Dropdown(
                            label="Dit",
                            choices=["fp8", "int8", "bf16"],
                            value="bf16",
gushiqiao's avatar
gushiqiao committed
980
                            info="Dit模型的量化精度",
gushiqiao's avatar
gushiqiao committed
981
982
                        )
                        t5_quant_scheme = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
983
                            label="T5编码器",
gushiqiao's avatar
gushiqiao committed
984
985
                            choices=["fp8", "int8", "bf16"],
                            value="bf16",
gushiqiao's avatar
gushiqiao committed
986
                            info="T5编码器模型的量化精度",
gushiqiao's avatar
gushiqiao committed
987
988
                        )
                        clip_quant_scheme = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
989
                            label="Clip编码器",
gushiqiao's avatar
gushiqiao committed
990
991
                            choices=["fp8", "int8", "fp16"],
                            value="fp16",
gushiqiao's avatar
gushiqiao committed
992
                            info="Clip编码器的量化精度",
gushiqiao's avatar
gushiqiao committed
993
994
                        )
                        precision_mode = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
995
                            label="敏感层精度模式",
gushiqiao's avatar
gushiqiao committed
996
                            choices=["fp32", "bf16"],
gushiqiao's avatar
gushiqiao committed
997
                            value="fp32",
gushiqiao's avatar
gushiqiao committed
998
                            info="选择用于关键模型组件(如归一化和嵌入层)的数值精度。FP32提供更高精度,而BF16在兼容硬件上提高性能。",
gushiqiao's avatar
gushiqiao committed
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
                        )

                    gr.Markdown("### 变分自编码器(VAE)")
                    with gr.Row():
                        use_tiny_vae = gr.Checkbox(
                            label="使用轻量级VAE",
                            value=False,
                            info="使用轻量级VAE模型加速解码过程",
                        )
                        use_tiling_vae = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
1009
                            label="VAE分块推理",
gushiqiao's avatar
gushiqiao committed
1010
                            value=False,
gushiqiao's avatar
gushiqiao committed
1011
                            info="使用VAE分块推理以减少GPU内存使用",
gushiqiao's avatar
gushiqiao committed
1012
1013
1014
1015
1016
                        )

                    gr.Markdown("### 特征缓存")
                    with gr.Row():
                        enable_teacache = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
1017
                            label="Tea Cache",
gushiqiao's avatar
gushiqiao committed
1018
1019
1020
1021
1022
1023
1024
1025
                            value=False,
                            info="在推理过程中缓存特征以减少推理步数",
                        )
                        teacache_thresh = gr.Slider(
                            label="Tea Cache阈值",
                            value=0.26,
                            minimum=0,
                            maximum=1,
gushiqiao's avatar
gushiqiao committed
1026
1027
1028
1029
1030
1031
                            info="较高的加速可能导致质量下降 —— 设置为0.1提供约2.0倍加速,设置为0.2提供约3.0倍加速",
                        )
                        use_ret_steps = gr.Checkbox(
                            label="仅缓存关键步骤",
                            value=False,
                            info="勾选时,仅在调度器返回结果的关键步骤写入缓存;未勾选时,在所有步骤写入缓存以确保最高质量",
gushiqiao's avatar
gushiqiao committed
1032
1033
                        )

gushiqiao's avatar
gushiqiao committed
1034
1035
                enable_auto_config.change(
                    fn=auto_configure,
gushiqiao's avatar
gushiqiao committed
1036
                    inputs=[enable_auto_config, resolution],
gushiqiao's avatar
gushiqiao committed
1037
1038
1039
1040
1041
1042
1043
1044
1045
                    outputs=[
                        torch_compile,
                        lazy_load,
                        rotary_chunk,
                        rotary_chunk_size,
                        clean_cuda_cache,
                        cpu_offload,
                        offload_granularity,
                        offload_ratio,
gushiqiao's avatar
gushiqiao committed
1046
1047
                        t5_cpu_offload,
                        unload_modules,
gushiqiao's avatar
gushiqiao committed
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
                        t5_offload_granularity,
                        attention_type,
                        quant_op,
                        dit_quant_scheme,
                        t5_quant_scheme,
                        clip_quant_scheme,
                        precision_mode,
                        use_tiny_vae,
                        use_tiling_vae,
                        enable_teacache,
                        teacache_thresh,
                        use_ret_steps,
                    ],
                )
gushiqiao's avatar
gushiqiao committed
1062
1063
1064
1065
1066
1067

                lazy_load.change(
                    fn=handle_lazy_load_change,
                    inputs=[lazy_load],
                    outputs=[unload_modules],
                )
gushiqiao's avatar
gushiqiao committed
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
        if task == "i2v":
            infer_btn.click(
                fn=run_inference,
                inputs=[
                    prompt,
                    negative_prompt,
                    save_video_path,
                    torch_compile,
                    infer_steps,
                    num_frames,
                    resolution,
                    seed,
                    sample_shift,
                    enable_teacache,
                    teacache_thresh,
                    use_ret_steps,
                    enable_cfg,
                    cfg_scale,
                    dit_quant_scheme,
                    t5_quant_scheme,
                    clip_quant_scheme,
                    fps,
                    use_tiny_vae,
                    use_tiling_vae,
                    lazy_load,
                    precision_mode,
                    cpu_offload,
                    offload_granularity,
                    offload_ratio,
gushiqiao's avatar
gushiqiao committed
1097
1098
                    t5_cpu_offload,
                    unload_modules,
gushiqiao's avatar
gushiqiao committed
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
                    t5_offload_granularity,
                    attention_type,
                    quant_op,
                    rotary_chunk,
                    rotary_chunk_size,
                    clean_cuda_cache,
                    image_path,
                ],
                outputs=output_video,
            )
        else:
            infer_btn.click(
                fn=run_inference,
                inputs=[
                    prompt,
                    negative_prompt,
                    save_video_path,
                    torch_compile,
                    infer_steps,
                    num_frames,
                    resolution,
                    seed,
                    sample_shift,
                    enable_teacache,
                    teacache_thresh,
                    use_ret_steps,
                    enable_cfg,
                    cfg_scale,
                    dit_quant_scheme,
                    t5_quant_scheme,
                    clip_quant_scheme,
                    fps,
                    use_tiny_vae,
                    use_tiling_vae,
                    lazy_load,
                    precision_mode,
                    cpu_offload,
                    offload_granularity,
                    offload_ratio,
gushiqiao's avatar
gushiqiao committed
1138
1139
                    t5_cpu_offload,
                    unload_modules,
gushiqiao's avatar
gushiqiao committed
1140
1141
1142
1143
1144
1145
1146
1147
1148
                    t5_offload_granularity,
                    attention_type,
                    quant_op,
                    rotary_chunk,
                    rotary_chunk_size,
                    clean_cuda_cache,
                ],
                outputs=output_video,
            )
gushiqiao's avatar
gushiqiao committed
1149
1150
1151
1152
1153

    demo.launch(share=True, server_port=args.server_port, server_name=args.server_name)


if __name__ == "__main__":
gushiqiao's avatar
gushiqiao committed
1154
1155
1156
1157
1158
1159
1160
1161
1162
    parser = argparse.ArgumentParser(description="轻量级视频生成")
    parser.add_argument("--model_path", type=str, required=True, help="模型文件夹路径")
    parser.add_argument(
        "--model_cls",
        type=str,
        choices=["wan2.1"],
        default="wan2.1",
        help="要使用的模型类别",
    )
gushiqiao's avatar
gushiqiao committed
1163
    parser.add_argument("--model_size", type=str, required=True, choices=["14b", "1.3b"], help="模型大小:14b 或 1.3b")
gushiqiao's avatar
gushiqiao committed
1164
    parser.add_argument("--task", type=str, required=True, choices=["i2v", "t2v"], help="指定任务类型。'i2v'用于图像到视频转换,'t2v'用于文本到视频生成。")
gushiqiao's avatar
gushiqiao committed
1165
1166
1167
1168
    parser.add_argument("--server_port", type=int, default=7862, help="服务器端口")
    parser.add_argument("--server_name", type=str, default="0.0.0.0", help="服务器IP")
    args = parser.parse_args()

gushiqiao's avatar
gushiqiao committed
1169
    global model_path, model_cls, model_size
gushiqiao's avatar
gushiqiao committed
1170
1171
    model_path = args.model_path
    model_cls = args.model_cls
gushiqiao's avatar
gushiqiao committed
1172
    model_size = args.model_size
gushiqiao's avatar
gushiqiao committed
1173
    task = args.task
gushiqiao's avatar
gushiqiao committed
1174

gushiqiao's avatar
gushiqiao committed
1175
    main()