gradio_demo_zh.py 39.2 KB
Newer Older
gushiqiao's avatar
gushiqiao committed
1
2
3
4
5
6
7
8
9
10
11
import os
import gradio as gr
import asyncio
import argparse
import json
import torch
import gc
from easydict import EasyDict
from datetime import datetime
from loguru import logger

gushiqiao's avatar
gushiqiao committed
12
13
import importlib.util
import psutil
gushiqiao's avatar
gushiqiao committed
14
import random
gushiqiao's avatar
gushiqiao committed
15
16
17
18
19
20
21
22
23
24
25


logger.add(
    "inference_logs.log",
    rotation="100 MB",
    encoding="utf-8",
    enqueue=True,
    backtrace=True,
    diagnose=True,
)

gushiqiao's avatar
gushiqiao committed
26
27
28
29
30
31
MAX_NUMPY_SEED = 2**32 - 1


def generate_random_seed():
    return random.randint(0, MAX_NUMPY_SEED)

gushiqiao's avatar
gushiqiao committed
32

gushiqiao's avatar
gushiqiao committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
def is_module_installed(module_name):
    try:
        spec = importlib.util.find_spec(module_name)
        return spec is not None
    except ModuleNotFoundError:
        return False


def get_available_quant_ops():
    available_ops = []

    vllm_installed = is_module_installed("vllm")
    if vllm_installed:
        available_ops.append(("vllm", True))
    else:
        available_ops.append(("vllm", False))

    sgl_installed = is_module_installed("sgl_kernel")
    if sgl_installed:
        available_ops.append(("sgl", True))
    else:
        available_ops.append(("sgl", False))

    q8f_installed = is_module_installed("q8_kernels")
    if q8f_installed:
        available_ops.append(("q8f", True))
    else:
        available_ops.append(("q8f", False))

    return available_ops


def get_available_attn_ops():
    available_ops = []

    vllm_installed = is_module_installed("flash_attn")
    if vllm_installed:
        available_ops.append(("flash_attn2", True))
    else:
        available_ops.append(("flash_attn2", False))

    sgl_installed = is_module_installed("flash_attn_interface")
    if sgl_installed:
        available_ops.append(("flash_attn3", True))
    else:
        available_ops.append(("flash_attn3", False))

    q8f_installed = is_module_installed("sageattention")
    if q8f_installed:
        available_ops.append(("sage_attn2", True))
    else:
        available_ops.append(("sage_attn2", False))

    return available_ops


def get_gpu_memory(gpu_idx=0):
    if not torch.cuda.is_available():
        return 0
    try:
        with torch.cuda.device(gpu_idx):
            memory_info = torch.cuda.mem_get_info()
            total_memory = memory_info[1] / (1024**3)
            return total_memory
    except Exception as e:
        logger.warning(f"获取GPU内存失败: {e}")
        return 0


def get_cpu_memory():
    available_bytes = psutil.virtual_memory().available
    return available_bytes / 1024**3
gushiqiao's avatar
gushiqiao committed
105
106
107
108
109
110
111
112


def generate_unique_filename(base_dir="./saved_videos"):
    os.makedirs(base_dir, exist_ok=True)
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    return os.path.join(base_dir, f"{model_cls}_{timestamp}.mp4")


gushiqiao's avatar
gushiqiao committed
113
114
115
116
117
118
119
120
121
122
def is_fp8_supported_gpu():
    if not torch.cuda.is_available():
        return False
    compute_capability = torch.cuda.get_device_capability(0)
    major, minor = compute_capability
    return (major == 8 and minor == 9) or (major >= 9)


global_runner = None
current_config = None
gushiqiao's avatar
gushiqiao committed
123
124
125
126
127
cur_dit_quant_scheme = None
cur_clip_quant_scheme = None
cur_t5_quant_scheme = None
cur_precision_mode = None
cur_enable_teacache = None
gushiqiao's avatar
gushiqiao committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

available_quant_ops = get_available_quant_ops()
quant_op_choices = []
for op_name, is_installed in available_quant_ops:
    status_text = "✅ 已安装" if is_installed else "❌ 未安装"
    display_text = f"{op_name} ({status_text})"
    quant_op_choices.append((op_name, display_text))

available_attn_ops = get_available_attn_ops()
attn_op_choices = []
for op_name, is_installed in available_attn_ops:
    status_text = "✅ 已安装" if is_installed else "❌ 未安装"
    display_text = f"{op_name} ({status_text})"
    attn_op_choices.append((op_name, display_text))


gushiqiao's avatar
gushiqiao committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
def run_inference(
    model_type,
    task,
    prompt,
    negative_prompt,
    image_path,
    save_video_path,
    torch_compile,
    infer_steps,
    num_frames,
    resolution,
    seed,
    sample_shift,
    enable_teacache,
    teacache_thresh,
gushiqiao's avatar
gushiqiao committed
159
    use_ret_steps,
gushiqiao's avatar
gushiqiao committed
160
161
162
163
164
165
166
167
168
169
170
171
    enable_cfg,
    cfg_scale,
    dit_quant_scheme,
    t5_quant_scheme,
    clip_quant_scheme,
    fps,
    use_tiny_vae,
    use_tiling_vae,
    lazy_load,
    precision_mode,
    cpu_offload,
    offload_granularity,
gushiqiao's avatar
gushiqiao committed
172
    offload_ratio,
gushiqiao's avatar
gushiqiao committed
173
174
175
176
    t5_offload_granularity,
    attention_type,
    quant_op,
    rotary_chunk,
gushiqiao's avatar
gushiqiao committed
177
    rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
178
179
    clean_cuda_cache,
):
gushiqiao's avatar
gushiqiao committed
180
181
182
    quant_op = quant_op.split("(")[0].strip()
    attention_type = attention_type.split("(")[0].strip()

gushiqiao's avatar
gushiqiao committed
183
    global global_runner, current_config, model_path
gushiqiao's avatar
gushiqiao committed
184
    global cur_dit_quant_scheme, cur_clip_quant_scheme, cur_t5_quant_scheme, cur_precision_mode, cur_enable_teacache
gushiqiao's avatar
gushiqiao committed
185
186
187
188
189

    if os.path.exists(os.path.join(model_path, "config.json")):
        with open(os.path.join(model_path, "config.json"), "r") as f:
            model_config = json.load(f)

gushiqiao's avatar
gushiqiao committed
190
    if task == "图像生成视频":
gushiqiao's avatar
gushiqiao committed
191
        task = "i2v"
gushiqiao's avatar
gushiqiao committed
192
193
    elif task == "文本生成视频":
        task = "t2v"
gushiqiao's avatar
gushiqiao committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

    if task == "t2v":
        if model_type == "Wan2.1 1.3B":
            # 1.3B
            coefficient = [
                [
                    -5.21862437e04,
                    9.23041404e03,
                    -5.28275948e02,
                    1.36987616e01,
                    -4.99875664e-02,
                ],
                [
                    2.39676752e03,
                    -1.31110545e03,
                    2.01331979e02,
                    -8.29855975e00,
                    1.37887774e-01,
                ],
            ]
        else:
            # 14B
            coefficient = [
                [
                    -3.03318725e05,
                    4.90537029e04,
                    -2.65530556e03,
                    5.87365115e01,
                    -3.15583525e-01,
                ],
                [
                    -5784.54975374,
                    5449.50911966,
                    -1811.16591783,
                    256.27178429,
                    -13.02252404,
                ],
            ]
    elif task == "i2v":
        if resolution in [
            "1280x720",
            "720x1280",
            "1280x544",
            "544x1280",
            "1104x832",
            "832x1104",
            "960x960",
        ]:
            # 720p
            coefficient = [
                [
                    8.10705460e03,
                    2.13393892e03,
                    -3.72934672e02,
                    1.66203073e01,
                    -4.17769401e-02,
                ],
                [-114.36346466, 65.26524496, -18.82220707, 4.91518089, -0.23412683],
            ]
        else:
            # 480p
            coefficient = [
                [
                    2.57151496e05,
                    -3.54229917e04,
                    1.40286849e03,
                    -1.35890334e01,
                    1.32517977e-01,
                ],
                [
                    -3.02331670e02,
                    2.23948934e02,
                    -5.25463970e01,
                    5.87348440e00,
                    -2.01973289e-01,
                ],
            ]

    save_video_path = generate_unique_filename()

    is_dit_quant = dit_quant_scheme != "bf16"
    is_t5_quant = t5_quant_scheme != "bf16"
    if is_t5_quant:
gushiqiao's avatar
gushiqiao committed
277
278
        t5_path = os.path.join(model_path, t5_quant_scheme)
        t5_quant_ckpt = os.path.join(t5_path, f"models_t5_umt5-xxl-enc-{t5_quant_scheme}.pth")
gushiqiao's avatar
gushiqiao committed
279
280
281
    else:
        t5_quant_ckpt = None

gushiqiao's avatar
gushiqiao committed
282
    is_clip_quant = clip_quant_scheme != "fp16"
gushiqiao's avatar
gushiqiao committed
283
    if is_clip_quant:
gushiqiao's avatar
gushiqiao committed
284
285
        clip_path = os.path.join(model_path, clip_quant_scheme)
        clip_quant_ckpt = os.path.join(clip_path, f"clip-{clip_quant_scheme}.pth")
gushiqiao's avatar
gushiqiao committed
286
287
288
    else:
        clip_quant_ckpt = None

gushiqiao's avatar
gushiqiao committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    needs_reinit = (
        lazy_load
        or global_runner is None
        or current_config is None
        or cur_dit_quant_scheme is None
        or cur_dit_quant_scheme != dit_quant_scheme
        or cur_clip_quant_scheme is None
        or cur_clip_quant_scheme != clip_quant_scheme
        or cur_t5_quant_scheme is None
        or cur_t5_quant_scheme != t5_quant_scheme
        or cur_precision_mode is None
        or cur_precision_mode != precision_mode
        or cur_enable_teacache is None
        or cur_enable_teacache != enable_teacache
    )
gushiqiao's avatar
gushiqiao committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317

    if torch_compile:
        os.environ["ENABLE_GRAPH_MODE"] = "true"
    else:
        os.environ["ENABLE_GRAPH_MODE"] = "false"
    if precision_mode == "bf16":
        os.environ["DTYPE"] = "BF16"
    else:
        os.environ.pop("DTYPE", None)

    if is_dit_quant:
        if quant_op == "vllm":
            mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Vllm"
        elif quant_op == "sgl":
gushiqiao's avatar
gushiqiao committed
318
319
320
321
            if dit_quant_scheme == "int8":
                mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Sgl-ActVllm"
            else:
                mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Sgl"
gushiqiao's avatar
gushiqiao committed
322
323
        elif quant_op == "q8f":
            mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Q8F"
gushiqiao's avatar
gushiqiao committed
324
325

        dit_quantized_ckpt = os.path.join(model_path, dit_quant_scheme)
gushiqiao's avatar
gushiqiao committed
326
327
328
        if os.path.exists(os.path.join(dit_quantized_ckpt, "config.json")):
            with open(os.path.join(dit_quantized_ckpt, "config.json"), "r") as f:
                quant_model_config = json.load(f)
gushiqiao's avatar
gushiqiao committed
329
330
    else:
        mm_type = "Default"
gushiqiao's avatar
gushiqiao committed
331
        dit_quantized_ckpt = None
gushiqiao's avatar
gushiqiao committed
332
        quant_model_config = {}
gushiqiao's avatar
gushiqiao committed
333
334
335
336
337
338

    config = {
        "infer_steps": infer_steps,
        "target_video_length": num_frames,
        "target_width": int(resolution.split("x")[0]),
        "target_height": int(resolution.split("x")[1]),
gushiqiao's avatar
gushiqiao committed
339
340
341
        "self_attn_1_type": attention_type,
        "cross_attn_1_type": attention_type,
        "cross_attn_2_type": attention_type,
gushiqiao's avatar
gushiqiao committed
342
343
344
345
346
347
        "seed": seed,
        "enable_cfg": enable_cfg,
        "sample_guide_scale": cfg_scale,
        "sample_shift": sample_shift,
        "cpu_offload": cpu_offload,
        "offload_granularity": offload_granularity,
gushiqiao's avatar
gushiqiao committed
348
        "offload_ratio": offload_ratio,
gushiqiao's avatar
gushiqiao committed
349
        "t5_offload_granularity": t5_offload_granularity,
gushiqiao's avatar
gushiqiao committed
350
        "dit_quantized_ckpt": dit_quantized_ckpt,
gushiqiao's avatar
gushiqiao committed
351
352
353
354
355
        "mm_config": {
            "mm_type": mm_type,
        },
        "fps": fps,
        "feature_caching": "Tea" if enable_teacache else "NoCaching",
gushiqiao's avatar
gushiqiao committed
356
357
        "coefficients": coefficient[0] if use_ret_steps else coefficient[1],
        "use_ret_steps": use_ret_steps,
gushiqiao's avatar
gushiqiao committed
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
        "teacache_thresh": teacache_thresh,
        "t5_quantized": is_t5_quant,
        "t5_quantized_ckpt": t5_quant_ckpt,
        "t5_quant_scheme": t5_quant_scheme,
        "clip_quantized": is_clip_quant,
        "clip_quantized_ckpt": clip_quant_ckpt,
        "clip_quant_scheme": clip_quant_scheme,
        "use_tiling_vae": use_tiling_vae,
        "tiny_vae": use_tiny_vae,
        "tiny_vae_path": (os.path.join(model_path, "taew2_1.pth") if use_tiny_vae else None),
        "lazy_load": lazy_load,
        "do_mm_calib": False,
        "parallel_attn_type": None,
        "parallel_vae": False,
        "max_area": False,
        "vae_stride": (4, 8, 8),
        "patch_size": (1, 2, 2),
        "lora_path": None,
        "strength_model": 1.0,
        "use_prompt_enhancer": False,
        "text_len": 512,
        "rotary_chunk": rotary_chunk,
gushiqiao's avatar
gushiqiao committed
380
        "rotary_chunk_size": rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
        "clean_cuda_cache": clean_cuda_cache,
    }

    args = argparse.Namespace(
        model_cls=model_cls,
        task=task,
        model_path=model_path,
        prompt_enhancer=None,
        prompt=prompt,
        negative_prompt=negative_prompt,
        image_path=image_path,
        save_video_path=save_video_path,
    )

    config.update({k: v for k, v in vars(args).items()})
    config = EasyDict(config)
    config["mode"] = "infer"
    config.update(model_config)
gushiqiao's avatar
gushiqiao committed
399
    config.update(quant_model_config)
gushiqiao's avatar
gushiqiao committed
400
401
402
403
404
405
406
407
408
409
410

    logger.info(f"使用模型: {model_path}")
    logger.info(f"推理配置:\n{json.dumps(config, indent=4, ensure_ascii=False)}")

    runner = global_runner
    if needs_reinit:
        if runner is not None:
            del runner
            torch.cuda.empty_cache()
            gc.collect()

gushiqiao's avatar
gushiqiao committed
411
412
        from lightx2v.infer import init_runner  # noqa

gushiqiao's avatar
gushiqiao committed
413
414
        runner = init_runner(config)
        current_config = config
gushiqiao's avatar
gushiqiao committed
415
416
417
418
419
        cur_dit_quant_scheme = dit_quant_scheme
        cur_clip_quant_scheme = clip_quant_scheme
        cur_t5_quant_scheme = t5_quant_scheme
        cur_precision_mode = precision_mode
        cur_enable_teacache = enable_teacache
gushiqiao's avatar
gushiqiao committed
420
421
422

        if not lazy_load:
            global_runner = runner
gushiqiao's avatar
gushiqiao committed
423
424
    else:
        runner.config = config
gushiqiao's avatar
gushiqiao committed
425
426
427
428
429
430
431
432
433
434
435

    asyncio.run(runner.run_pipeline())

    if lazy_load:
        del runner
        torch.cuda.empty_cache()
        gc.collect()

    return save_video_path


gushiqiao's avatar
gushiqiao committed
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
def auto_configure(enable_auto_config, model_type, resolution):
    default_config = {
        "torch_compile_val": False,
        "lazy_load_val": False,
        "rotary_chunk_val": False,
        "rotary_chunk_size_val": 100,
        "clean_cuda_cache_val": False,
        "cpu_offload_val": False,
        "offload_granularity_val": "block",
        "offload_ratio_val": 1,
        "t5_offload_granularity_val": "model",
        "attention_type_val": attn_op_choices[0][1],
        "quant_op_val": quant_op_choices[0][1],
        "dit_quant_scheme_val": "bf16",
        "t5_quant_scheme_val": "bf16",
        "clip_quant_scheme_val": "fp16",
        "precision_mode_val": "fp32",
        "use_tiny_vae_val": False,
        "use_tiling_vae_val": False,
        "enable_teacache_val": False,
        "teacache_thresh_val": 0.26,
        "use_ret_steps_val": False,
    }
gushiqiao's avatar
gushiqiao committed
459

gushiqiao's avatar
gushiqiao committed
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
    if not enable_auto_config:
        return tuple(gr.update(value=default_config[key]) for key in default_config)

    gpu_memory = round(get_gpu_memory())
    cpu_memory = round(get_cpu_memory())

    if is_fp8_supported_gpu():
        quant_type = "fp8"
    else:
        quant_type = "int8"

    attn_priority = ["sage_attn2", "flash_attn3", "flash_attn2"]
    quant_op_priority = ["sgl", "vllm", "q8f"]

    for op in attn_priority:
        if dict(available_attn_ops).get(op):
            default_config["attention_type_val"] = dict(attn_op_choices)[op]
            break

    for op in quant_op_priority:
        if dict(available_quant_ops).get(op):
            default_config["quant_op_val"] = dict(quant_op_choices)[op]
            break

    if resolution in [
        "1280x720",
        "720x1280",
        "1280x544",
        "544x1280",
        "1104x832",
        "832x1104",
        "960x960",
    ]:
        res = "720p"
    elif resolution in [
        "960x544",
        "544x960",
    ]:
        res = "540p"
    else:
        res = "480p"

    if model_type in ["Wan2.1 14B"]:
        is_14b = True
    else:
        is_14b = False

    if res == "720p" and is_14b:
        gpu_rules = [
            (80, {}),
            (48, {"cpu_offload_val": True, "offload_ratio_val": 0.5}),
            (40, {"cpu_offload_val": True, "offload_ratio_val": 0.8}),
            (32, {"cpu_offload_val": True, "offload_ratio_val": 1}),
            (
                24,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                },
            ),
            (
                16,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                },
            ),
            (
                12,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                    "clean_cuda_cache_val": True,
                },
            ),
            (
                8,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                    "clean_cuda_cache_val": True,
                    "t5_quant_scheme_val": quant_type,
                    "clip_quant_scheme_val": quant_type,
                    "dit_quant_scheme_val": quant_type,
                    "lazy_load_val": True,
                },
            ),
        ]
gushiqiao's avatar
gushiqiao committed
569

gushiqiao's avatar
gushiqiao committed
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
    elif is_14b:
        gpu_rules = [
            (80, {}),
            (48, {"cpu_offload_val": True, "offload_ratio_val": 0.2}),
            (40, {"cpu_offload_val": True, "offload_ratio_val": 0.5}),
            (24, {"cpu_offload_val": True, "offload_ratio_val": 0.8}),
            (
                16,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "block",
                },
            ),
            (
                8,
                (
                    {
                        "cpu_offload_val": True,
                        "offload_ratio_val": 1,
                        "t5_offload_granularity_val": "block",
                        "precision_mode_val": "bf16",
                        "use_tiling_vae_val": True,
                        "offload_granularity_val": "phase",
                        "t5_quant_scheme_val": quant_type,
                        "clip_quant_scheme_val": quant_type,
                        "dit_quant_scheme_val": quant_type,
                        "lazy_load_val": True,
                        "rotary_chunk_val": True,
                        "rotary_chunk_size_val": 10000,
                    }
                    if res == "540p"
                    else {
                        "cpu_offload_val": True,
                        "offload_ratio_val": 1,
                        "t5_offload_granularity_val": "block",
                        "precision_mode_val": "bf16",
                        "use_tiling_vae_val": True,
                        "offload_granularity_val": "phase",
                        "t5_quant_scheme_val": quant_type,
                        "clip_quant_scheme_val": quant_type,
                        "dit_quant_scheme_val": quant_type,
                        "lazy_load_val": True,
                    }
                ),
            ),
        ]

    if is_14b:
        cpu_rules = [
            (128, {}),
            (64, {"dit_quant_scheme_val": quant_type}),
            (32, {"dit_quant_scheme_val": quant_type, "lazy_load_val": True}),
            (
                16,
gushiqiao's avatar
gushiqiao committed
628
629
630
631
632
633
                {
                    "dit_quant_scheme_val": quant_type,
                    "t5_quant_scheme_val": quant_type,
                    "clip_quant_scheme_val": quant_type,
                    "lazy_load_val": True,
                },
gushiqiao's avatar
gushiqiao committed
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
            ),
        ]

    for threshold, updates in gpu_rules:
        if gpu_memory >= threshold:
            default_config.update(updates)
            break

    for threshold, updates in cpu_rules:
        if cpu_memory >= threshold:
            default_config.update(updates)
            break

    return tuple(gr.update(value=default_config[key]) for key in default_config)


def main():
gushiqiao's avatar
gushiqiao committed
651
    def update_model_type(task_type):
gushiqiao's avatar
gushiqiao committed
652
        if task_type == "图像生成视频":
gushiqiao's avatar
gushiqiao committed
653
            return gr.update(choices=["Wan2.1 14B"], value="Wan2.1 14B")
gushiqiao's avatar
gushiqiao committed
654
        elif task_type == "文本生成视频":
gushiqiao's avatar
gushiqiao committed
655
656
657
            return gr.update(choices=["Wan2.1 14B", "Wan2.1 1.3B"], value="Wan2.1 14B")

    def toggle_image_input(task):
gushiqiao's avatar
gushiqiao committed
658
        return gr.update(visible=(task == "图像生成视频"))
gushiqiao's avatar
gushiqiao committed
659
660

    with gr.Blocks(
gushiqiao's avatar
gushiqiao committed
661
        title="Lightx2v (轻量级视频生成推理引擎)",
gushiqiao's avatar
gushiqiao committed
662
663
664
665
666
667
668
669
670
671
672
673
        css="""
        .main-content { max-width: 1400px; margin: auto; }
        .output-video { max-height: 650px; }
        .warning { color: #ff6b6b; font-weight: bold; }
        .advanced-options { background: #f9f9ff; border-radius: 10px; padding: 15px; }
        .tab-button { font-size: 16px; padding: 10px 20px; }
    """,
    ) as demo:
        gr.Markdown(f"# 🎬 {model_cls} 视频生成器")
        gr.Markdown(f"### 使用模型: {model_path}")

        with gr.Tabs() as tabs:
gushiqiao's avatar
gushiqiao committed
674
            with gr.Tab("基本设置", id=1):
gushiqiao's avatar
gushiqiao committed
675
676
677
678
679
680
681
                with gr.Row():
                    with gr.Column(scale=4):
                        with gr.Group():
                            gr.Markdown("## 📥 输入参数")

                            with gr.Row():
                                task = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
682
683
                                    choices=["图像生成视频", "文本生成视频"],
                                    value="图像生成视频",
gushiqiao's avatar
gushiqiao committed
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
                                    label="任务类型",
                                )
                                model_type = gr.Dropdown(
                                    choices=["Wan2.1 14B"],
                                    value="Wan2.1 14B",
                                    label="模型类型",
                                )
                                task.change(
                                    fn=update_model_type,
                                    inputs=task,
                                    outputs=model_type,
                                )

                            with gr.Row():
                                image_path = gr.Image(
gushiqiao's avatar
gushiqiao committed
699
                                    label="输入图像",
gushiqiao's avatar
gushiqiao committed
700
701
702
                                    type="filepath",
                                    height=300,
                                    interactive=True,
gushiqiao's avatar
gushiqiao committed
703
                                    visible=True,
gushiqiao's avatar
gushiqiao committed
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
                                )

                                task.change(
                                    fn=toggle_image_input,
                                    inputs=task,
                                    outputs=image_path,
                                )

                            with gr.Row():
                                with gr.Column():
                                    prompt = gr.Textbox(
                                        label="提示词",
                                        lines=3,
                                        placeholder="描述视频内容...",
                                        max_lines=5,
                                    )
                                with gr.Column():
                                    negative_prompt = gr.Textbox(
                                        label="负向提示词",
                                        lines=3,
gushiqiao's avatar
gushiqiao committed
724
                                        placeholder="不希望出现在视频中的内容...",
gushiqiao's avatar
gushiqiao committed
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
                                        max_lines=5,
                                        value="镜头晃动,色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走",
                                    )
                                with gr.Column():
                                    resolution = gr.Dropdown(
                                        choices=[
                                            # 720p
                                            ("1280x720 (16:9, 720p)", "1280x720"),
                                            ("720x1280 (9:16, 720p)", "720x1280"),
                                            ("1280x544 (21:9, 720p)", "1280x544"),
                                            ("544x1280 (9:21, 720p)", "544x1280"),
                                            ("1104x832 (4:3, 720p)", "1104x832"),
                                            ("832x1104 (3:4, 720p)", "832x1104"),
                                            ("960x960 (1:1, 720p)", "960x960"),
                                            # 480p
                                            ("960x544 (16:9, 540p)", "960x544"),
                                            ("544x960 (9:16, 540p)", "544x960"),
                                            ("832x480 (16:9, 480p)", "832x480"),
                                            ("480x832 (9:16, 480p)", "480x832"),
                                            ("832x624 (4:3, 480p)", "832x624"),
                                            ("624x832 (3:4, 480p)", "624x832"),
                                            ("720x720 (1:1, 480p)", "720x720"),
                                            ("512x512 (1:1, 480p)", "512x512"),
                                        ],
                                        value="832x480",
                                        label="最大分辨率",
                                    )
gushiqiao's avatar
gushiqiao committed
752
                                with gr.Column(scale=9):
gushiqiao's avatar
gushiqiao committed
753
754
                                    seed = gr.Slider(
                                        label="随机种子",
gushiqiao's avatar
gushiqiao committed
755
756
                                        minimum=0,
                                        maximum=MAX_NUMPY_SEED,
gushiqiao's avatar
gushiqiao committed
757
                                        step=1,
gushiqiao's avatar
gushiqiao committed
758
                                        value=generate_random_seed(),
gushiqiao's avatar
gushiqiao committed
759
                                    )
gushiqiao's avatar
gushiqiao committed
760
761
762
763
764
                                with gr.Column(scale=1):
                                    randomize_btn = gr.Button("🎲 生成随机种子", variant="secondary")

                                randomize_btn.click(fn=generate_random_seed, inputs=None, outputs=seed)
                                with gr.Column():
gushiqiao's avatar
gushiqiao committed
765
766
767
768
769
                                    infer_steps = gr.Slider(
                                        label="推理步数",
                                        minimum=1,
                                        maximum=100,
                                        step=1,
gushiqiao's avatar
gushiqiao committed
770
771
                                        value=40,
                                        info="视频生成的推理步数。增加步数可能提高质量但降低速度",
gushiqiao's avatar
gushiqiao committed
772
773
                                    )

gushiqiao's avatar
gushiqiao committed
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
                            enable_cfg = gr.Checkbox(
                                label="启用无分类器引导",
                                value=True,
                                info="启用无分类器引导以控制提示词强度",
                            )
                            cfg_scale = gr.Slider(
                                label="CFG缩放因子",
                                minimum=1,
                                maximum=10,
                                step=1,
                                value=5,
                                info="控制提示词的影响强度。值越高,提示词的影响越大",
                            )
                            sample_shift = gr.Slider(
                                label="分布偏移",
                                value=5,
                                minimum=0,
                                maximum=10,
                                step=1,
                                info="控制样本分布偏移的程度。值越大表示偏移越明显",
gushiqiao's avatar
gushiqiao committed
794
795
                            )

gushiqiao's avatar
gushiqiao committed
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
                            fps = gr.Slider(
                                label="每秒帧数(FPS)",
                                minimum=8,
                                maximum=30,
                                step=1,
                                value=16,
                                info="视频的每秒帧数。较高的FPS会产生更流畅的视频",
                            )
                            num_frames = gr.Slider(
                                label="总帧数",
                                minimum=16,
                                maximum=120,
                                step=1,
                                value=81,
                                info="视频中的总帧数。更多帧数会产生更长的视频",
                            )
gushiqiao's avatar
gushiqiao committed
812

gushiqiao's avatar
gushiqiao committed
813
814
815
816
817
                        save_video_path = gr.Textbox(
                            label="输出视频路径",
                            value=generate_unique_filename(),
                            info="必须包含.mp4扩展名。如果留空或使用默认值,将自动生成唯一文件名。",
                        )
gushiqiao's avatar
gushiqiao committed
818
819
820
821
822
823
824
825
826
827
                    with gr.Column(scale=6):
                        gr.Markdown("## 📤 生成的视频")
                        output_video = gr.Video(
                            label="结果",
                            height=624,
                            width=360,
                            autoplay=True,
                            elem_classes=["output-video"],
                        )

gushiqiao's avatar
gushiqiao committed
828
                        infer_btn = gr.Button("生成视频", variant="primary", size="lg")
gushiqiao's avatar
gushiqiao committed
829

gushiqiao's avatar
gushiqiao committed
830
831
            with gr.Tab("⚙️ 高级选项", id=2):
                with gr.Group(elem_classes="advanced-options"):
gushiqiao's avatar
gushiqiao committed
832
                    gr.Markdown("### 自动配置")
gushiqiao's avatar
gushiqiao committed
833
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
834
835
                        enable_auto_config = gr.Checkbox(
                            label="自动配置",
gushiqiao's avatar
gushiqiao committed
836
                            value=False,
gushiqiao's avatar
gushiqiao committed
837
                            info="自动调整优化设置以适应您的GPU",
gushiqiao's avatar
gushiqiao committed
838
839
                        )

gushiqiao's avatar
gushiqiao committed
840
                    gr.Markdown("### GPU内存优化")
gushiqiao's avatar
gushiqiao committed
841
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
842
843
                        rotary_chunk = gr.Checkbox(
                            label="分块旋转位置编码",
gushiqiao's avatar
gushiqiao committed
844
                            value=False,
gushiqiao's avatar
gushiqiao committed
845
                            info="启用时,将旋转位置编码分块处理以节省GPU内存。",
gushiqiao's avatar
gushiqiao committed
846
847
                        )

gushiqiao's avatar
gushiqiao committed
848
849
850
851
852
853
854
                        rotary_chunk_size = gr.Slider(
                            label="旋转编码块大小",
                            value=100,
                            minimum=100,
                            maximum=10000,
                            step=100,
                            info="控制应用旋转编码的块大小, 较大的值可能提高性能但增加内存使用, 仅在'rotary_chunk'勾选时有效",
gushiqiao's avatar
gushiqiao committed
855
856
857
                        )

                        clean_cuda_cache = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
858
                            label="清理CUDA内存缓存",
gushiqiao's avatar
gushiqiao committed
859
                            value=False,
gushiqiao's avatar
gushiqiao committed
860
                            info="及时释放GPU内存, 但会减慢推理速度。",
gushiqiao's avatar
gushiqiao committed
861
862
                        )

gushiqiao's avatar
gushiqiao committed
863
                    gr.Markdown("### 异步卸载")
gushiqiao's avatar
gushiqiao committed
864
865
866
867
                    with gr.Row():
                        cpu_offload = gr.Checkbox(
                            label="CPU卸载",
                            value=False,
gushiqiao's avatar
gushiqiao committed
868
                            info="将模型计算的一部分从GPU卸载到CPU以减少GPU内存使用",
gushiqiao's avatar
gushiqiao committed
869
                        )
gushiqiao's avatar
gushiqiao committed
870
871
872
873
874
875
876

                        lazy_load = gr.Checkbox(
                            label="启用延迟加载",
                            value=False,
                            info="在推理过程中延迟加载模型组件, 仅在'cpu_offload'勾选和使用量化Dit模型时有效",
                        )

gushiqiao's avatar
gushiqiao committed
877
                        offload_granularity = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
878
                            label="Dit卸载粒度",
gushiqiao's avatar
gushiqiao committed
879
                            choices=["block", "phase"],
gushiqiao's avatar
gushiqiao committed
880
881
882
883
884
885
886
887
888
889
                            value="phase",
                            info="设置Dit模型卸载粒度: 块或计算阶段",
                        )
                        offload_ratio = gr.Slider(
                            label="Dit模型卸载比例",
                            minimum=0.0,
                            maximum=1.0,
                            step=0.1,
                            value=1.0,
                            info="控制将多少Dit模型卸载到CPU",
gushiqiao's avatar
gushiqiao committed
890
891
                        )
                        t5_offload_granularity = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
892
                            label="T5编码器卸载粒度",
gushiqiao's avatar
gushiqiao committed
893
                            choices=["model", "block"],
gushiqiao's avatar
gushiqiao committed
894
895
                            value="model",
                            info="控制将T5编码器模型卸载到CPU时的粒度",
gushiqiao's avatar
gushiqiao committed
896
897
898
899
                        )

                    gr.Markdown("### 低精度量化")
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
900
901
902
903
                        torch_compile = gr.Checkbox(
                            label="Torch编译",
                            value=False,
                            info="使用torch.compile加速推理过程",
gushiqiao's avatar
gushiqiao committed
904
905
                        )

gushiqiao's avatar
gushiqiao committed
906
907
908
909
910
911
                        attention_type = gr.Dropdown(
                            label="注意力算子",
                            choices=[op[1] for op in attn_op_choices],
                            value=attn_op_choices[0][1],
                            info="使用适当的注意力算子加速推理",
                        )
gushiqiao's avatar
gushiqiao committed
912
                        quant_op = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
913
914
915
916
917
                            label="量化矩阵乘法算子",
                            choices=[op[1] for op in quant_op_choices],
                            value=quant_op_choices[0][1],
                            info="选择量化矩阵乘法算子以加速推理",
                            interactive=True,
gushiqiao's avatar
gushiqiao committed
918
919
920
921
922
                        )
                        dit_quant_scheme = gr.Dropdown(
                            label="Dit",
                            choices=["fp8", "int8", "bf16"],
                            value="bf16",
gushiqiao's avatar
gushiqiao committed
923
                            info="Dit模型的推理精度",
gushiqiao's avatar
gushiqiao committed
924
925
                        )
                        t5_quant_scheme = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
926
                            label="T5编码器",
gushiqiao's avatar
gushiqiao committed
927
928
                            choices=["fp8", "int8", "bf16"],
                            value="bf16",
gushiqiao's avatar
gushiqiao committed
929
                            info="T5编码器模型的推理精度",
gushiqiao's avatar
gushiqiao committed
930
931
                        )
                        clip_quant_scheme = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
932
                            label="Clip编码器",
gushiqiao's avatar
gushiqiao committed
933
934
                            choices=["fp8", "int8", "fp16"],
                            value="fp16",
gushiqiao's avatar
gushiqiao committed
935
                            info="Clip编码器的推理精度",
gushiqiao's avatar
gushiqiao committed
936
937
                        )
                        precision_mode = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
938
                            label="敏感层精度",
gushiqiao's avatar
gushiqiao committed
939
                            choices=["fp32", "bf16"],
gushiqiao's avatar
gushiqiao committed
940
                            value="fp32",
gushiqiao's avatar
gushiqiao committed
941
                            info="选择用于敏感层(如norm层和embedding层)的数值精度",
gushiqiao's avatar
gushiqiao committed
942
943
944
945
946
947
948
949
950
951
                        )

                    gr.Markdown("### 变分自编码器(VAE)")
                    with gr.Row():
                        use_tiny_vae = gr.Checkbox(
                            label="使用轻量级VAE",
                            value=False,
                            info="使用轻量级VAE模型加速解码过程",
                        )
                        use_tiling_vae = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
952
                            label="VAE分块推理",
gushiqiao's avatar
gushiqiao committed
953
                            value=False,
gushiqiao's avatar
gushiqiao committed
954
                            info="使用VAE分块推理以减少GPU内存使用",
gushiqiao's avatar
gushiqiao committed
955
956
957
958
959
                        )

                    gr.Markdown("### 特征缓存")
                    with gr.Row():
                        enable_teacache = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
960
                            label="Tea Cache",
gushiqiao's avatar
gushiqiao committed
961
962
963
964
965
966
967
968
                            value=False,
                            info="在推理过程中缓存特征以减少推理步数",
                        )
                        teacache_thresh = gr.Slider(
                            label="Tea Cache阈值",
                            value=0.26,
                            minimum=0,
                            maximum=1,
gushiqiao's avatar
gushiqiao committed
969
970
971
972
973
974
                            info="较高的加速可能导致质量下降 —— 设置为0.1提供约2.0倍加速,设置为0.2提供约3.0倍加速",
                        )
                        use_ret_steps = gr.Checkbox(
                            label="仅缓存关键步骤",
                            value=False,
                            info="勾选时,仅在调度器返回结果的关键步骤写入缓存;未勾选时,在所有步骤写入缓存以确保最高质量",
gushiqiao's avatar
gushiqiao committed
975
976
                        )

gushiqiao's avatar
gushiqiao committed
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
                enable_auto_config.change(
                    fn=auto_configure,
                    inputs=[enable_auto_config, model_type, resolution],
                    outputs=[
                        torch_compile,
                        lazy_load,
                        rotary_chunk,
                        rotary_chunk_size,
                        clean_cuda_cache,
                        cpu_offload,
                        offload_granularity,
                        offload_ratio,
                        t5_offload_granularity,
                        attention_type,
                        quant_op,
                        dit_quant_scheme,
                        t5_quant_scheme,
                        clip_quant_scheme,
                        precision_mode,
                        use_tiny_vae,
                        use_tiling_vae,
                        enable_teacache,
                        teacache_thresh,
                        use_ret_steps,
                    ],
                )

gushiqiao's avatar
gushiqiao committed
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
        infer_btn.click(
            fn=run_inference,
            inputs=[
                model_type,
                task,
                prompt,
                negative_prompt,
                image_path,
                save_video_path,
                torch_compile,
                infer_steps,
                num_frames,
                resolution,
                seed,
                sample_shift,
                enable_teacache,
                teacache_thresh,
gushiqiao's avatar
gushiqiao committed
1021
                use_ret_steps,
gushiqiao's avatar
gushiqiao committed
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
                enable_cfg,
                cfg_scale,
                dit_quant_scheme,
                t5_quant_scheme,
                clip_quant_scheme,
                fps,
                use_tiny_vae,
                use_tiling_vae,
                lazy_load,
                precision_mode,
                cpu_offload,
                offload_granularity,
gushiqiao's avatar
gushiqiao committed
1034
                offload_ratio,
gushiqiao's avatar
gushiqiao committed
1035
1036
1037
1038
                t5_offload_granularity,
                attention_type,
                quant_op,
                rotary_chunk,
gushiqiao's avatar
gushiqiao committed
1039
                rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
1040
1041
1042
1043
1044
1045
1046
1047
1048
                clean_cuda_cache,
            ],
            outputs=output_video,
        )

    demo.launch(share=True, server_port=args.server_port, server_name=args.server_name)


if __name__ == "__main__":
gushiqiao's avatar
gushiqiao committed
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
    parser = argparse.ArgumentParser(description="轻量级视频生成")
    parser.add_argument("--model_path", type=str, required=True, help="模型文件夹路径")
    parser.add_argument(
        "--model_cls",
        type=str,
        choices=["wan2.1"],
        default="wan2.1",
        help="要使用的模型类别",
    )
    parser.add_argument("--server_port", type=int, default=7862, help="服务器端口")
    parser.add_argument("--server_name", type=str, default="0.0.0.0", help="服务器IP")
    args = parser.parse_args()

    global model_path, model_cls
    model_path = args.model_path
    model_cls = args.model_cls

gushiqiao's avatar
gushiqiao committed
1066
    main()