wan_audio_runner.py 35.1 KB
Newer Older
wangshankun's avatar
wangshankun committed
1
import gc
PengGao's avatar
PengGao committed
2
3
4
import os
import subprocess
from dataclasses import dataclass
5
from typing import Dict, List, Optional, Tuple
PengGao's avatar
PengGao committed
6

wangshankun's avatar
wangshankun committed
7
8
import numpy as np
import torch
9
import torch.distributed as dist
gushiqiao's avatar
gushiqiao committed
10
import torchaudio as ta
helloyongyang's avatar
helloyongyang committed
11
import torchvision.transforms.functional as TF
wangshankun's avatar
wangshankun committed
12
from PIL import Image
gushiqiao's avatar
gushiqiao committed
13
from einops import rearrange
PengGao's avatar
PengGao committed
14
from loguru import logger
gushiqiao's avatar
gushiqiao committed
15
16
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize
17

LiangLiu's avatar
LiangLiu committed
18
19
from lightx2v.deploy.common.va_reader import VAReader
from lightx2v.deploy.common.va_recorder import VARecorder
20
from lightx2v.models.input_encoders.hf.seko_audio.audio_adapter import AudioAdapter
helloyongyang's avatar
helloyongyang committed
21
from lightx2v.models.input_encoders.hf.seko_audio.audio_encoder import SekoAudioEncoderModel
22
from lightx2v.models.networks.wan.audio_model import WanAudioModel
PengGao's avatar
PengGao committed
23
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
24
from lightx2v.models.runners.wan.wan_runner import WanRunner
25
from lightx2v.models.schedulers.wan.audio.scheduler import EulerScheduler
sandy's avatar
sandy committed
26
from lightx2v.models.video_encoders.hf.wan.vae_2_2 import Wan2_2_VAE
27
from lightx2v.utils.envs import *
28
from lightx2v.utils.profiler import ProfilingContext, ProfilingContext4Debug
PengGao's avatar
PengGao committed
29
from lightx2v.utils.registry_factory import RUNNER_REGISTER
sandy's avatar
sandy committed
30
from lightx2v.utils.utils import find_torch_model_path, load_weights, save_to_video, vae_to_comfyui_image
31

wangshankun's avatar
wangshankun committed
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
def get_optimal_patched_size_with_sp(patched_h, patched_w, sp_size):
    assert sp_size > 0 and (sp_size & (sp_size - 1)) == 0, "sp_size must be a power of 2"

    h_ratio, w_ratio = 1, 1
    while sp_size != 1:
        sp_size //= 2
        if patched_h % 2 == 0:
            patched_h //= 2
            h_ratio *= 2
        elif patched_w % 2 == 0:
            patched_w //= 2
            w_ratio *= 2
        else:
            if patched_h > patched_w:
                patched_h //= 2
48
49
                h_ratio *= 2
            else:
50
                patched_w //= 2
51
                w_ratio *= 2
52
    return patched_h * h_ratio, patched_w * w_ratio
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80


def get_crop_bbox(ori_h, ori_w, tgt_h, tgt_w):
    tgt_ar = tgt_h / tgt_w
    ori_ar = ori_h / ori_w
    if abs(ori_ar - tgt_ar) < 0.01:
        return 0, ori_h, 0, ori_w
    if ori_ar > tgt_ar:
        crop_h = int(tgt_ar * ori_w)
        y0 = (ori_h - crop_h) // 2
        y1 = y0 + crop_h
        return y0, y1, 0, ori_w
    else:
        crop_w = int(ori_h / tgt_ar)
        x0 = (ori_w - crop_w) // 2
        x1 = x0 + crop_w
        return 0, ori_h, x0, x1


def isotropic_crop_resize(frames: torch.Tensor, size: tuple):
    """
    frames: (T, C, H, W)
    size: (H, W)
    """
    ori_h, ori_w = frames.shape[2:]
    h, w = size
    y0, y1, x0, x1 = get_crop_bbox(ori_h, ori_w, h, w)
    cropped_frames = frames[:, :, y0:y1, x0:x1]
81
    resized_frames = resize(cropped_frames, [h, w], InterpolationMode.BICUBIC, antialias=True)
82
83
84
    return resized_frames


85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
def fixed_shape_resize(img, target_height, target_width):
    orig_height, orig_width = img.shape[-2:]

    target_ratio = target_height / target_width
    orig_ratio = orig_height / orig_width

    if orig_ratio > target_ratio:
        crop_width = orig_width
        crop_height = int(crop_width * target_ratio)
    else:
        crop_height = orig_height
        crop_width = int(crop_height / target_ratio)

    cropped_img = TF.center_crop(img, [crop_height, crop_width])

    resized_img = TF.resize(cropped_img, [target_height, target_width], antialias=True)

    h, w = resized_img.shape[-2:]
    return resized_img, h, w


def resize_image(img, resize_mode="adaptive", fixed_area=None, fixed_shape=None):
    assert resize_mode in ["adaptive", "keep_ratio_fixed_area", "fixed_min_area", "fixed_max_area", "fixed_shape"]

    if resize_mode == "fixed_shape":
        assert fixed_shape is not None
        logger.info(f"[wan_audio] fixed_shape_resize fixed_height: {fixed_shape[0]}, fixed_width: {fixed_shape[1]}")
        return fixed_shape_resize(img, fixed_shape[0], fixed_shape[1])
113

114
115
116
117
118
119
120
121
    bucket_config = {
        0.667: (np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64), np.array([0.2, 0.5, 0.3])),
        1.0: (np.array([[480, 480], [576, 576], [704, 704], [960, 960]], dtype=np.int64), np.array([0.1, 0.1, 0.5, 0.3])),
        1.5: (np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64)[:, ::-1], np.array([0.2, 0.5, 0.3])),
    }
    ori_height = img.shape[-2]
    ori_weight = img.shape[-1]
    ori_ratio = ori_height / ori_weight
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

    if resize_mode == "adaptive":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
        if ori_ratio < 1.0:
            target_h, target_w = 480, 832
        elif ori_ratio == 1.0:
            target_h, target_w = 480, 480
        else:
            target_h, target_w = 832, 480
        for resolution in bucket_config[closet_ratio][0]:
            if ori_height * ori_weight >= resolution[0] * resolution[1]:
                target_h, target_w = resolution
    elif resize_mode == "keep_ratio_fixed_area":
        assert fixed_area in ["480p", "720p"], f"fixed_area must be in ['480p', '720p'], but got {fixed_area}, please set fixed_area in config."
        fixed_area = 480 * 832 if fixed_area == "480p" else 720 * 1280
        target_h = round(np.sqrt(fixed_area * ori_ratio))
        target_w = round(np.sqrt(fixed_area / ori_ratio))
    elif resize_mode == "fixed_min_area":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
        target_h, target_w = bucket_config[closet_ratio][0][0]
    elif resize_mode == "fixed_max_area":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
        target_h, target_w = bucket_config[closet_ratio][0][-1]

152
153
154
155
    cropped_img = isotropic_crop_resize(img, (target_h, target_w))
    return cropped_img, target_h, target_w


156
157
158
159
160
161
162
163
164
165
166
@dataclass
class AudioSegment:
    """Data class for audio segment information"""

    audio_array: np.ndarray
    start_frame: int
    end_frame: int
    is_last: bool = False
    useful_length: Optional[int] = None


167
class FramePreprocessorTorchVersion:
168
169
170
171
172
173
174
    """Handles frame preprocessing including noise and masking"""

    def __init__(self, noise_mean: float = -3.0, noise_std: float = 0.5, mask_rate: float = 0.1):
        self.noise_mean = noise_mean
        self.noise_std = noise_std
        self.mask_rate = mask_rate

175
    def add_noise(self, frames: torch.Tensor, generator: Optional[torch.Generator] = None) -> torch.Tensor:
176
177
        """Add noise to frames"""

178
        device = frames.device
179
180
        shape = frames.shape
        bs = 1 if len(shape) == 4 else shape[0]
181
182
183
184
185
186
187
188
189
190

        # Generate sigma values on the same device
        sigma = torch.normal(mean=self.noise_mean, std=self.noise_std, size=(bs,), device=device, generator=generator)
        sigma = torch.exp(sigma)

        for _ in range(1, len(shape)):
            sigma = sigma.unsqueeze(-1)

        # Generate noise on the same device
        noise = torch.randn(*shape, device=device, generator=generator) * sigma
191
192
        return frames + noise

193
    def add_mask(self, frames: torch.Tensor, generator: Optional[torch.Generator] = None) -> torch.Tensor:
194
195
        """Add mask to frames"""

196
        device = frames.device
197
        h, w = frames.shape[-2:]
198
199
200

        # Generate mask on the same device
        mask = torch.rand(h, w, device=device, generator=generator) > self.mask_rate
201
202
203
204
        return frames * mask

    def process_prev_frames(self, frames: torch.Tensor) -> torch.Tensor:
        """Process previous frames with noise and masking"""
205
206
207
        frames = self.add_noise(frames, torch.Generator(device=frames.device))
        frames = self.add_mask(frames, torch.Generator(device=frames.device))
        return frames
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225


class AudioProcessor:
    """Handles audio loading and segmentation"""

    def __init__(self, audio_sr: int = 16000, target_fps: int = 16):
        self.audio_sr = audio_sr
        self.target_fps = target_fps

    def load_audio(self, audio_path: str) -> np.ndarray:
        """Load and resample audio"""
        audio_array, ori_sr = ta.load(audio_path)
        audio_array = ta.functional.resample(audio_array.mean(0), orig_freq=ori_sr, new_freq=self.audio_sr)
        return audio_array.numpy()

    def get_audio_range(self, start_frame: int, end_frame: int) -> Tuple[int, int]:
        """Calculate audio range for given frame range"""
        audio_frame_rate = self.audio_sr / self.target_fps
LiangLiu's avatar
LiangLiu committed
226
        return round(start_frame * audio_frame_rate), round(end_frame * audio_frame_rate)
227
228
229
230
231
232
233
234
235
236
237
238
239
240

    def segment_audio(self, audio_array: np.ndarray, expected_frames: int, max_num_frames: int, prev_frame_length: int = 5) -> List[AudioSegment]:
        """Segment audio based on frame requirements"""
        segments = []

        # Calculate intervals
        interval_num = 1
        res_frame_num = 0

        if expected_frames <= max_num_frames:
            interval_num = 1
        else:
            interval_num = max(int((expected_frames - max_num_frames) / (max_num_frames - prev_frame_length)) + 1, 1)
            res_frame_num = expected_frames - interval_num * (max_num_frames - prev_frame_length)
241
            if res_frame_num > prev_frame_length:
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
                interval_num += 1

        # Create segments
        for idx in range(interval_num):
            if idx == 0:
                # First segment
                audio_start, audio_end = self.get_audio_range(0, max_num_frames)
                segment_audio = audio_array[audio_start:audio_end]
                useful_length = None

                if expected_frames < max_num_frames:
                    useful_length = segment_audio.shape[0]
                    max_num_audio_length = int((max_num_frames + 1) / self.target_fps * self.audio_sr)
                    segment_audio = np.concatenate((segment_audio, np.zeros(max_num_audio_length - useful_length)), axis=0)

                segments.append(AudioSegment(segment_audio, 0, max_num_frames, False, useful_length))

259
            elif res_frame_num > prev_frame_length and idx == interval_num - 1:
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
                # Last segment (might be shorter)
                start_frame = idx * max_num_frames - idx * prev_frame_length
                audio_start, audio_end = self.get_audio_range(start_frame, expected_frames)
                segment_audio = audio_array[audio_start:audio_end]
                useful_length = segment_audio.shape[0]

                max_num_audio_length = int((max_num_frames + 1) / self.target_fps * self.audio_sr)
                segment_audio = np.concatenate((segment_audio, np.zeros(max_num_audio_length - useful_length)), axis=0)

                segments.append(AudioSegment(segment_audio, start_frame, expected_frames, True, useful_length))

            else:
                # Middle segments
                start_frame = idx * max_num_frames - idx * prev_frame_length
                end_frame = (idx + 1) * max_num_frames - idx * prev_frame_length
                audio_start, audio_end = self.get_audio_range(start_frame, end_frame)
                segment_audio = audio_array[audio_start:audio_end]

                segments.append(AudioSegment(segment_audio, start_frame, end_frame, False))

        return segments


Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
283
@RUNNER_REGISTER("seko_talk")
helloyongyang's avatar
helloyongyang committed
284
285
286
class WanAudioRunner(WanRunner):  # type:ignore
    def __init__(self, config):
        super().__init__(config)
287
        self.prev_frame_length = self.config.get("prev_frame_length", 5)
288
        self.frame_preprocessor = FramePreprocessorTorchVersion()
helloyongyang's avatar
helloyongyang committed
289
290
291

    def init_scheduler(self):
        """Initialize consistency model scheduler"""
292
        scheduler = EulerScheduler(self.config)
293
294
295
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.audio_adapter = self.load_audio_adapter()
            self.model.set_audio_adapter(self.audio_adapter)
296
        scheduler.set_audio_adapter(self.audio_adapter)
helloyongyang's avatar
helloyongyang committed
297
298
299
300
301
302
303
        self.model.set_scheduler(scheduler)

    def read_audio_input(self):
        """Read audio input"""
        audio_sr = self.config.get("audio_sr", 16000)
        target_fps = self.config.get("target_fps", 16)
        self._audio_processor = AudioProcessor(audio_sr, target_fps)
LiangLiu's avatar
LiangLiu committed
304
305
        if not isinstance(self.config["audio_path"], str):
            return [], 0
helloyongyang's avatar
helloyongyang committed
306
307
308
309
310
311
312
313
        audio_array = self._audio_processor.load_audio(self.config["audio_path"])

        video_duration = self.config.get("video_duration", 5)

        audio_len = int(audio_array.shape[0] / audio_sr * target_fps)
        expected_frames = min(max(1, int(video_duration * target_fps)), audio_len)

        # Segment audio
314
        audio_segments = self._audio_processor.segment_audio(audio_array, expected_frames, self.config.get("target_video_length", 81), self.prev_frame_length)
helloyongyang's avatar
helloyongyang committed
315
316
317
318

        return audio_segments, expected_frames

    def read_image_input(self, img_path):
LiangLiu's avatar
LiangLiu committed
319
320
321
322
        if isinstance(img_path, Image.Image):
            ref_img = img_path
        else:
            ref_img = Image.open(img_path).convert("RGB")
helloyongyang's avatar
helloyongyang committed
323
324
        ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(0).cuda()

325
        ref_img, h, w = resize_image(ref_img, resize_mode=self.config.get("resize_mode", "adaptive"), fixed_area=self.config.get("fixed_area", None), fixed_shape=self.config.get("fixed_shape", None))
326
        logger.info(f"[wan_audio] resize_image target_h: {h}, target_w: {w}")
helloyongyang's avatar
helloyongyang committed
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
        patched_h = h // self.config.vae_stride[1] // self.config.patch_size[1]
        patched_w = w // self.config.vae_stride[2] // self.config.patch_size[2]

        patched_h, patched_w = get_optimal_patched_size_with_sp(patched_h, patched_w, 1)

        self.config.lat_h = patched_h * self.config.patch_size[1]
        self.config.lat_w = patched_w * self.config.patch_size[2]

        self.config.tgt_h = self.config.lat_h * self.config.vae_stride[1]
        self.config.tgt_w = self.config.lat_w * self.config.vae_stride[2]

        logger.info(f"[wan_audio] tgt_h: {self.config.tgt_h}, tgt_w: {self.config.tgt_w}, lat_h: {self.config.lat_h}, lat_w: {self.config.lat_w}")

        ref_img = torch.nn.functional.interpolate(ref_img, size=(self.config.tgt_h, self.config.tgt_w), mode="bicubic")
        return ref_img

    def run_image_encoder(self, first_frame, last_frame=None):
344
345
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.image_encoder = self.load_image_encoder()
helloyongyang's avatar
helloyongyang committed
346
        clip_encoder_out = self.image_encoder.visual([first_frame]).squeeze(0).to(GET_DTYPE()) if self.config.get("use_image_encoder", True) else None
347
348
349
350
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.image_encoder
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
351
352
353
        return clip_encoder_out

    def run_vae_encoder(self, img):
354
355
356
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.vae_encoder = self.load_vae_encoder()

helloyongyang's avatar
helloyongyang committed
357
        img = rearrange(img, "1 C H W -> 1 C 1 H W")
358
        vae_encoder_out = self.vae_encoder.encode(img.to(GET_DTYPE()))
sandy's avatar
sandy committed
359

360
361
362
363
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
        return vae_encoder_out

    @ProfilingContext("Run Encoders")
    def _run_input_encoder_local_r2v_audio(self):
        prompt = self.config["prompt_enhanced"] if self.config["use_prompt_enhancer"] else self.config["prompt"]
        img = self.read_image_input(self.config["image_path"])
        clip_encoder_out = self.run_image_encoder(img) if self.config.get("use_image_encoder", True) else None
        vae_encode_out = self.run_vae_encoder(img)
        audio_segments, expected_frames = self.read_audio_input()
        text_encoder_output = self.run_text_encoder(prompt, None)
        torch.cuda.empty_cache()
        gc.collect()
        return {
            "text_encoder_output": text_encoder_output,
            "image_encoder_output": {
                "clip_encoder_out": clip_encoder_out,
                "vae_encoder_out": vae_encode_out,
            },
            "audio_segments": audio_segments,
            "expected_frames": expected_frames,
        }
385
386
387

    def prepare_prev_latents(self, prev_video: Optional[torch.Tensor], prev_frame_length: int) -> Optional[Dict[str, torch.Tensor]]:
        """Prepare previous latents for conditioning"""
wangshankun's avatar
wangshankun committed
388
        device = torch.device("cuda")
389
        dtype = GET_DTYPE()
390
391
392
393

        tgt_h, tgt_w = self.config.tgt_h, self.config.tgt_w
        prev_frames = torch.zeros((1, 3, self.config.target_video_length, tgt_h, tgt_w), device=device)

394
395
396
        if prev_video is not None:
            # Extract and process last frames
            last_frames = prev_video[:, :, -prev_frame_length:].clone().to(device)
sandy's avatar
sandy committed
397
398
            if self.config.model_cls != "wan2.2_audio":
                last_frames = self.frame_preprocessor.process_prev_frames(last_frames)
399
            prev_frames[:, :, :prev_frame_length] = last_frames
sandy's avatar
sandy committed
400
401
402
            prev_len = (prev_frame_length - 1) // 4 + 1
        else:
            prev_len = 0
403

404
405
406
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.vae_encoder = self.load_vae_encoder()

407
        _, nframe, height, width = self.model.scheduler.latents.shape
408
409
410
411
412
413
414
        with ProfilingContext4Debug("vae_encoder in init run segment"):
            if self.config.model_cls == "wan2.2_audio":
                if prev_video is not None:
                    prev_latents = self.vae_encoder.encode(prev_frames.to(dtype))
                else:
                    prev_latents = None
                prev_mask = self.model.scheduler.mask
415
            else:
416
                prev_latents = self.vae_encoder.encode(prev_frames.to(dtype))
417

418
419
            frames_n = (nframe - 1) * 4 + 1
            prev_mask = torch.ones((1, frames_n, height, width), device=device, dtype=dtype)
420
421
            prev_frame_len = max((prev_len - 1) * 4 + 1, 0)
            prev_mask[:, prev_frame_len:] = 0
422
            prev_mask = self._wan_mask_rearrange(prev_mask)
helloyongyang's avatar
fix ci  
helloyongyang committed
423

sandy's avatar
sandy committed
424
425
426
427
        if prev_latents is not None:
            if prev_latents.shape[-2:] != (height, width):
                logger.warning(f"Size mismatch: prev_latents {prev_latents.shape} vs scheduler latents (H={height}, W={width}). Config tgt_h={self.config.tgt_h}, tgt_w={self.config.tgt_w}")
                prev_latents = torch.nn.functional.interpolate(prev_latents, size=(height, width), mode="bilinear", align_corners=False)
428

429
430
431
432
433
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()

sandy's avatar
sandy committed
434
        return {"prev_latents": prev_latents, "prev_mask": prev_mask, "prev_len": prev_len}
435
436
437
438
439
440
441
442
443
444
445
446
447

    def _wan_mask_rearrange(self, mask: torch.Tensor) -> torch.Tensor:
        """Rearrange mask for WAN model"""
        if mask.ndim == 3:
            mask = mask[None]
        assert mask.ndim == 4
        _, t, h, w = mask.shape
        assert t == ((t - 1) // 4 * 4 + 1)
        mask_first_frame = torch.repeat_interleave(mask[:, 0:1], repeats=4, dim=1)
        mask = torch.concat([mask_first_frame, mask[:, 1:]], dim=1)
        mask = mask.view(mask.shape[1] // 4, 4, h, w)
        return mask.transpose(0, 1)

helloyongyang's avatar
helloyongyang committed
448
449
    def get_video_segment_num(self):
        self.video_segment_num = len(self.inputs["audio_segments"])
wangshankun's avatar
wangshankun committed
450

helloyongyang's avatar
helloyongyang committed
451
452
    def init_run(self):
        super().init_run()
wangshankun's avatar
wangshankun committed
453

helloyongyang's avatar
helloyongyang committed
454
455
456
        self.gen_video_list = []
        self.cut_audio_list = []
        self.prev_video = None
wangshankun's avatar
wangshankun committed
457

458
    @ProfilingContext4Debug("Init run segment")
LiangLiu's avatar
LiangLiu committed
459
    def init_run_segment(self, segment_idx, audio_array=None):
helloyongyang's avatar
helloyongyang committed
460
        self.segment_idx = segment_idx
LiangLiu's avatar
LiangLiu committed
461
462
463
464
        if audio_array is not None:
            self.segment = AudioSegment(audio_array, 0, audio_array.shape[0], False)
        else:
            self.segment = self.inputs["audio_segments"][segment_idx]
wangshankun's avatar
wangshankun committed
465

helloyongyang's avatar
helloyongyang committed
466
467
        self.config.seed = self.config.seed + segment_idx
        torch.manual_seed(self.config.seed)
468
        # logger.info(f"Processing segment {segment_idx + 1}/{self.video_segment_num}, seed: {self.config.seed}")
wangshankun's avatar
wangshankun committed
469

470
471
472
473
        if (self.config.get("lazy_load", False) or self.config.get("unload_modules", False)) and not hasattr(self, "audio_encoder"):
            self.audio_encoder = self.load_audio_encoder()

        audio_features = self.audio_encoder.infer(self.segment.audio_array)
helloyongyang's avatar
helloyongyang committed
474
        audio_features = self.audio_adapter.forward_audio_proj(audio_features, self.model.scheduler.latents.shape[1])
PengGao's avatar
PengGao committed
475

helloyongyang's avatar
helloyongyang committed
476
        self.inputs["audio_encoder_output"] = audio_features
477
        self.inputs["previmg_encoder_output"] = self.prepare_prev_latents(self.prev_video, prev_frame_length=self.prev_frame_length)
wangshankun's avatar
wangshankun committed
478

helloyongyang's avatar
helloyongyang committed
479
480
        # Reset scheduler for non-first segments
        if segment_idx > 0:
sandy's avatar
sandy committed
481
            self.model.scheduler.reset(self.inputs["previmg_encoder_output"])
wangshankun's avatar
wangshankun committed
482

483
    @ProfilingContext4Debug("End run segment")
helloyongyang's avatar
helloyongyang committed
484
485
    def end_run_segment(self):
        self.gen_video = torch.clamp(self.gen_video, -1, 1).to(torch.float)
wangshankun's avatar
wangshankun committed
486

helloyongyang's avatar
helloyongyang committed
487
        # Extract relevant frames
488
        start_frame = 0 if self.segment_idx == 0 else self.prev_frame_length
LiangLiu's avatar
LiangLiu committed
489
        start_audio_frame = 0 if self.segment_idx == 0 else int(self.prev_frame_length * self._audio_processor.audio_sr / self.config.get("target_fps", 16))
wangshankun's avatar
wangshankun committed
490

helloyongyang's avatar
helloyongyang committed
491
492
493
494
495
496
497
        if self.segment.is_last and self.segment.useful_length:
            end_frame = self.segment.end_frame - self.segment.start_frame
            self.gen_video_list.append(self.gen_video[:, :, start_frame:end_frame].cpu())
            self.cut_audio_list.append(self.segment.audio_array[start_audio_frame : self.segment.useful_length])
        elif self.segment.useful_length and self.inputs["expected_frames"] < self.config.get("target_video_length", 81):
            self.gen_video_list.append(self.gen_video[:, :, start_frame : self.inputs["expected_frames"]].cpu())
            self.cut_audio_list.append(self.segment.audio_array[start_audio_frame : self.segment.useful_length])
wangshankun's avatar
wangshankun committed
498
        else:
helloyongyang's avatar
helloyongyang committed
499
500
501
            self.gen_video_list.append(self.gen_video[:, :, start_frame:].cpu())
            self.cut_audio_list.append(self.segment.audio_array[start_audio_frame:])

LiangLiu's avatar
LiangLiu committed
502
503
504
505
506
507
508
509
        if self.va_recorder:
            cur_video = vae_to_comfyui_image(self.gen_video_list[-1])
            self.va_recorder.pub_livestream(cur_video, self.cut_audio_list[-1])

        if self.va_reader:
            self.gen_video_list.pop()
            self.cut_audio_list.pop()

helloyongyang's avatar
helloyongyang committed
510
511
512
513
514
515
516
        # Update prev_video for next iteration
        self.prev_video = self.gen_video

        # Clean up GPU memory after each segment
        del self.gen_video
        torch.cuda.empty_cache()

LiangLiu's avatar
LiangLiu committed
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
    def get_rank_and_world_size(self):
        rank = 0
        world_size = 1
        if dist.is_initialized():
            rank = dist.get_rank()
            world_size = dist.get_world_size()
        return rank, world_size

    def init_va_recorder(self):
        output_video_path = self.config.get("save_video_path", None)
        self.va_recorder = None
        if isinstance(output_video_path, dict):
            assert output_video_path["type"] == "stream", f"unexcept save_video_path: {output_video_path}"
            rank, world_size = self.get_rank_and_world_size()
            if rank == 2 % world_size:
                record_fps = self.config.get("target_fps", 16)
                audio_sr = self.config.get("audio_sr", 16000)
                if "video_frame_interpolation" in self.config and self.vfi_model is not None:
                    record_fps = self.config["video_frame_interpolation"]["target_fps"]
                self.va_recorder = VARecorder(
                    livestream_url=output_video_path["data"],
                    fps=record_fps,
                    sample_rate=audio_sr,
                )

    def init_va_reader(self):
        audio_path = self.config.get("audio_path", None)
        self.va_reader = None
        if isinstance(audio_path, dict):
            assert audio_path["type"] == "stream", f"unexcept audio_path: {audio_path}"
            rank, world_size = self.get_rank_and_world_size()
            target_fps = self.config.get("target_fps", 16)
            max_num_frames = self.config.get("target_video_length", 81)
            audio_sr = self.config.get("audio_sr", 16000)
            prev_frames = self.config.get("prev_frame_length", 5)
            self.va_reader = VAReader(
                rank=rank,
                world_size=world_size,
                stream_url=audio_path["data"],
                sample_rate=audio_sr,
                segment_duration=max_num_frames / target_fps,
                prev_duration=prev_frames / target_fps,
                target_rank=1,
            )

    def run_main(self, total_steps=None):
        try:
            self.init_va_recorder()
            self.init_va_reader()
            logger.info(f"init va_recorder: {self.va_recorder} and va_reader: {self.va_reader}")

            if self.va_reader is None:
                return super().run_main(total_steps)

            rank, world_size = self.get_rank_and_world_size()
            if rank == 2 % world_size:
                assert self.va_recorder is not None, "va_recorder is required for stream audio input for rank 0"
            self.va_reader.start()

            self.init_run()
            self.video_segment_num = "unlimited"

            fetch_timeout = self.va_reader.segment_duration + 1
            segment_idx = 0
            fail_count = 0
            max_fail_count = 10

            while True:
                with ProfilingContext4Debug(f"stream segment get audio segment {segment_idx}"):
                    self.check_stop()
                    audio_array = self.va_reader.get_audio_segment(timeout=fetch_timeout)
                    if audio_array is None:
                        fail_count += 1
                        logger.warning(f"Failed to get audio chunk {fail_count} times")
                        if fail_count > max_fail_count:
                            raise Exception(f"Failed to get audio chunk {fail_count} times, stop reader")
                        continue

                with ProfilingContext4Debug(f"stream segment end2end {segment_idx}"):
                    fail_count = 0
                    self.init_run_segment(segment_idx, audio_array)
helloyongyang's avatar
helloyongyang committed
598
                    latents = self.run_segment(total_steps=None)
LiangLiu's avatar
LiangLiu committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612
                    self.gen_video = self.run_vae_decoder(latents)
                    self.end_run_segment()
                    segment_idx += 1

        finally:
            if hasattr(self.model, "scheduler"):
                self.end_run()
            if self.va_reader:
                self.va_reader.stop()
                self.va_reader = None
            if self.va_recorder:
                self.va_recorder.stop(wait=False)
                self.va_recorder = None

613
    @ProfilingContext4Debug("Process after vae decoder")
helloyongyang's avatar
helloyongyang committed
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
    def process_images_after_vae_decoder(self, save_video=True):
        # Merge results
        gen_lvideo = torch.cat(self.gen_video_list, dim=2).float()
        merge_audio = np.concatenate(self.cut_audio_list, axis=0).astype(np.float32)

        comfyui_images = vae_to_comfyui_image(gen_lvideo)

        # Apply frame interpolation if configured
        if "video_frame_interpolation" in self.config and self.vfi_model is not None:
            target_fps = self.config["video_frame_interpolation"]["target_fps"]
            logger.info(f"Interpolating frames from {self.config.get('fps', 16)} to {target_fps}")
            comfyui_images = self.vfi_model.interpolate_frames(
                comfyui_images,
                source_fps=self.config.get("fps", 16),
                target_fps=target_fps,
            )
630

LiangLiu's avatar
LiangLiu committed
631
        if save_video and isinstance(self.config["save_video_path"], str):
helloyongyang's avatar
helloyongyang committed
632
633
634
635
            if "video_frame_interpolation" in self.config and self.config["video_frame_interpolation"].get("target_fps"):
                fps = self.config["video_frame_interpolation"]["target_fps"]
            else:
                fps = self.config.get("fps", 16)
636

helloyongyang's avatar
helloyongyang committed
637
638
            if not dist.is_initialized() or dist.get_rank() == 0:
                logger.info(f"🎬 Start to save video 🎬")
639

helloyongyang's avatar
helloyongyang committed
640
641
                self._save_video_with_audio(comfyui_images, merge_audio, fps)
                logger.info(f"✅ Video saved successfully to: {self.config.save_video_path} ✅")
642

helloyongyang's avatar
helloyongyang committed
643
644
645
        # Convert audio to ComfyUI format
        audio_waveform = torch.from_numpy(merge_audio).unsqueeze(0).unsqueeze(0)
        comfyui_audio = {"waveform": audio_waveform, "sample_rate": self._audio_processor.audio_sr}
646

helloyongyang's avatar
helloyongyang committed
647
        return {"video": comfyui_images, "audio": comfyui_audio}
648

helloyongyang's avatar
helloyongyang committed
649
650
651
    def init_modules(self):
        super().init_modules()
        self.run_input_encoder = self._run_input_encoder_local_r2v_audio
652
653
654
655
656
657
658
659
660
661
662
663
664

    def _save_video_with_audio(self, images, audio_array, fps):
        """Save video with audio"""
        import tempfile

        with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as video_tmp:
            video_path = video_tmp.name

        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as audio_tmp:
            audio_path = audio_tmp.name

        try:
            save_to_video(images, video_path, fps)
665
            ta.save(audio_path, torch.tensor(audio_array[None]), sample_rate=self._audio_processor.audio_sr)  # type: ignore
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

            output_path = self.config.get("save_video_path")
            parent_dir = os.path.dirname(output_path)
            if parent_dir and not os.path.exists(parent_dir):
                os.makedirs(parent_dir, exist_ok=True)

            subprocess.call(["/usr/bin/ffmpeg", "-y", "-i", video_path, "-i", audio_path, output_path])

            logger.info(f"Saved video with audio to: {output_path}")

        finally:
            # Clean up temp files
            if os.path.exists(video_path):
                os.remove(video_path)
            if os.path.exists(audio_path):
                os.remove(audio_path)
wangshankun's avatar
wangshankun committed
682
683

    def load_transformer(self):
684
        """Load transformer with LoRA support"""
wangshankun's avatar
wangshankun committed
685
        base_model = WanAudioModel(self.config.model_path, self.config, self.init_device)
686
        if self.config.get("lora_configs") and self.config.lora_configs:
wangshankun's avatar
wangshankun committed
687
688
            assert not self.config.get("dit_quantized", False) or self.config.mm_config.get("weight_auto_quant", False)
            lora_wrapper = WanLoraWrapper(base_model)
689
690
691
692
693
694
            for lora_config in self.config.lora_configs:
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
                lora_name = lora_wrapper.load_lora(lora_path)
                lora_wrapper.apply_lora(lora_name, strength)
                logger.info(f"Loaded LoRA: {lora_name} with strength: {strength}")
wangshankun's avatar
wangshankun committed
695

wangshankun's avatar
wangshankun committed
696
697
        return base_model

helloyongyang's avatar
helloyongyang committed
698
    def load_audio_encoder(self):
699
        audio_encoder_path = os.path.join(self.config["model_path"], "TencentGameMate-chinese-hubert-large")
700
701
        audio_encoder_offload = self.config.get("audio_encoder_cpu_offload", self.config.get("cpu_offload", False))
        model = SekoAudioEncoderModel(audio_encoder_path, self.config["audio_sr"], audio_encoder_offload)
helloyongyang's avatar
helloyongyang committed
702
        return model
703

helloyongyang's avatar
helloyongyang committed
704
    def load_audio_adapter(self):
705
706
707
708
709
        audio_adapter_offload = self.config.get("audio_adapter_cpu_offload", self.config.get("cpu_offload", False))
        if audio_adapter_offload:
            device = torch.device("cpu")
        else:
            device = torch.device("cuda")
helloyongyang's avatar
helloyongyang committed
710
        audio_adapter = AudioAdapter(
sandy's avatar
sandy committed
711
            attention_head_dim=self.config["dim"] // self.config["num_heads"],
helloyongyang's avatar
helloyongyang committed
712
713
714
715
716
717
718
719
720
            num_attention_heads=self.config["num_heads"],
            base_num_layers=self.config["num_layers"],
            interval=1,
            audio_feature_dim=1024,
            time_freq_dim=256,
            projection_transformer_layers=4,
            mlp_dims=(1024, 1024, 32 * 1024),
            quantized=self.config.get("adapter_quantized", False),
            quant_scheme=self.config.get("adapter_quant_scheme", None),
721
            cpu_offload=audio_adapter_offload,
helloyongyang's avatar
helloyongyang committed
722
        )
723
        audio_adapter.to(device)
helloyongyang's avatar
helloyongyang committed
724
        if self.config.get("adapter_quantized", False):
725
            if self.config.get("adapter_quant_scheme", None) in ["fp8", "fp8-q8f"]:
726
                model_name = "audio_adapter_model_fp8.safetensors"
helloyongyang's avatar
helloyongyang committed
727
            elif self.config.get("adapter_quant_scheme", None) == "int8":
728
                model_name = "audio_adapter_model_int8.safetensors"
helloyongyang's avatar
helloyongyang committed
729
730
            else:
                raise ValueError(f"Unsupported quant_scheme: {self.config.get('adapter_quant_scheme', None)}")
wangshankun's avatar
wangshankun committed
731
        else:
732
            model_name = "audio_adapter_model.safetensors"
733
734
735

        weights_dict = load_weights(os.path.join(self.config["model_path"], model_name), cpu_offload=audio_adapter_offload)
        audio_adapter.load_state_dict(weights_dict, strict=False)
helloyongyang's avatar
helloyongyang committed
736
        return audio_adapter.to(dtype=GET_DTYPE())
wangshankun's avatar
wangshankun committed
737

helloyongyang's avatar
helloyongyang committed
738
739
740
741
742
743
    @ProfilingContext("Load models")
    def load_model(self):
        super().load_model()
        self.audio_encoder = self.load_audio_encoder()
        self.audio_adapter = self.load_audio_adapter()
        self.model.set_audio_adapter(self.audio_adapter)
wangshankun's avatar
wangshankun committed
744
745

    def set_target_shape(self):
746
        """Set target shape for generation"""
wangshankun's avatar
wangshankun committed
747
748
        ret = {}
        num_channels_latents = 16
wangshankun's avatar
wangshankun committed
749
750
        if self.config.model_cls == "wan2.2_audio":
            num_channels_latents = self.config.num_channels_latents
751

wangshankun's avatar
wangshankun committed
752
753
754
755
756
757
758
759
760
761
762
        if self.config.task == "i2v":
            self.config.target_shape = (
                num_channels_latents,
                (self.config.target_video_length - 1) // self.config.vae_stride[0] + 1,
                self.config.lat_h,
                self.config.lat_w,
            )
            ret["lat_h"] = self.config.lat_h
            ret["lat_w"] = self.config.lat_w
        else:
            error_msg = "t2v task is not supported in WanAudioRunner"
763
            assert False, error_msg
wangshankun's avatar
wangshankun committed
764
765
766

        ret["target_shape"] = self.config.target_shape
        return ret
sandy's avatar
sandy committed
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811


@RUNNER_REGISTER("wan2.2_audio")
class Wan22AudioRunner(WanAudioRunner):
    def __init__(self, config):
        super().__init__(config)

    def load_vae_decoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")
        vae_config = {
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.2_VAE.pth"),
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
        vae_decoder = Wan2_2_VAE(**vae_config)
        return vae_decoder

    def load_vae_encoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")
        vae_config = {
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.2_VAE.pth"),
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
        if self.config.task != "i2v":
            return None
        else:
            return Wan2_2_VAE(**vae_config)

    def load_vae(self):
        vae_encoder = self.load_vae_encoder()
        vae_decoder = self.load_vae_decoder()
        return vae_encoder, vae_decoder