convnext.py 15 KB
Newer Older
1
from functools import partial
2
from typing import Any, Callable, List, Optional, Sequence
3
4
5
6
7

import torch
from torch import nn, Tensor
from torch.nn import functional as F

8
from ..ops.misc import Conv2dNormActivation, Permute
9
from ..ops.stochastic_depth import StochasticDepth
10
from ..transforms._presets import ImageClassification
11
from ..utils import _log_api_usage_once
12
from ._api import register_model, Weights, WeightsEnum
13
from ._meta import _IMAGENET_CATEGORIES
14
from ._utils import _ovewrite_named_param, handle_legacy_interface
15
16
17
18


__all__ = [
    "ConvNeXt",
19
20
21
22
    "ConvNeXt_Tiny_Weights",
    "ConvNeXt_Small_Weights",
    "ConvNeXt_Base_Weights",
    "ConvNeXt_Large_Weights",
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    "convnext_tiny",
    "convnext_small",
    "convnext_base",
    "convnext_large",
]


class LayerNorm2d(nn.LayerNorm):
    def forward(self, x: Tensor) -> Tensor:
        x = x.permute(0, 2, 3, 1)
        x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        x = x.permute(0, 3, 1, 2)
        return x


class CNBlock(nn.Module):
    def __init__(
        self,
        dim,
        layer_scale: float,
        stochastic_depth_prob: float,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super().__init__()
        if norm_layer is None:
            norm_layer = partial(nn.LayerNorm, eps=1e-6)

        self.block = nn.Sequential(
            nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim, bias=True),
            Permute([0, 2, 3, 1]),
            norm_layer(dim),
            nn.Linear(in_features=dim, out_features=4 * dim, bias=True),
            nn.GELU(),
            nn.Linear(in_features=4 * dim, out_features=dim, bias=True),
            Permute([0, 3, 1, 2]),
        )
        self.layer_scale = nn.Parameter(torch.ones(dim, 1, 1) * layer_scale)
        self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row")

    def forward(self, input: Tensor) -> Tensor:
        result = self.layer_scale * self.block(input)
        result = self.stochastic_depth(result)
        result += input
        return result


class CNBlockConfig:
    # Stores information listed at Section 3 of the ConvNeXt paper
    def __init__(
        self,
        input_channels: int,
        out_channels: Optional[int],
        num_layers: int,
    ) -> None:
        self.input_channels = input_channels
        self.out_channels = out_channels
        self.num_layers = num_layers

    def __repr__(self) -> str:
        s = self.__class__.__name__ + "("
        s += "input_channels={input_channels}"
        s += ", out_channels={out_channels}"
        s += ", num_layers={num_layers}"
        s += ")"
        return s.format(**self.__dict__)


class ConvNeXt(nn.Module):
    def __init__(
        self,
        block_setting: List[CNBlockConfig],
        stochastic_depth_prob: float = 0.0,
        layer_scale: float = 1e-6,
        num_classes: int = 1000,
        block: Optional[Callable[..., nn.Module]] = None,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
        **kwargs: Any,
    ) -> None:
        super().__init__()
        _log_api_usage_once(self)

        if not block_setting:
            raise ValueError("The block_setting should not be empty")
        elif not (isinstance(block_setting, Sequence) and all([isinstance(s, CNBlockConfig) for s in block_setting])):
            raise TypeError("The block_setting should be List[CNBlockConfig]")

        if block is None:
            block = CNBlock

        if norm_layer is None:
            norm_layer = partial(LayerNorm2d, eps=1e-6)

        layers: List[nn.Module] = []

        # Stem
        firstconv_output_channels = block_setting[0].input_channels
        layers.append(
120
            Conv2dNormActivation(
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
                3,
                firstconv_output_channels,
                kernel_size=4,
                stride=4,
                padding=0,
                norm_layer=norm_layer,
                activation_layer=None,
                bias=True,
            )
        )

        total_stage_blocks = sum(cnf.num_layers for cnf in block_setting)
        stage_block_id = 0
        for cnf in block_setting:
            # Bottlenecks
            stage: List[nn.Module] = []
            for _ in range(cnf.num_layers):
                # adjust stochastic depth probability based on the depth of the stage block
                sd_prob = stochastic_depth_prob * stage_block_id / (total_stage_blocks - 1.0)
                stage.append(block(cnf.input_channels, layer_scale, sd_prob))
                stage_block_id += 1
            layers.append(nn.Sequential(*stage))
            if cnf.out_channels is not None:
                # Downsampling
                layers.append(
                    nn.Sequential(
                        norm_layer(cnf.input_channels),
                        nn.Conv2d(cnf.input_channels, cnf.out_channels, kernel_size=2, stride=2),
                    )
                )

        self.features = nn.Sequential(*layers)
        self.avgpool = nn.AdaptiveAvgPool2d(1)

        lastblock = block_setting[-1]
        lastconv_output_channels = (
            lastblock.out_channels if lastblock.out_channels is not None else lastblock.input_channels
        )
        self.classifier = nn.Sequential(
            norm_layer(lastconv_output_channels), nn.Flatten(1), nn.Linear(lastconv_output_channels, num_classes)
        )

        for m in self.modules():
            if isinstance(m, (nn.Conv2d, nn.Linear)):
                nn.init.trunc_normal_(m.weight, std=0.02)
                if m.bias is not None:
                    nn.init.zeros_(m.bias)

    def _forward_impl(self, x: Tensor) -> Tensor:
        x = self.features(x)
        x = self.avgpool(x)
        x = self.classifier(x)
        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)


def _convnext(
    block_setting: List[CNBlockConfig],
    stochastic_depth_prob: float,
182
    weights: Optional[WeightsEnum],
183
184
185
    progress: bool,
    **kwargs: Any,
) -> ConvNeXt:
186
187
188
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))

189
    model = ConvNeXt(block_setting, stochastic_depth_prob=stochastic_depth_prob, **kwargs)
190
191
192
193

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))

194
195
196
    return model


197
198
199
200
_COMMON_META = {
    "min_size": (32, 32),
    "categories": _IMAGENET_CATEGORIES,
    "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#convnext",
201
202
203
204
205
    "_docs": """
        These weights improve upon the results of the original paper by using a modified version of TorchVision's
        `new training recipe
        <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
    """,
206
207
208
209
210
211
212
213
214
215
}


class ConvNeXt_Tiny_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/convnext_tiny-983f1562.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=236),
        meta={
            **_COMMON_META,
            "num_params": 28589128,
216
217
218
219
220
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 82.520,
                    "acc@5": 96.146,
                }
221
            },
222
223
            "_ops": 4.456,
            "_weight_size": 109.119,
224
225
226
227
228
229
230
231
232
233
234
235
        },
    )
    DEFAULT = IMAGENET1K_V1


class ConvNeXt_Small_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/convnext_small-0c510722.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=230),
        meta={
            **_COMMON_META,
            "num_params": 50223688,
236
237
238
239
240
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 83.616,
                    "acc@5": 96.650,
                }
241
            },
242
243
            "_ops": 8.684,
            "_weight_size": 191.703,
244
245
246
247
248
249
250
251
252
253
254
255
        },
    )
    DEFAULT = IMAGENET1K_V1


class ConvNeXt_Base_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/convnext_base-6075fbad.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 88591464,
256
257
258
259
260
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 84.062,
                    "acc@5": 96.870,
                }
261
            },
262
263
            "_ops": 15.355,
            "_weight_size": 338.064,
264
265
266
267
268
269
270
271
272
273
274
275
        },
    )
    DEFAULT = IMAGENET1K_V1


class ConvNeXt_Large_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/convnext_large-ea097f82.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 197767336,
276
277
278
279
280
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 84.414,
                    "acc@5": 96.976,
                }
281
            },
282
283
            "_ops": 34.361,
            "_weight_size": 754.537,
284
285
286
287
288
        },
    )
    DEFAULT = IMAGENET1K_V1


289
@register_model()
290
291
@handle_legacy_interface(weights=("pretrained", ConvNeXt_Tiny_Weights.IMAGENET1K_V1))
def convnext_tiny(*, weights: Optional[ConvNeXt_Tiny_Weights] = None, progress: bool = True, **kwargs: Any) -> ConvNeXt:
Hu Ye's avatar
Hu Ye committed
292
293
294
    """ConvNeXt Tiny model architecture from the
    `A ConvNet for the 2020s <https://arxiv.org/abs/2201.03545>`_ paper.

295
    Args:
Hu Ye's avatar
Hu Ye committed
296
297
298
299
300
301
302
303
304
        weights (:class:`~torchvision.models.convnext.ConvNeXt_Tiny_Weights`, optional): The pretrained
            weights to use. See :class:`~torchvision.models.convnext.ConvNeXt_Tiny_Weights`
            below for more details and possible values. By default, no pre-trained weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.convnext.ConvNext``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py>`_
            for more details about this class.

305
    .. autoclass:: torchvision.models.ConvNeXt_Tiny_Weights
Hu Ye's avatar
Hu Ye committed
306
        :members:
307
    """
308
309
    weights = ConvNeXt_Tiny_Weights.verify(weights)

310
311
312
313
314
315
316
    block_setting = [
        CNBlockConfig(96, 192, 3),
        CNBlockConfig(192, 384, 3),
        CNBlockConfig(384, 768, 9),
        CNBlockConfig(768, None, 3),
    ]
    stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.1)
317
    return _convnext(block_setting, stochastic_depth_prob, weights, progress, **kwargs)
318
319


320
@register_model()
321
322
323
324
@handle_legacy_interface(weights=("pretrained", ConvNeXt_Small_Weights.IMAGENET1K_V1))
def convnext_small(
    *, weights: Optional[ConvNeXt_Small_Weights] = None, progress: bool = True, **kwargs: Any
) -> ConvNeXt:
Hu Ye's avatar
Hu Ye committed
325
326
327
    """ConvNeXt Small model architecture from the
    `A ConvNet for the 2020s <https://arxiv.org/abs/2201.03545>`_ paper.

328
    Args:
Hu Ye's avatar
Hu Ye committed
329
330
331
332
333
334
335
336
337
        weights (:class:`~torchvision.models.convnext.ConvNeXt_Small_Weights`, optional): The pretrained
            weights to use. See :class:`~torchvision.models.convnext.ConvNeXt_Small_Weights`
            below for more details and possible values. By default, no pre-trained weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.convnext.ConvNext``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py>`_
            for more details about this class.

338
    .. autoclass:: torchvision.models.ConvNeXt_Small_Weights
Hu Ye's avatar
Hu Ye committed
339
        :members:
340
    """
341
342
    weights = ConvNeXt_Small_Weights.verify(weights)

343
344
345
346
347
348
349
    block_setting = [
        CNBlockConfig(96, 192, 3),
        CNBlockConfig(192, 384, 3),
        CNBlockConfig(384, 768, 27),
        CNBlockConfig(768, None, 3),
    ]
    stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.4)
350
    return _convnext(block_setting, stochastic_depth_prob, weights, progress, **kwargs)
351
352


353
@register_model()
354
355
@handle_legacy_interface(weights=("pretrained", ConvNeXt_Base_Weights.IMAGENET1K_V1))
def convnext_base(*, weights: Optional[ConvNeXt_Base_Weights] = None, progress: bool = True, **kwargs: Any) -> ConvNeXt:
Hu Ye's avatar
Hu Ye committed
356
357
358
    """ConvNeXt Base model architecture from the
    `A ConvNet for the 2020s <https://arxiv.org/abs/2201.03545>`_ paper.

359
    Args:
Hu Ye's avatar
Hu Ye committed
360
361
362
363
364
365
366
367
368
        weights (:class:`~torchvision.models.convnext.ConvNeXt_Base_Weights`, optional): The pretrained
            weights to use. See :class:`~torchvision.models.convnext.ConvNeXt_Base_Weights`
            below for more details and possible values. By default, no pre-trained weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.convnext.ConvNext``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py>`_
            for more details about this class.

369
    .. autoclass:: torchvision.models.ConvNeXt_Base_Weights
Hu Ye's avatar
Hu Ye committed
370
        :members:
371
    """
372
373
    weights = ConvNeXt_Base_Weights.verify(weights)

374
375
376
377
378
379
380
    block_setting = [
        CNBlockConfig(128, 256, 3),
        CNBlockConfig(256, 512, 3),
        CNBlockConfig(512, 1024, 27),
        CNBlockConfig(1024, None, 3),
    ]
    stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.5)
381
    return _convnext(block_setting, stochastic_depth_prob, weights, progress, **kwargs)
382
383


384
@register_model()
385
386
387
388
@handle_legacy_interface(weights=("pretrained", ConvNeXt_Large_Weights.IMAGENET1K_V1))
def convnext_large(
    *, weights: Optional[ConvNeXt_Large_Weights] = None, progress: bool = True, **kwargs: Any
) -> ConvNeXt:
Hu Ye's avatar
Hu Ye committed
389
390
391
    """ConvNeXt Large model architecture from the
    `A ConvNet for the 2020s <https://arxiv.org/abs/2201.03545>`_ paper.

392
    Args:
Hu Ye's avatar
Hu Ye committed
393
394
395
396
397
398
399
400
401
        weights (:class:`~torchvision.models.convnext.ConvNeXt_Large_Weights`, optional): The pretrained
            weights to use. See :class:`~torchvision.models.convnext.ConvNeXt_Large_Weights`
            below for more details and possible values. By default, no pre-trained weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.convnext.ConvNext``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py>`_
            for more details about this class.

402
    .. autoclass:: torchvision.models.ConvNeXt_Large_Weights
Hu Ye's avatar
Hu Ye committed
403
        :members:
404
    """
405
406
    weights = ConvNeXt_Large_Weights.verify(weights)

407
408
409
410
411
412
413
    block_setting = [
        CNBlockConfig(192, 384, 3),
        CNBlockConfig(384, 768, 3),
        CNBlockConfig(768, 1536, 27),
        CNBlockConfig(1536, None, 3),
    ]
    stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.5)
414
    return _convnext(block_setting, stochastic_depth_prob, weights, progress, **kwargs)