convnext.py 14.8 KB
Newer Older
1
from functools import partial
2
from typing import Any, Callable, List, Optional, Sequence
3
4
5
6
7

import torch
from torch import nn, Tensor
from torch.nn import functional as F

8
from ..ops.misc import Conv2dNormActivation
9
from ..ops.stochastic_depth import StochasticDepth
10
from ..transforms._presets import ImageClassification
11
from ..utils import _log_api_usage_once
12
13
14
from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES
from ._utils import handle_legacy_interface, _ovewrite_named_param
15
16
17
18


__all__ = [
    "ConvNeXt",
19
20
21
22
    "ConvNeXt_Tiny_Weights",
    "ConvNeXt_Small_Weights",
    "ConvNeXt_Base_Weights",
    "ConvNeXt_Large_Weights",
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    "convnext_tiny",
    "convnext_small",
    "convnext_base",
    "convnext_large",
]


class LayerNorm2d(nn.LayerNorm):
    def forward(self, x: Tensor) -> Tensor:
        x = x.permute(0, 2, 3, 1)
        x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        x = x.permute(0, 3, 1, 2)
        return x


class Permute(nn.Module):
    def __init__(self, dims: List[int]):
        super().__init__()
        self.dims = dims

    def forward(self, x):
        return torch.permute(x, self.dims)


class CNBlock(nn.Module):
    def __init__(
        self,
        dim,
        layer_scale: float,
        stochastic_depth_prob: float,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super().__init__()
        if norm_layer is None:
            norm_layer = partial(nn.LayerNorm, eps=1e-6)

        self.block = nn.Sequential(
            nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim, bias=True),
            Permute([0, 2, 3, 1]),
            norm_layer(dim),
            nn.Linear(in_features=dim, out_features=4 * dim, bias=True),
            nn.GELU(),
            nn.Linear(in_features=4 * dim, out_features=dim, bias=True),
            Permute([0, 3, 1, 2]),
        )
        self.layer_scale = nn.Parameter(torch.ones(dim, 1, 1) * layer_scale)
        self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row")

    def forward(self, input: Tensor) -> Tensor:
        result = self.layer_scale * self.block(input)
        result = self.stochastic_depth(result)
        result += input
        return result


class CNBlockConfig:
    # Stores information listed at Section 3 of the ConvNeXt paper
    def __init__(
        self,
        input_channels: int,
        out_channels: Optional[int],
        num_layers: int,
    ) -> None:
        self.input_channels = input_channels
        self.out_channels = out_channels
        self.num_layers = num_layers

    def __repr__(self) -> str:
        s = self.__class__.__name__ + "("
        s += "input_channels={input_channels}"
        s += ", out_channels={out_channels}"
        s += ", num_layers={num_layers}"
        s += ")"
        return s.format(**self.__dict__)


class ConvNeXt(nn.Module):
    def __init__(
        self,
        block_setting: List[CNBlockConfig],
        stochastic_depth_prob: float = 0.0,
        layer_scale: float = 1e-6,
        num_classes: int = 1000,
        block: Optional[Callable[..., nn.Module]] = None,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
        **kwargs: Any,
    ) -> None:
        super().__init__()
        _log_api_usage_once(self)

        if not block_setting:
            raise ValueError("The block_setting should not be empty")
        elif not (isinstance(block_setting, Sequence) and all([isinstance(s, CNBlockConfig) for s in block_setting])):
            raise TypeError("The block_setting should be List[CNBlockConfig]")

        if block is None:
            block = CNBlock

        if norm_layer is None:
            norm_layer = partial(LayerNorm2d, eps=1e-6)

        layers: List[nn.Module] = []

        # Stem
        firstconv_output_channels = block_setting[0].input_channels
        layers.append(
129
            Conv2dNormActivation(
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
                3,
                firstconv_output_channels,
                kernel_size=4,
                stride=4,
                padding=0,
                norm_layer=norm_layer,
                activation_layer=None,
                bias=True,
            )
        )

        total_stage_blocks = sum(cnf.num_layers for cnf in block_setting)
        stage_block_id = 0
        for cnf in block_setting:
            # Bottlenecks
            stage: List[nn.Module] = []
            for _ in range(cnf.num_layers):
                # adjust stochastic depth probability based on the depth of the stage block
                sd_prob = stochastic_depth_prob * stage_block_id / (total_stage_blocks - 1.0)
                stage.append(block(cnf.input_channels, layer_scale, sd_prob))
                stage_block_id += 1
            layers.append(nn.Sequential(*stage))
            if cnf.out_channels is not None:
                # Downsampling
                layers.append(
                    nn.Sequential(
                        norm_layer(cnf.input_channels),
                        nn.Conv2d(cnf.input_channels, cnf.out_channels, kernel_size=2, stride=2),
                    )
                )

        self.features = nn.Sequential(*layers)
        self.avgpool = nn.AdaptiveAvgPool2d(1)

        lastblock = block_setting[-1]
        lastconv_output_channels = (
            lastblock.out_channels if lastblock.out_channels is not None else lastblock.input_channels
        )
        self.classifier = nn.Sequential(
            norm_layer(lastconv_output_channels), nn.Flatten(1), nn.Linear(lastconv_output_channels, num_classes)
        )

        for m in self.modules():
            if isinstance(m, (nn.Conv2d, nn.Linear)):
                nn.init.trunc_normal_(m.weight, std=0.02)
                if m.bias is not None:
                    nn.init.zeros_(m.bias)

    def _forward_impl(self, x: Tensor) -> Tensor:
        x = self.features(x)
        x = self.avgpool(x)
        x = self.classifier(x)
        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)


def _convnext(
    block_setting: List[CNBlockConfig],
    stochastic_depth_prob: float,
191
    weights: Optional[WeightsEnum],
192
193
194
    progress: bool,
    **kwargs: Any,
) -> ConvNeXt:
195
196
197
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))

198
    model = ConvNeXt(block_setting, stochastic_depth_prob=stochastic_depth_prob, **kwargs)
199
200
201
202

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))

203
204
205
    return model


206
207
208
209
_COMMON_META = {
    "min_size": (32, 32),
    "categories": _IMAGENET_CATEGORIES,
    "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#convnext",
210
211
212
213
214
    "_docs": """
        These weights improve upon the results of the original paper by using a modified version of TorchVision's
        `new training recipe
        <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
    """,
215
216
217
218
219
220
221
222
223
224
}


class ConvNeXt_Tiny_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/convnext_tiny-983f1562.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=236),
        meta={
            **_COMMON_META,
            "num_params": 28589128,
225
226
227
228
229
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 82.520,
                    "acc@5": 96.146,
                }
230
            },
231
232
233
234
235
236
237
238
239
240
241
242
        },
    )
    DEFAULT = IMAGENET1K_V1


class ConvNeXt_Small_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/convnext_small-0c510722.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=230),
        meta={
            **_COMMON_META,
            "num_params": 50223688,
243
244
245
246
247
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 83.616,
                    "acc@5": 96.650,
                }
248
            },
249
250
251
252
253
254
255
256
257
258
259
260
        },
    )
    DEFAULT = IMAGENET1K_V1


class ConvNeXt_Base_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/convnext_base-6075fbad.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 88591464,
261
262
263
264
265
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 84.062,
                    "acc@5": 96.870,
                }
266
            },
267
268
269
270
271
272
273
274
275
276
277
278
        },
    )
    DEFAULT = IMAGENET1K_V1


class ConvNeXt_Large_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/convnext_large-ea097f82.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 197767336,
279
280
281
282
283
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 84.414,
                    "acc@5": 96.976,
                }
284
            },
285
286
287
288
289
290
291
        },
    )
    DEFAULT = IMAGENET1K_V1


@handle_legacy_interface(weights=("pretrained", ConvNeXt_Tiny_Weights.IMAGENET1K_V1))
def convnext_tiny(*, weights: Optional[ConvNeXt_Tiny_Weights] = None, progress: bool = True, **kwargs: Any) -> ConvNeXt:
Hu Ye's avatar
Hu Ye committed
292
293
294
    """ConvNeXt Tiny model architecture from the
    `A ConvNet for the 2020s <https://arxiv.org/abs/2201.03545>`_ paper.

295
    Args:
Hu Ye's avatar
Hu Ye committed
296
297
298
299
300
301
302
303
304
        weights (:class:`~torchvision.models.convnext.ConvNeXt_Tiny_Weights`, optional): The pretrained
            weights to use. See :class:`~torchvision.models.convnext.ConvNeXt_Tiny_Weights`
            below for more details and possible values. By default, no pre-trained weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.convnext.ConvNext``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py>`_
            for more details about this class.

305
    .. autoclass:: torchvision.models.ConvNeXt_Tiny_Weights
Hu Ye's avatar
Hu Ye committed
306
        :members:
307
    """
308
309
    weights = ConvNeXt_Tiny_Weights.verify(weights)

310
311
312
313
314
315
316
    block_setting = [
        CNBlockConfig(96, 192, 3),
        CNBlockConfig(192, 384, 3),
        CNBlockConfig(384, 768, 9),
        CNBlockConfig(768, None, 3),
    ]
    stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.1)
317
    return _convnext(block_setting, stochastic_depth_prob, weights, progress, **kwargs)
318
319


320
321
322
323
@handle_legacy_interface(weights=("pretrained", ConvNeXt_Small_Weights.IMAGENET1K_V1))
def convnext_small(
    *, weights: Optional[ConvNeXt_Small_Weights] = None, progress: bool = True, **kwargs: Any
) -> ConvNeXt:
Hu Ye's avatar
Hu Ye committed
324
325
326
    """ConvNeXt Small model architecture from the
    `A ConvNet for the 2020s <https://arxiv.org/abs/2201.03545>`_ paper.

327
    Args:
Hu Ye's avatar
Hu Ye committed
328
329
330
331
332
333
334
335
336
        weights (:class:`~torchvision.models.convnext.ConvNeXt_Small_Weights`, optional): The pretrained
            weights to use. See :class:`~torchvision.models.convnext.ConvNeXt_Small_Weights`
            below for more details and possible values. By default, no pre-trained weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.convnext.ConvNext``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py>`_
            for more details about this class.

337
    .. autoclass:: torchvision.models.ConvNeXt_Small_Weights
Hu Ye's avatar
Hu Ye committed
338
        :members:
339
    """
340
341
    weights = ConvNeXt_Small_Weights.verify(weights)

342
343
344
345
346
347
348
    block_setting = [
        CNBlockConfig(96, 192, 3),
        CNBlockConfig(192, 384, 3),
        CNBlockConfig(384, 768, 27),
        CNBlockConfig(768, None, 3),
    ]
    stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.4)
349
    return _convnext(block_setting, stochastic_depth_prob, weights, progress, **kwargs)
350
351


352
353
@handle_legacy_interface(weights=("pretrained", ConvNeXt_Base_Weights.IMAGENET1K_V1))
def convnext_base(*, weights: Optional[ConvNeXt_Base_Weights] = None, progress: bool = True, **kwargs: Any) -> ConvNeXt:
Hu Ye's avatar
Hu Ye committed
354
355
356
    """ConvNeXt Base model architecture from the
    `A ConvNet for the 2020s <https://arxiv.org/abs/2201.03545>`_ paper.

357
    Args:
Hu Ye's avatar
Hu Ye committed
358
359
360
361
362
363
364
365
366
        weights (:class:`~torchvision.models.convnext.ConvNeXt_Base_Weights`, optional): The pretrained
            weights to use. See :class:`~torchvision.models.convnext.ConvNeXt_Base_Weights`
            below for more details and possible values. By default, no pre-trained weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.convnext.ConvNext``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py>`_
            for more details about this class.

367
    .. autoclass:: torchvision.models.ConvNeXt_Base_Weights
Hu Ye's avatar
Hu Ye committed
368
        :members:
369
    """
370
371
    weights = ConvNeXt_Base_Weights.verify(weights)

372
373
374
375
376
377
378
    block_setting = [
        CNBlockConfig(128, 256, 3),
        CNBlockConfig(256, 512, 3),
        CNBlockConfig(512, 1024, 27),
        CNBlockConfig(1024, None, 3),
    ]
    stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.5)
379
    return _convnext(block_setting, stochastic_depth_prob, weights, progress, **kwargs)
380
381


382
383
384
385
@handle_legacy_interface(weights=("pretrained", ConvNeXt_Large_Weights.IMAGENET1K_V1))
def convnext_large(
    *, weights: Optional[ConvNeXt_Large_Weights] = None, progress: bool = True, **kwargs: Any
) -> ConvNeXt:
Hu Ye's avatar
Hu Ye committed
386
387
388
    """ConvNeXt Large model architecture from the
    `A ConvNet for the 2020s <https://arxiv.org/abs/2201.03545>`_ paper.

389
    Args:
Hu Ye's avatar
Hu Ye committed
390
391
392
393
394
395
396
397
398
        weights (:class:`~torchvision.models.convnext.ConvNeXt_Large_Weights`, optional): The pretrained
            weights to use. See :class:`~torchvision.models.convnext.ConvNeXt_Large_Weights`
            below for more details and possible values. By default, no pre-trained weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.convnext.ConvNext``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py>`_
            for more details about this class.

399
    .. autoclass:: torchvision.models.ConvNeXt_Large_Weights
Hu Ye's avatar
Hu Ye committed
400
        :members:
401
    """
402
403
    weights = ConvNeXt_Large_Weights.verify(weights)

404
405
406
407
408
409
410
    block_setting = [
        CNBlockConfig(192, 384, 3),
        CNBlockConfig(384, 768, 3),
        CNBlockConfig(768, 1536, 27),
        CNBlockConfig(1536, None, 3),
    ]
    stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.5)
411
    return _convnext(block_setting, stochastic_depth_prob, weights, progress, **kwargs)