convnext.py 9.56 KB
Newer Older
1
2
3
4
5
6
7
8
from functools import partial
from typing import Any, Callable, Dict, List, Optional, Sequence

import torch
from torch import nn, Tensor
from torch.nn import functional as F

from .._internally_replaced_utils import load_state_dict_from_url
9
from ..ops.misc import Conv2dNormActivation
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from ..ops.stochastic_depth import StochasticDepth
from ..utils import _log_api_usage_once


__all__ = [
    "ConvNeXt",
    "convnext_tiny",
    "convnext_small",
    "convnext_base",
    "convnext_large",
]


_MODELS_URLS: Dict[str, Optional[str]] = {
    "convnext_tiny": "https://download.pytorch.org/models/convnext_tiny-983f1562.pth",
    "convnext_small": "https://download.pytorch.org/models/convnext_small-0c510722.pth",
    "convnext_base": "https://download.pytorch.org/models/convnext_base-6075fbad.pth",
    "convnext_large": "https://download.pytorch.org/models/convnext_large-ea097f82.pth",
}


class LayerNorm2d(nn.LayerNorm):
    def forward(self, x: Tensor) -> Tensor:
        x = x.permute(0, 2, 3, 1)
        x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        x = x.permute(0, 3, 1, 2)
        return x


class Permute(nn.Module):
    def __init__(self, dims: List[int]):
        super().__init__()
        self.dims = dims

    def forward(self, x):
        return torch.permute(x, self.dims)


class CNBlock(nn.Module):
    def __init__(
        self,
        dim,
        layer_scale: float,
        stochastic_depth_prob: float,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super().__init__()
        if norm_layer is None:
            norm_layer = partial(nn.LayerNorm, eps=1e-6)

        self.block = nn.Sequential(
            nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim, bias=True),
            Permute([0, 2, 3, 1]),
            norm_layer(dim),
            nn.Linear(in_features=dim, out_features=4 * dim, bias=True),
            nn.GELU(),
            nn.Linear(in_features=4 * dim, out_features=dim, bias=True),
            Permute([0, 3, 1, 2]),
        )
        self.layer_scale = nn.Parameter(torch.ones(dim, 1, 1) * layer_scale)
        self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row")

    def forward(self, input: Tensor) -> Tensor:
        result = self.layer_scale * self.block(input)
        result = self.stochastic_depth(result)
        result += input
        return result


class CNBlockConfig:
    # Stores information listed at Section 3 of the ConvNeXt paper
    def __init__(
        self,
        input_channels: int,
        out_channels: Optional[int],
        num_layers: int,
    ) -> None:
        self.input_channels = input_channels
        self.out_channels = out_channels
        self.num_layers = num_layers

    def __repr__(self) -> str:
        s = self.__class__.__name__ + "("
        s += "input_channels={input_channels}"
        s += ", out_channels={out_channels}"
        s += ", num_layers={num_layers}"
        s += ")"
        return s.format(**self.__dict__)


class ConvNeXt(nn.Module):
    def __init__(
        self,
        block_setting: List[CNBlockConfig],
        stochastic_depth_prob: float = 0.0,
        layer_scale: float = 1e-6,
        num_classes: int = 1000,
        block: Optional[Callable[..., nn.Module]] = None,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
        **kwargs: Any,
    ) -> None:
        super().__init__()
        _log_api_usage_once(self)

        if not block_setting:
            raise ValueError("The block_setting should not be empty")
        elif not (isinstance(block_setting, Sequence) and all([isinstance(s, CNBlockConfig) for s in block_setting])):
            raise TypeError("The block_setting should be List[CNBlockConfig]")

        if block is None:
            block = CNBlock

        if norm_layer is None:
            norm_layer = partial(LayerNorm2d, eps=1e-6)

        layers: List[nn.Module] = []

        # Stem
        firstconv_output_channels = block_setting[0].input_channels
        layers.append(
130
            Conv2dNormActivation(
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
                3,
                firstconv_output_channels,
                kernel_size=4,
                stride=4,
                padding=0,
                norm_layer=norm_layer,
                activation_layer=None,
                bias=True,
            )
        )

        total_stage_blocks = sum(cnf.num_layers for cnf in block_setting)
        stage_block_id = 0
        for cnf in block_setting:
            # Bottlenecks
            stage: List[nn.Module] = []
            for _ in range(cnf.num_layers):
                # adjust stochastic depth probability based on the depth of the stage block
                sd_prob = stochastic_depth_prob * stage_block_id / (total_stage_blocks - 1.0)
                stage.append(block(cnf.input_channels, layer_scale, sd_prob))
                stage_block_id += 1
            layers.append(nn.Sequential(*stage))
            if cnf.out_channels is not None:
                # Downsampling
                layers.append(
                    nn.Sequential(
                        norm_layer(cnf.input_channels),
                        nn.Conv2d(cnf.input_channels, cnf.out_channels, kernel_size=2, stride=2),
                    )
                )

        self.features = nn.Sequential(*layers)
        self.avgpool = nn.AdaptiveAvgPool2d(1)

        lastblock = block_setting[-1]
        lastconv_output_channels = (
            lastblock.out_channels if lastblock.out_channels is not None else lastblock.input_channels
        )
        self.classifier = nn.Sequential(
            norm_layer(lastconv_output_channels), nn.Flatten(1), nn.Linear(lastconv_output_channels, num_classes)
        )

        for m in self.modules():
            if isinstance(m, (nn.Conv2d, nn.Linear)):
                nn.init.trunc_normal_(m.weight, std=0.02)
                if m.bias is not None:
                    nn.init.zeros_(m.bias)

    def _forward_impl(self, x: Tensor) -> Tensor:
        x = self.features(x)
        x = self.avgpool(x)
        x = self.classifier(x)
        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)


def _convnext(
    arch: str,
    block_setting: List[CNBlockConfig],
    stochastic_depth_prob: float,
    pretrained: bool,
    progress: bool,
    **kwargs: Any,
) -> ConvNeXt:
    model = ConvNeXt(block_setting, stochastic_depth_prob=stochastic_depth_prob, **kwargs)
    if pretrained:
        if arch not in _MODELS_URLS:
            raise ValueError(f"No checkpoint is available for model type {arch}")
        state_dict = load_state_dict_from_url(_MODELS_URLS[arch], progress=progress)
        model.load_state_dict(state_dict)
    return model


def convnext_tiny(*, pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ConvNeXt:
    r"""ConvNeXt Tiny model architecture from the
    `"A ConvNet for the 2020s" <https://arxiv.org/abs/2201.03545>`_ paper.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    block_setting = [
        CNBlockConfig(96, 192, 3),
        CNBlockConfig(192, 384, 3),
        CNBlockConfig(384, 768, 9),
        CNBlockConfig(768, None, 3),
    ]
    stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.1)
    return _convnext("convnext_tiny", block_setting, stochastic_depth_prob, pretrained, progress, **kwargs)


def convnext_small(*, pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ConvNeXt:
    r"""ConvNeXt Small model architecture from the
    `"A ConvNet for the 2020s" <https://arxiv.org/abs/2201.03545>`_ paper.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    block_setting = [
        CNBlockConfig(96, 192, 3),
        CNBlockConfig(192, 384, 3),
        CNBlockConfig(384, 768, 27),
        CNBlockConfig(768, None, 3),
    ]
    stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.4)
    return _convnext("convnext_small", block_setting, stochastic_depth_prob, pretrained, progress, **kwargs)


def convnext_base(*, pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ConvNeXt:
    r"""ConvNeXt Base model architecture from the
    `"A ConvNet for the 2020s" <https://arxiv.org/abs/2201.03545>`_ paper.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    block_setting = [
        CNBlockConfig(128, 256, 3),
        CNBlockConfig(256, 512, 3),
        CNBlockConfig(512, 1024, 27),
        CNBlockConfig(1024, None, 3),
    ]
    stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.5)
    return _convnext("convnext_base", block_setting, stochastic_depth_prob, pretrained, progress, **kwargs)


def convnext_large(*, pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ConvNeXt:
    r"""ConvNeXt Large model architecture from the
    `"A ConvNet for the 2020s" <https://arxiv.org/abs/2201.03545>`_ paper.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    block_setting = [
        CNBlockConfig(192, 384, 3),
        CNBlockConfig(384, 768, 3),
        CNBlockConfig(768, 1536, 27),
        CNBlockConfig(1536, None, 3),
    ]
    stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.5)
    return _convnext("convnext_large", block_setting, stochastic_depth_prob, pretrained, progress, **kwargs)