convnext.py 14.3 KB
Newer Older
1
from functools import partial
2
from typing import Any, Callable, List, Optional, Sequence
3
4
5
6
7

import torch
from torch import nn, Tensor
from torch.nn import functional as F

8
from ..ops.misc import Conv2dNormActivation
9
from ..ops.stochastic_depth import StochasticDepth
10
from ..transforms._presets import ImageClassification
11
from ..utils import _log_api_usage_once
12
13
14
from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES
from ._utils import handle_legacy_interface, _ovewrite_named_param
15
16
17
18


__all__ = [
    "ConvNeXt",
19
20
21
22
    "ConvNeXt_Tiny_Weights",
    "ConvNeXt_Small_Weights",
    "ConvNeXt_Base_Weights",
    "ConvNeXt_Large_Weights",
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    "convnext_tiny",
    "convnext_small",
    "convnext_base",
    "convnext_large",
]


class LayerNorm2d(nn.LayerNorm):
    def forward(self, x: Tensor) -> Tensor:
        x = x.permute(0, 2, 3, 1)
        x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        x = x.permute(0, 3, 1, 2)
        return x


class Permute(nn.Module):
    def __init__(self, dims: List[int]):
        super().__init__()
        self.dims = dims

    def forward(self, x):
        return torch.permute(x, self.dims)


class CNBlock(nn.Module):
    def __init__(
        self,
        dim,
        layer_scale: float,
        stochastic_depth_prob: float,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super().__init__()
        if norm_layer is None:
            norm_layer = partial(nn.LayerNorm, eps=1e-6)

        self.block = nn.Sequential(
            nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim, bias=True),
            Permute([0, 2, 3, 1]),
            norm_layer(dim),
            nn.Linear(in_features=dim, out_features=4 * dim, bias=True),
            nn.GELU(),
            nn.Linear(in_features=4 * dim, out_features=dim, bias=True),
            Permute([0, 3, 1, 2]),
        )
        self.layer_scale = nn.Parameter(torch.ones(dim, 1, 1) * layer_scale)
        self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row")

    def forward(self, input: Tensor) -> Tensor:
        result = self.layer_scale * self.block(input)
        result = self.stochastic_depth(result)
        result += input
        return result


class CNBlockConfig:
    # Stores information listed at Section 3 of the ConvNeXt paper
    def __init__(
        self,
        input_channels: int,
        out_channels: Optional[int],
        num_layers: int,
    ) -> None:
        self.input_channels = input_channels
        self.out_channels = out_channels
        self.num_layers = num_layers

    def __repr__(self) -> str:
        s = self.__class__.__name__ + "("
        s += "input_channels={input_channels}"
        s += ", out_channels={out_channels}"
        s += ", num_layers={num_layers}"
        s += ")"
        return s.format(**self.__dict__)


class ConvNeXt(nn.Module):
    def __init__(
        self,
        block_setting: List[CNBlockConfig],
        stochastic_depth_prob: float = 0.0,
        layer_scale: float = 1e-6,
        num_classes: int = 1000,
        block: Optional[Callable[..., nn.Module]] = None,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
        **kwargs: Any,
    ) -> None:
        super().__init__()
        _log_api_usage_once(self)

        if not block_setting:
            raise ValueError("The block_setting should not be empty")
        elif not (isinstance(block_setting, Sequence) and all([isinstance(s, CNBlockConfig) for s in block_setting])):
            raise TypeError("The block_setting should be List[CNBlockConfig]")

        if block is None:
            block = CNBlock

        if norm_layer is None:
            norm_layer = partial(LayerNorm2d, eps=1e-6)

        layers: List[nn.Module] = []

        # Stem
        firstconv_output_channels = block_setting[0].input_channels
        layers.append(
129
            Conv2dNormActivation(
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
                3,
                firstconv_output_channels,
                kernel_size=4,
                stride=4,
                padding=0,
                norm_layer=norm_layer,
                activation_layer=None,
                bias=True,
            )
        )

        total_stage_blocks = sum(cnf.num_layers for cnf in block_setting)
        stage_block_id = 0
        for cnf in block_setting:
            # Bottlenecks
            stage: List[nn.Module] = []
            for _ in range(cnf.num_layers):
                # adjust stochastic depth probability based on the depth of the stage block
                sd_prob = stochastic_depth_prob * stage_block_id / (total_stage_blocks - 1.0)
                stage.append(block(cnf.input_channels, layer_scale, sd_prob))
                stage_block_id += 1
            layers.append(nn.Sequential(*stage))
            if cnf.out_channels is not None:
                # Downsampling
                layers.append(
                    nn.Sequential(
                        norm_layer(cnf.input_channels),
                        nn.Conv2d(cnf.input_channels, cnf.out_channels, kernel_size=2, stride=2),
                    )
                )

        self.features = nn.Sequential(*layers)
        self.avgpool = nn.AdaptiveAvgPool2d(1)

        lastblock = block_setting[-1]
        lastconv_output_channels = (
            lastblock.out_channels if lastblock.out_channels is not None else lastblock.input_channels
        )
        self.classifier = nn.Sequential(
            norm_layer(lastconv_output_channels), nn.Flatten(1), nn.Linear(lastconv_output_channels, num_classes)
        )

        for m in self.modules():
            if isinstance(m, (nn.Conv2d, nn.Linear)):
                nn.init.trunc_normal_(m.weight, std=0.02)
                if m.bias is not None:
                    nn.init.zeros_(m.bias)

    def _forward_impl(self, x: Tensor) -> Tensor:
        x = self.features(x)
        x = self.avgpool(x)
        x = self.classifier(x)
        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)


def _convnext(
    block_setting: List[CNBlockConfig],
    stochastic_depth_prob: float,
191
    weights: Optional[WeightsEnum],
192
193
194
    progress: bool,
    **kwargs: Any,
) -> ConvNeXt:
195
196
197
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))

198
    model = ConvNeXt(block_setting, stochastic_depth_prob=stochastic_depth_prob, **kwargs)
199
200
201
202

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))

203
204
205
    return model


206
207
208
209
210
211
212
213
214
215
216
217
218
219
_COMMON_META = {
    "min_size": (32, 32),
    "categories": _IMAGENET_CATEGORIES,
    "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#convnext",
}


class ConvNeXt_Tiny_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/convnext_tiny-983f1562.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=236),
        meta={
            **_COMMON_META,
            "num_params": 28589128,
220
221
222
223
            "metrics": {
                "acc@1": 82.520,
                "acc@5": 96.146,
            },
224
225
226
227
228
229
230
231
232
233
234
235
        },
    )
    DEFAULT = IMAGENET1K_V1


class ConvNeXt_Small_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/convnext_small-0c510722.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=230),
        meta={
            **_COMMON_META,
            "num_params": 50223688,
236
237
238
239
            "metrics": {
                "acc@1": 83.616,
                "acc@5": 96.650,
            },
240
241
242
243
244
245
246
247
248
249
250
251
        },
    )
    DEFAULT = IMAGENET1K_V1


class ConvNeXt_Base_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/convnext_base-6075fbad.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 88591464,
252
253
254
255
            "metrics": {
                "acc@1": 84.062,
                "acc@5": 96.870,
            },
256
257
258
259
260
261
262
263
264
265
266
267
        },
    )
    DEFAULT = IMAGENET1K_V1


class ConvNeXt_Large_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/convnext_large-ea097f82.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 197767336,
268
269
270
271
            "metrics": {
                "acc@1": 84.414,
                "acc@5": 96.976,
            },
272
273
274
275
276
277
278
        },
    )
    DEFAULT = IMAGENET1K_V1


@handle_legacy_interface(weights=("pretrained", ConvNeXt_Tiny_Weights.IMAGENET1K_V1))
def convnext_tiny(*, weights: Optional[ConvNeXt_Tiny_Weights] = None, progress: bool = True, **kwargs: Any) -> ConvNeXt:
Hu Ye's avatar
Hu Ye committed
279
280
281
    """ConvNeXt Tiny model architecture from the
    `A ConvNet for the 2020s <https://arxiv.org/abs/2201.03545>`_ paper.

282
    Args:
Hu Ye's avatar
Hu Ye committed
283
284
285
286
287
288
289
290
291
292
293
        weights (:class:`~torchvision.models.convnext.ConvNeXt_Tiny_Weights`, optional): The pretrained
            weights to use. See :class:`~torchvision.models.convnext.ConvNeXt_Tiny_Weights`
            below for more details and possible values. By default, no pre-trained weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.convnext.ConvNext``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.convnext.ConvNeXt_Tiny_Weights
        :members:
294
    """
295
296
    weights = ConvNeXt_Tiny_Weights.verify(weights)

297
298
299
300
301
302
303
    block_setting = [
        CNBlockConfig(96, 192, 3),
        CNBlockConfig(192, 384, 3),
        CNBlockConfig(384, 768, 9),
        CNBlockConfig(768, None, 3),
    ]
    stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.1)
304
    return _convnext(block_setting, stochastic_depth_prob, weights, progress, **kwargs)
305
306


307
308
309
310
@handle_legacy_interface(weights=("pretrained", ConvNeXt_Small_Weights.IMAGENET1K_V1))
def convnext_small(
    *, weights: Optional[ConvNeXt_Small_Weights] = None, progress: bool = True, **kwargs: Any
) -> ConvNeXt:
Hu Ye's avatar
Hu Ye committed
311
312
313
    """ConvNeXt Small model architecture from the
    `A ConvNet for the 2020s <https://arxiv.org/abs/2201.03545>`_ paper.

314
    Args:
Hu Ye's avatar
Hu Ye committed
315
316
317
318
319
320
321
322
323
324
325
        weights (:class:`~torchvision.models.convnext.ConvNeXt_Small_Weights`, optional): The pretrained
            weights to use. See :class:`~torchvision.models.convnext.ConvNeXt_Small_Weights`
            below for more details and possible values. By default, no pre-trained weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.convnext.ConvNext``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.convnext.ConvNeXt_Small_Weights
        :members:
326
    """
327
328
    weights = ConvNeXt_Small_Weights.verify(weights)

329
330
331
332
333
334
335
    block_setting = [
        CNBlockConfig(96, 192, 3),
        CNBlockConfig(192, 384, 3),
        CNBlockConfig(384, 768, 27),
        CNBlockConfig(768, None, 3),
    ]
    stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.4)
336
    return _convnext(block_setting, stochastic_depth_prob, weights, progress, **kwargs)
337
338


339
340
@handle_legacy_interface(weights=("pretrained", ConvNeXt_Base_Weights.IMAGENET1K_V1))
def convnext_base(*, weights: Optional[ConvNeXt_Base_Weights] = None, progress: bool = True, **kwargs: Any) -> ConvNeXt:
Hu Ye's avatar
Hu Ye committed
341
342
343
    """ConvNeXt Base model architecture from the
    `A ConvNet for the 2020s <https://arxiv.org/abs/2201.03545>`_ paper.

344
    Args:
Hu Ye's avatar
Hu Ye committed
345
346
347
348
349
350
351
352
353
354
355
        weights (:class:`~torchvision.models.convnext.ConvNeXt_Base_Weights`, optional): The pretrained
            weights to use. See :class:`~torchvision.models.convnext.ConvNeXt_Base_Weights`
            below for more details and possible values. By default, no pre-trained weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.convnext.ConvNext``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.convnext.ConvNeXt_Base_Weights
        :members:
356
    """
357
358
    weights = ConvNeXt_Base_Weights.verify(weights)

359
360
361
362
363
364
365
    block_setting = [
        CNBlockConfig(128, 256, 3),
        CNBlockConfig(256, 512, 3),
        CNBlockConfig(512, 1024, 27),
        CNBlockConfig(1024, None, 3),
    ]
    stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.5)
366
    return _convnext(block_setting, stochastic_depth_prob, weights, progress, **kwargs)
367
368


369
370
371
372
@handle_legacy_interface(weights=("pretrained", ConvNeXt_Large_Weights.IMAGENET1K_V1))
def convnext_large(
    *, weights: Optional[ConvNeXt_Large_Weights] = None, progress: bool = True, **kwargs: Any
) -> ConvNeXt:
Hu Ye's avatar
Hu Ye committed
373
374
375
    """ConvNeXt Large model architecture from the
    `A ConvNet for the 2020s <https://arxiv.org/abs/2201.03545>`_ paper.

376
    Args:
Hu Ye's avatar
Hu Ye committed
377
378
379
380
381
382
383
384
385
386
387
        weights (:class:`~torchvision.models.convnext.ConvNeXt_Large_Weights`, optional): The pretrained
            weights to use. See :class:`~torchvision.models.convnext.ConvNeXt_Large_Weights`
            below for more details and possible values. By default, no pre-trained weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.convnext.ConvNext``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.convnext.ConvNeXt_Large_Weights
        :members:
388
    """
389
390
    weights = ConvNeXt_Large_Weights.verify(weights)

391
392
393
394
395
396
397
    block_setting = [
        CNBlockConfig(192, 384, 3),
        CNBlockConfig(384, 768, 3),
        CNBlockConfig(768, 1536, 27),
        CNBlockConfig(1536, None, 3),
    ]
    stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.5)
398
    return _convnext(block_setting, stochastic_depth_prob, weights, progress, **kwargs)