functional_tensor.py 32.9 KB
Newer Older
vfdev's avatar
vfdev committed
1
2
import warnings

3
import torch
4
from torch import Tensor
5
from torch.nn.functional import grid_sample, conv2d, interpolate, pad as torch_pad
6
7
from torch.jit.annotations import BroadcastingList2
from typing import Optional, Tuple, List
8
9


vfdev's avatar
vfdev committed
10
11
def _is_tensor_a_torch_image(x: Tensor) -> bool:
    return x.ndim >= 2
12
13


14
15
16
17
18
def _assert_image_tensor(img):
    if not _is_tensor_a_torch_image(img):
        raise TypeError("Tensor is not a torch image.")


vfdev's avatar
vfdev committed
19
def _get_image_size(img: Tensor) -> List[int]:
20
    # Returns (w, h) of tensor image
21
22
    _assert_image_tensor(img)
    return [img.shape[-1], img.shape[-2]]
vfdev's avatar
vfdev committed
23
24


25
26
27
28
29
30
def _get_image_num_channels(img: Tensor) -> int:
    if img.ndim == 2:
        return 1
    elif img.ndim > 2:
        return img.shape[-3]

31
    raise TypeError("Input ndim should be 2 or more. Got {}".format(img.ndim))
32
33


34
35
36
37
38
39
40
41
42
43
44
45
46
47
def _max_value(dtype: torch.dtype) -> float:
    # TODO: replace this method with torch.iinfo when it gets torchscript support.
    # https://github.com/pytorch/pytorch/issues/41492

    a = torch.tensor(2, dtype=dtype)
    signed = 1 if torch.tensor(0, dtype=dtype).is_signed() else 0
    bits = 1
    max_value = torch.tensor(-signed, dtype=torch.long)
    while True:
        next_value = a.pow(bits - signed).sub(1)
        if next_value > max_value:
            max_value = next_value
            bits *= 2
        else:
48
            break
49
50
51
    return max_value.item()


52
53
54
55
56
57
def _assert_channels(img: Tensor, permitted: List[int]) -> None:
    c = _get_image_num_channels(img)
    if c not in permitted:
        raise TypeError("Input image tensor permitted channel values are {}, but found {}".format(permitted, c))


58
59
60
61
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    if image.dtype == dtype:
        return image

62
    if image.is_floating_point():
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

        # TODO: replace with dtype.is_floating_point when torchscript supports it
        if torch.tensor(0, dtype=dtype).is_floating_point():
            return image.to(dtype)

        # float to int
        if (image.dtype == torch.float32 and dtype in (torch.int32, torch.int64)) or (
            image.dtype == torch.float64 and dtype == torch.int64
        ):
            msg = f"The cast from {image.dtype} to {dtype} cannot be performed safely."
            raise RuntimeError(msg)

        # https://github.com/pytorch/vision/pull/2078#issuecomment-612045321
        # For data in the range 0-1, (float * 255).to(uint) is only 255
        # when float is exactly 1.0.
        # `max + 1 - epsilon` provides more evenly distributed mapping of
        # ranges of floats to ints.
        eps = 1e-3
        max_val = _max_value(dtype)
        result = image.mul(max_val + 1.0 - eps)
        return result.to(dtype)
    else:
        input_max = _max_value(image.dtype)

        # int to float
        # TODO: replace with dtype.is_floating_point when torchscript supports it
        if torch.tensor(0, dtype=dtype).is_floating_point():
            image = image.to(dtype)
            return image / input_max

93
94
        output_max = _max_value(dtype)

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
        # int to int
        if input_max > output_max:
            # factor should be forced to int for torch jit script
            # otherwise factor is a float and image // factor can produce different results
            factor = int((input_max + 1) // (output_max + 1))
            image = image // factor
            return image.to(dtype)
        else:
            # factor should be forced to int for torch jit script
            # otherwise factor is a float and image * factor can produce different results
            factor = int((output_max + 1) // (input_max + 1))
            image = image.to(dtype)
            return image * factor


vfdev's avatar
vfdev committed
110
def vflip(img: Tensor) -> Tensor:
111
    _assert_image_tensor(img)
112

113
    return img.flip(-2)
114
115


vfdev's avatar
vfdev committed
116
def hflip(img: Tensor) -> Tensor:
117
    _assert_image_tensor(img)
118

119
    return img.flip(-1)
ekka's avatar
ekka committed
120
121


vfdev's avatar
vfdev committed
122
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
123
    _assert_image_tensor(img)
ekka's avatar
ekka committed
124
125

    return img[..., top:top + height, left:left + width]
126
127


128
129
130
def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
    if img.ndim < 3:
        raise TypeError("Input image tensor should have at least 3 dimensions, but found {}".format(img.ndim))
131
    _assert_channels(img, [3])
132
133
134
135
136
137
138
139
140
141
142
143

    if num_output_channels not in (1, 3):
        raise ValueError('num_output_channels should be either 1 or 3')

    r, g, b = img.unbind(dim=-3)
    # This implementation closely follows the TF one:
    # https://github.com/tensorflow/tensorflow/blob/v2.3.0/tensorflow/python/ops/image_ops_impl.py#L2105-L2138
    l_img = (0.2989 * r + 0.587 * g + 0.114 * b).to(img.dtype)
    l_img = l_img.unsqueeze(dim=-3)

    if num_output_channels == 3:
        return l_img.expand(img.shape)
144

145
    return l_img
146
147


vfdev's avatar
vfdev committed
148
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
149
150
151
    if brightness_factor < 0:
        raise ValueError('brightness_factor ({}) is not non-negative.'.format(brightness_factor))

152
    _assert_image_tensor(img)
153

154
155
    _assert_channels(img, [1, 3])

156
    return _blend(img, torch.zeros_like(img), brightness_factor)
157
158


vfdev's avatar
vfdev committed
159
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
160
161
162
    if contrast_factor < 0:
        raise ValueError('contrast_factor ({}) is not non-negative.'.format(contrast_factor))

163
    _assert_image_tensor(img)
164

165
166
    _assert_channels(img, [3])

167
168
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    mean = torch.mean(rgb_to_grayscale(img).to(dtype), dim=(-3, -2, -1), keepdim=True)
169
170
171
172

    return _blend(img, mean, contrast_factor)


173
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
174
    if not (-0.5 <= hue_factor <= 0.5):
175
176
        raise ValueError('hue_factor ({}) is not in [-0.5, 0.5].'.format(hue_factor))

177
    if not (isinstance(img, torch.Tensor)):
178
        raise TypeError('Input img should be Tensor image')
179

180
181
    _assert_image_tensor(img)

182
183
184
    _assert_channels(img, [1, 3])
    if _get_image_num_channels(img) == 1:  # Match PIL behaviour
        return img
185

186
187
188
189
190
    orig_dtype = img.dtype
    if img.dtype == torch.uint8:
        img = img.to(dtype=torch.float32) / 255.0

    img = _rgb2hsv(img)
191
    h, s, v = img.unbind(dim=-3)
192
    h = (h + hue_factor) % 1.0
193
    img = torch.stack((h, s, v), dim=-3)
194
195
196
197
198
199
200
201
    img_hue_adj = _hsv2rgb(img)

    if orig_dtype == torch.uint8:
        img_hue_adj = (img_hue_adj * 255.0).to(dtype=orig_dtype)

    return img_hue_adj


vfdev's avatar
vfdev committed
202
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
203
204
205
    if saturation_factor < 0:
        raise ValueError('saturation_factor ({}) is not non-negative.'.format(saturation_factor))

206
    _assert_image_tensor(img)
207

208
209
    _assert_channels(img, [3])

210
    return _blend(img, rgb_to_grayscale(img), saturation_factor)
211
212


213
214
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
    if not isinstance(img, torch.Tensor):
215
        raise TypeError('Input img should be a Tensor.')
216

217
218
    _assert_channels(img, [1, 3])

219
220
221
222
223
224
    if gamma < 0:
        raise ValueError('Gamma should be a non-negative real number')

    result = img
    dtype = img.dtype
    if not torch.is_floating_point(img):
225
        result = convert_image_dtype(result, torch.float32)
226
227
228

    result = (gain * result ** gamma).clamp(0, 1)

229
    result = convert_image_dtype(result, dtype)
230
231
232
    return result


vfdev's avatar
vfdev committed
233
def center_crop(img: Tensor, output_size: BroadcastingList2[int]) -> Tensor:
234
    """DEPRECATED
235
    """
236
237
238
239
240
    warnings.warn(
        "This method is deprecated and will be removed in future releases. "
        "Please, use ``F.center_crop`` instead."
    )

241
    _assert_image_tensor(img)
242
243
244

    _, image_width, image_height = img.size()
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
245
246
247
248
249
250
251
252
    # crop_top = int(round((image_height - crop_height) / 2.))
    # Result can be different between python func and scripted func
    # Temporary workaround:
    crop_top = int((image_height - crop_height + 1) * 0.5)
    # crop_left = int(round((image_width - crop_width) / 2.))
    # Result can be different between python func and scripted func
    # Temporary workaround:
    crop_left = int((image_width - crop_width + 1) * 0.5)
253
254
255
256

    return crop(img, crop_top, crop_left, crop_height, crop_width)


vfdev's avatar
vfdev committed
257
def five_crop(img: Tensor, size: BroadcastingList2[int]) -> List[Tensor]:
258
    """DEPRECATED
259
    """
260
261
262
263
264
    warnings.warn(
        "This method is deprecated and will be removed in future releases. "
        "Please, use ``F.five_crop`` instead."
    )

265
    _assert_image_tensor(img)
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

    assert len(size) == 2, "Please provide only two dimensions (h, w) for size."

    _, image_width, image_height = img.size()
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

    tl = crop(img, 0, 0, crop_width, crop_height)
    tr = crop(img, image_width - crop_width, 0, image_width, crop_height)
    bl = crop(img, 0, image_height - crop_height, crop_width, image_height)
    br = crop(img, image_width - crop_width, image_height - crop_height, image_width, image_height)
    center = center_crop(img, (crop_height, crop_width))

281
    return [tl, tr, bl, br, center]
282
283


vfdev's avatar
vfdev committed
284
def ten_crop(img: Tensor, size: BroadcastingList2[int], vertical_flip: bool = False) -> List[Tensor]:
285
    """DEPRECATED
286
    """
287
288
289
290
291
    warnings.warn(
        "This method is deprecated and will be removed in future releases. "
        "Please, use ``F.ten_crop`` instead."
    )

292
    _assert_image_tensor(img)
293
294
295
296
297
298
299
300
301
302
303
304
305
306

    assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)

    return first_five + second_five


vfdev's avatar
vfdev committed
307
def _blend(img1: Tensor, img2: Tensor, ratio: float) -> Tensor:
308
    ratio = float(ratio)
309
310
    bound = 1.0 if img1.is_floating_point() else 255.0
    return (ratio * img1 + (1.0 - ratio) * img2).clamp(0, bound).to(img1.dtype)
311
312
313


def _rgb2hsv(img):
314
    r, g, b = img.unbind(dim=-3)
315

316
317
    # Implementation is based on https://github.com/python-pillow/Pillow/blob/4174d4267616897df3746d315d5a2d0f82c656ee/
    # src/libImaging/Convert.c#L330
318
319
    maxc = torch.max(img, dim=-3).values
    minc = torch.min(img, dim=-3).values
320
321
322
323
324
325
326
327
328
329

    # The algorithm erases S and H channel where `maxc = minc`. This avoids NaN
    # from happening in the results, because
    #   + S channel has division by `maxc`, which is zero only if `maxc = minc`
    #   + H channel has division by `(maxc - minc)`.
    #
    # Instead of overwriting NaN afterwards, we just prevent it from occuring so
    # we don't need to deal with it in case we save the NaN in a buffer in
    # backprop, if it is ever supported, but it doesn't hurt to do so.
    eqc = maxc == minc
330
331

    cr = maxc - minc
332
    # Since `eqc => cr = 0`, replacing denominator with 1 when `eqc` is fine.
333
334
    ones = torch.ones_like(maxc)
    s = cr / torch.where(eqc, ones, maxc)
335
336
337
338
    # Note that `eqc => maxc = minc = r = g = b`. So the following calculation
    # of `h` would reduce to `bc - gc + 2 + rc - bc + 4 + rc - bc = 6` so it
    # would not matter what values `rc`, `gc`, and `bc` have here, and thus
    # replacing denominator with 1 when `eqc` is fine.
339
    cr_divisor = torch.where(eqc, ones, cr)
340
341
342
    rc = (maxc - r) / cr_divisor
    gc = (maxc - g) / cr_divisor
    bc = (maxc - b) / cr_divisor
343
344
345
346
347
348

    hr = (maxc == r) * (bc - gc)
    hg = ((maxc == g) & (maxc != r)) * (2.0 + rc - bc)
    hb = ((maxc != g) & (maxc != r)) * (4.0 + gc - rc)
    h = (hr + hg + hb)
    h = torch.fmod((h / 6.0 + 1.0), 1.0)
349
    return torch.stack((h, s, maxc), dim=-3)
350
351
352


def _hsv2rgb(img):
353
    h, s, v = img.unbind(dim=-3)
354
355
356
357
358
359
360
361
362
    i = torch.floor(h * 6.0)
    f = (h * 6.0) - i
    i = i.to(dtype=torch.int32)

    p = torch.clamp((v * (1.0 - s)), 0.0, 1.0)
    q = torch.clamp((v * (1.0 - s * f)), 0.0, 1.0)
    t = torch.clamp((v * (1.0 - s * (1.0 - f))), 0.0, 1.0)
    i = i % 6

363
    mask = i.unsqueeze(dim=-3) == torch.arange(6, device=i.device).view(-1, 1, 1)
364

365
366
367
368
    a1 = torch.stack((v, q, p, p, t, v), dim=-3)
    a2 = torch.stack((t, v, v, q, p, p), dim=-3)
    a3 = torch.stack((p, p, t, v, v, q), dim=-3)
    a4 = torch.stack((a1, a2, a3), dim=-4)
369

370
    return torch.einsum("...ijk, ...xijk -> ...xjk", mask.to(dtype=img.dtype), a4)
371
372


373
374
def _pad_symmetric(img: Tensor, padding: List[int]) -> Tensor:
    # padding is left, right, top, bottom
375
376
377
378
379
380
381

    # crop if needed
    if padding[0] < 0 or padding[1] < 0 or padding[2] < 0 or padding[3] < 0:
        crop_left, crop_right, crop_top, crop_bottom = [-min(x, 0) for x in padding]
        img = img[..., crop_top:img.shape[-2] - crop_bottom, crop_left:img.shape[-1] - crop_right]
        padding = [max(x, 0) for x in padding]

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
    in_sizes = img.size()

    x_indices = [i for i in range(in_sizes[-1])]  # [0, 1, 2, 3, ...]
    left_indices = [i for i in range(padding[0] - 1, -1, -1)]  # e.g. [3, 2, 1, 0]
    right_indices = [-(i + 1) for i in range(padding[1])]  # e.g. [-1, -2, -3]
    x_indices = torch.tensor(left_indices + x_indices + right_indices)

    y_indices = [i for i in range(in_sizes[-2])]
    top_indices = [i for i in range(padding[2] - 1, -1, -1)]
    bottom_indices = [-(i + 1) for i in range(padding[3])]
    y_indices = torch.tensor(top_indices + y_indices + bottom_indices)

    ndim = img.ndim
    if ndim == 3:
        return img[:, y_indices[:, None], x_indices[None, :]]
    elif ndim == 4:
        return img[:, :, y_indices[:, None], x_indices[None, :]]
    else:
        raise RuntimeError("Symmetric padding of N-D tensors are not supported yet")


403
def pad(img: Tensor, padding: List[int], fill: int = 0, padding_mode: str = "constant") -> Tensor:
404
    _assert_image_tensor(img)
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

    if not isinstance(padding, (int, tuple, list)):
        raise TypeError("Got inappropriate padding arg")
    if not isinstance(fill, (int, float)):
        raise TypeError("Got inappropriate fill arg")
    if not isinstance(padding_mode, str):
        raise TypeError("Got inappropriate padding_mode arg")

    if isinstance(padding, tuple):
        padding = list(padding)

    if isinstance(padding, list) and len(padding) not in [1, 2, 4]:
        raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
                         "{} element tuple".format(len(padding)))

420
421
    if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
        raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")
422
423
424

    if isinstance(padding, int):
        if torch.jit.is_scripting():
vfdev's avatar
vfdev committed
425
            # This maybe unreachable
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
            raise ValueError("padding can't be an int while torchscripting, set it as a list [value, ]")
        pad_left = pad_right = pad_top = pad_bottom = padding
    elif len(padding) == 1:
        pad_left = pad_right = pad_top = pad_bottom = padding[0]
    elif len(padding) == 2:
        pad_left = pad_right = padding[0]
        pad_top = pad_bottom = padding[1]
    else:
        pad_left = padding[0]
        pad_top = padding[1]
        pad_right = padding[2]
        pad_bottom = padding[3]

    p = [pad_left, pad_right, pad_top, pad_bottom]

441
442
443
    if padding_mode == "edge":
        # remap padding_mode str
        padding_mode = "replicate"
444
445
446
    elif padding_mode == "symmetric":
        # route to another implementation
        return _pad_symmetric(img, p)
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461

    need_squeeze = False
    if img.ndim < 4:
        img = img.unsqueeze(dim=0)
        need_squeeze = True

    out_dtype = img.dtype
    need_cast = False
    if (padding_mode != "constant") and img.dtype not in (torch.float32, torch.float64):
        # Here we temporary cast input tensor to float
        # until pytorch issue is resolved :
        # https://github.com/pytorch/pytorch/issues/40763
        need_cast = True
        img = img.to(torch.float32)

462
    img = torch_pad(img, p, mode=padding_mode, value=float(fill))
463
464
465
466
467
468
469

    if need_squeeze:
        img = img.squeeze(dim=0)

    if need_cast:
        img = img.to(out_dtype)

470
    return img
vfdev's avatar
vfdev committed
471
472


473
def resize(img: Tensor, size: List[int], interpolation: str = "bilinear", max_size: Optional[int] = None) -> Tensor:
474
    _assert_image_tensor(img)
vfdev's avatar
vfdev committed
475
476
477

    if not isinstance(size, (int, tuple, list)):
        raise TypeError("Got inappropriate size arg")
478
    if not isinstance(interpolation, str):
vfdev's avatar
vfdev committed
479
480
        raise TypeError("Got inappropriate interpolation arg")

481
    if interpolation not in ["nearest", "bilinear", "bicubic"]:
vfdev's avatar
vfdev committed
482
483
484
485
486
        raise ValueError("This interpolation mode is unsupported with Tensor input")

    if isinstance(size, tuple):
        size = list(size)

487
488
489
490
491
492
493
494
495
    if isinstance(size, list):
        if len(size) not in [1, 2]:
            raise ValueError("Size must be an int or a 1 or 2 element tuple/list, not a "
                             "{} element tuple/list".format(len(size)))
        if max_size is not None and len(size) != 1:
            raise ValueError(
                "max_size should only be passed if size specifies the length of the smaller edge, "
                "i.e. size should be an int or a sequence of length 1 in torchscript mode."
            )
vfdev's avatar
vfdev committed
496
497
498

    w, h = _get_image_size(img)

499
500
    if isinstance(size, int) or len(size) == 1:  # specified size only for the smallest edge
        short, long = (w, h) if w <= h else (h, w)
vfdev's avatar
vfdev committed
501

502
503
        if isinstance(size, int):
            requested_new_short = size
vfdev's avatar
vfdev committed
504
        else:
505
            requested_new_short = size[0]
vfdev's avatar
vfdev committed
506

507
        if short == requested_new_short:
508
            return img
vfdev's avatar
vfdev committed
509

510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
        new_short, new_long = requested_new_short, int(requested_new_short * long / short)

        if max_size is not None:
            if max_size <= requested_new_short:
                raise ValueError(
                    f"max_size = {max_size} must be strictly greater than the requested "
                    f"size for the smaller edge size = {size}"
                )
            if new_long > max_size:
                new_short, new_long = int(max_size * new_short / new_long), max_size

        new_w, new_h = (new_short, new_long) if w <= h else (new_long, new_short)

    else:  # specified both h and w
        new_w, new_h = size[1], size[0]

vfdev's avatar
vfdev committed
526
    img, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(img, [torch.float32, torch.float64])
vfdev's avatar
vfdev committed
527
528

    # Define align_corners to avoid warnings
529
    align_corners = False if interpolation in ["bilinear", "bicubic"] else None
vfdev's avatar
vfdev committed
530

531
    img = interpolate(img, size=[new_h, new_w], mode=interpolation, align_corners=align_corners)
vfdev's avatar
vfdev committed
532

533
    if interpolation == "bicubic" and out_dtype == torch.uint8:
vfdev's avatar
vfdev committed
534
        img = img.clamp(min=0, max=255)
vfdev's avatar
vfdev committed
535

vfdev's avatar
vfdev committed
536
    img = _cast_squeeze_out(img, need_cast=need_cast, need_squeeze=need_squeeze, out_dtype=out_dtype)
vfdev's avatar
vfdev committed
537
538

    return img
vfdev's avatar
vfdev committed
539
540


vfdev's avatar
vfdev committed
541
def _assert_grid_transform_inputs(
542
543
        img: Tensor,
        matrix: Optional[List[float]],
544
        interpolation: str,
545
        fill: Optional[List[float]],
546
        supported_interpolation_modes: List[str],
547
        coeffs: Optional[List[float]] = None,
vfdev's avatar
vfdev committed
548
):
549
550
551
552
553

    if not (isinstance(img, torch.Tensor)):
        raise TypeError("Input img should be Tensor")

    _assert_image_tensor(img)
vfdev's avatar
vfdev committed
554

555
    if matrix is not None and not isinstance(matrix, list):
556
        raise TypeError("Argument matrix should be a list")
vfdev's avatar
vfdev committed
557

558
    if matrix is not None and len(matrix) != 6:
vfdev's avatar
vfdev committed
559
        raise ValueError("Argument matrix should have 6 float values")
vfdev's avatar
vfdev committed
560

561
562
563
    if coeffs is not None and len(coeffs) != 8:
        raise ValueError("Argument coeffs should have 8 float values")

564
565
566
567
568
569
570
571
572
    if fill is not None and not isinstance(fill, (int, float, tuple, list)):
        warnings.warn("Argument fill should be either int, float, tuple or list")

    # Check fill
    num_channels = _get_image_num_channels(img)
    if isinstance(fill, (tuple, list)) and (len(fill) > 1 and len(fill) != num_channels):
        msg = ("The number of elements in 'fill' cannot broadcast to match the number of "
               "channels of the image ({} != {})")
        raise ValueError(msg.format(len(fill), num_channels))
vfdev's avatar
vfdev committed
573

574
575
    if interpolation not in supported_interpolation_modes:
        raise ValueError("Interpolation mode '{}' is unsupported with Tensor input".format(interpolation))
vfdev's avatar
vfdev committed
576
577


vfdev's avatar
vfdev committed
578
def _cast_squeeze_in(img: Tensor, req_dtypes: List[torch.dtype]) -> Tuple[Tensor, bool, bool, torch.dtype]:
vfdev's avatar
vfdev committed
579
    need_squeeze = False
580
    # make image NCHW
vfdev's avatar
vfdev committed
581
582
583
584
585
586
    if img.ndim < 4:
        img = img.unsqueeze(dim=0)
        need_squeeze = True

    out_dtype = img.dtype
    need_cast = False
vfdev's avatar
vfdev committed
587
    if out_dtype not in req_dtypes:
vfdev's avatar
vfdev committed
588
        need_cast = True
vfdev's avatar
vfdev committed
589
        req_dtype = req_dtypes[0]
590
591
        img = img.to(req_dtype)
    return img, need_cast, need_squeeze, out_dtype
vfdev's avatar
vfdev committed
592
593


594
def _cast_squeeze_out(img: Tensor, need_cast: bool, need_squeeze: bool, out_dtype: torch.dtype):
vfdev's avatar
vfdev committed
595
596
597
598
    if need_squeeze:
        img = img.squeeze(dim=0)

    if need_cast:
vfdev's avatar
vfdev committed
599
600
601
602
        if out_dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
            # it is better to round before cast
            img = torch.round(img)
        img = img.to(out_dtype)
vfdev's avatar
vfdev committed
603
604

    return img
vfdev's avatar
vfdev committed
605
606


607
def _apply_grid_transform(img: Tensor, grid: Tensor, mode: str, fill: Optional[List[float]]) -> Tensor:
608

vfdev's avatar
vfdev committed
609
    img, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(img, [grid.dtype, ])
610
611
612
613

    if img.shape[0] > 1:
        # Apply same grid to a batch of images
        grid = grid.expand(img.shape[0], grid.shape[1], grid.shape[2], grid.shape[3])
614
615
616
617
618
619

    # Append a dummy mask for customized fill colors, should be faster than grid_sample() twice
    if fill is not None:
        dummy = torch.ones((img.shape[0], 1, img.shape[2], img.shape[3]), dtype=img.dtype, device=img.device)
        img = torch.cat((img, dummy), dim=1)

620
621
    img = grid_sample(img, grid, mode=mode, padding_mode="zeros", align_corners=False)

622
623
624
625
626
627
628
629
630
631
632
633
634
    # Fill with required color
    if fill is not None:
        mask = img[:, -1:, :, :]  # N * 1 * H * W
        img = img[:, :-1, :, :]  # N * C * H * W
        mask = mask.expand_as(img)
        len_fill = len(fill) if isinstance(fill, (tuple, list)) else 1
        fill_img = torch.tensor(fill, dtype=img.dtype, device=img.device).view(1, len_fill, 1, 1).expand_as(img)
        if mode == 'nearest':
            mask = mask < 0.5
            img[mask] = fill_img[mask]
        else:  # 'bilinear'
            img = img * mask + (1.0 - mask) * fill_img

635
636
637
638
    img = _cast_squeeze_out(img, need_cast, need_squeeze, out_dtype)
    return img


639
640
641
642
643
644
645
646
647
648
def _gen_affine_grid(
        theta: Tensor, w: int, h: int, ow: int, oh: int,
) -> Tensor:
    # https://github.com/pytorch/pytorch/blob/74b65c32be68b15dc7c9e8bb62459efbfbde33d8/aten/src/ATen/native/
    # AffineGridGenerator.cpp#L18
    # Difference with AffineGridGenerator is that:
    # 1) we normalize grid values after applying theta
    # 2) we can normalize by other image size, such that it covers "extend" option like in PIL.Image.rotate

    d = 0.5
649
    base_grid = torch.empty(1, oh, ow, 3, dtype=theta.dtype, device=theta.device)
650
651
652
653
    x_grid = torch.linspace(-ow * 0.5 + d, ow * 0.5 + d - 1, steps=ow, device=theta.device)
    base_grid[..., 0].copy_(x_grid)
    y_grid = torch.linspace(-oh * 0.5 + d, oh * 0.5 + d - 1, steps=oh, device=theta.device).unsqueeze_(-1)
    base_grid[..., 1].copy_(y_grid)
654
655
    base_grid[..., 2].fill_(1)

656
657
    rescaled_theta = theta.transpose(1, 2) / torch.tensor([0.5 * w, 0.5 * h], dtype=theta.dtype, device=theta.device)
    output_grid = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta)
658
659
660
    return output_grid.view(1, oh, ow, 2)


vfdev's avatar
vfdev committed
661
def affine(
662
        img: Tensor, matrix: List[float], interpolation: str = "nearest", fill: Optional[List[float]] = None
vfdev's avatar
vfdev committed
663
) -> Tensor:
664
    _assert_grid_transform_inputs(img, matrix, interpolation, fill, ["nearest", "bilinear"])
vfdev's avatar
vfdev committed
665

666
667
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    theta = torch.tensor(matrix, dtype=dtype, device=img.device).reshape(1, 2, 3)
vfdev's avatar
vfdev committed
668
    shape = img.shape
669
    # grid will be generated on the same device as theta and img
670
    grid = _gen_affine_grid(theta, w=shape[-1], h=shape[-2], ow=shape[-1], oh=shape[-2])
671
    return _apply_grid_transform(img, grid, interpolation, fill=fill)
vfdev's avatar
vfdev committed
672
673


674
def _compute_output_size(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
vfdev's avatar
vfdev committed
675

676
677
678
    # Inspired of PIL implementation:
    # https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054

vfdev's avatar
vfdev committed
679
680
    # pts are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
    pts = torch.tensor([
681
682
683
684
        [-0.5 * w, -0.5 * h, 1.0],
        [-0.5 * w, 0.5 * h, 1.0],
        [0.5 * w, 0.5 * h, 1.0],
        [0.5 * w, -0.5 * h, 1.0],
vfdev's avatar
vfdev committed
685
    ])
686
    theta = torch.tensor(matrix, dtype=torch.float).reshape(1, 2, 3)
687
    new_pts = pts.view(1, 4, 3).bmm(theta.transpose(1, 2)).view(4, 2)
vfdev's avatar
vfdev committed
688
689
690
    min_vals, _ = new_pts.min(dim=0)
    max_vals, _ = new_pts.max(dim=0)

691
692
693
694
695
696
    # Truncate precision to 1e-4 to avoid ceil of Xe-15 to 1.0
    tol = 1e-4
    cmax = torch.ceil((max_vals / tol).trunc_() * tol)
    cmin = torch.floor((min_vals / tol).trunc_() * tol)
    size = cmax - cmin
    return int(size[0]), int(size[1])
vfdev's avatar
vfdev committed
697
698
699


def rotate(
700
    img: Tensor, matrix: List[float], interpolation: str = "nearest",
701
    expand: bool = False, fill: Optional[List[float]] = None
vfdev's avatar
vfdev committed
702
) -> Tensor:
703
    _assert_grid_transform_inputs(img, matrix, interpolation, fill, ["nearest", "bilinear"])
704
    w, h = img.shape[-1], img.shape[-2]
705
    ow, oh = _compute_output_size(matrix, w, h) if expand else (w, h)
706
707
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    theta = torch.tensor(matrix, dtype=dtype, device=img.device).reshape(1, 2, 3)
708
    # grid will be generated on the same device as theta and img
709
    grid = _gen_affine_grid(theta, w=w, h=h, ow=ow, oh=oh)
710
711

    return _apply_grid_transform(img, grid, interpolation, fill=fill)
712
713


714
def _perspective_grid(coeffs: List[float], ow: int, oh: int, dtype: torch.dtype, device: torch.device):
715
716
717
718
719
720
721
722
723
724
    # https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/
    # src/libImaging/Geometry.c#L394

    #
    # x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #
    theta1 = torch.tensor([[
        [coeffs[0], coeffs[1], coeffs[2]],
        [coeffs[3], coeffs[4], coeffs[5]]
725
    ]], dtype=dtype, device=device)
726
727
728
    theta2 = torch.tensor([[
        [coeffs[6], coeffs[7], 1.0],
        [coeffs[6], coeffs[7], 1.0]
729
    ]], dtype=dtype, device=device)
730
731

    d = 0.5
732
    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
733
734
735
736
    x_grid = torch.linspace(d, ow * 1.0 + d - 1.0, steps=ow, device=device)
    base_grid[..., 0].copy_(x_grid)
    y_grid = torch.linspace(d, oh * 1.0 + d - 1.0, steps=oh, device=device).unsqueeze_(-1)
    base_grid[..., 1].copy_(y_grid)
737
738
    base_grid[..., 2].fill_(1)

739
    rescaled_theta1 = theta1.transpose(1, 2) / torch.tensor([0.5 * ow, 0.5 * oh], dtype=dtype, device=device)
740
    output_grid1 = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta1)
741
742
743
744
745
746
747
    output_grid2 = base_grid.view(1, oh * ow, 3).bmm(theta2.transpose(1, 2))

    output_grid = output_grid1 / output_grid2 - 1.0
    return output_grid.view(1, oh, ow, 2)


def perspective(
748
    img: Tensor, perspective_coeffs: List[float], interpolation: str = "bilinear", fill: Optional[List[float]] = None
749
) -> Tensor:
750
751
752
753
    if not (isinstance(img, torch.Tensor)):
        raise TypeError('Input img should be Tensor.')

    _assert_image_tensor(img)
754
755
756
757

    _assert_grid_transform_inputs(
        img,
        matrix=None,
758
759
760
        interpolation=interpolation,
        fill=fill,
        supported_interpolation_modes=["nearest", "bilinear"],
761
762
763
764
        coeffs=perspective_coeffs
    )

    ow, oh = img.shape[-1], img.shape[-2]
765
766
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    grid = _perspective_grid(perspective_coeffs, ow=ow, oh=oh, dtype=dtype, device=img.device)
767
    return _apply_grid_transform(img, grid, interpolation, fill=fill)
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789


def _get_gaussian_kernel1d(kernel_size: int, sigma: float) -> Tensor:
    ksize_half = (kernel_size - 1) * 0.5

    x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)
    pdf = torch.exp(-0.5 * (x / sigma).pow(2))
    kernel1d = pdf / pdf.sum()

    return kernel1d


def _get_gaussian_kernel2d(
        kernel_size: List[int], sigma: List[float], dtype: torch.dtype, device: torch.device
) -> Tensor:
    kernel1d_x = _get_gaussian_kernel1d(kernel_size[0], sigma[0]).to(device, dtype=dtype)
    kernel1d_y = _get_gaussian_kernel1d(kernel_size[1], sigma[1]).to(device, dtype=dtype)
    kernel2d = torch.mm(kernel1d_y[:, None], kernel1d_x[None, :])
    return kernel2d


def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: List[float]) -> Tensor:
790
791
792
793
    if not (isinstance(img, torch.Tensor)):
        raise TypeError('img should be Tensor. Got {}'.format(type(img)))

    _assert_image_tensor(img)
794
795
796
797
798

    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    kernel = _get_gaussian_kernel2d(kernel_size, sigma, dtype=dtype, device=img.device)
    kernel = kernel.expand(img.shape[-3], 1, kernel.shape[0], kernel.shape[1])

vfdev's avatar
vfdev committed
799
    img, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(img, [kernel.dtype, ])
800
801
802
803
804
805
806
807

    # padding = (left, right, top, bottom)
    padding = [kernel_size[0] // 2, kernel_size[0] // 2, kernel_size[1] // 2, kernel_size[1] // 2]
    img = torch_pad(img, padding, mode="reflect")
    img = conv2d(img, kernel, groups=img.shape[-3])

    img = _cast_squeeze_out(img, need_cast, need_squeeze, out_dtype)
    return img
808
809
810


def invert(img: Tensor) -> Tensor:
811
812

    _assert_image_tensor(img)
813
814
815
816
817
818
819
820
821
822
823

    if img.ndim < 3:
        raise TypeError("Input image tensor should have at least 3 dimensions, but found {}".format(img.ndim))

    _assert_channels(img, [1, 3])

    bound = torch.tensor(1 if img.is_floating_point() else 255, dtype=img.dtype, device=img.device)
    return bound - img


def posterize(img: Tensor, bits: int) -> Tensor:
824
825

    _assert_image_tensor(img)
826
827
828
829
830
831
832
833
834
835
836
837

    if img.ndim < 3:
        raise TypeError("Input image tensor should have at least 3 dimensions, but found {}".format(img.ndim))
    if img.dtype != torch.uint8:
        raise TypeError("Only torch.uint8 image tensors are supported, but found {}".format(img.dtype))

    _assert_channels(img, [1, 3])
    mask = -int(2**(8 - bits))  # JIT-friendly for: ~(2 ** (8 - bits) - 1)
    return img & mask


def solarize(img: Tensor, threshold: float) -> Tensor:
838
839

    _assert_image_tensor(img)
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871

    if img.ndim < 3:
        raise TypeError("Input image tensor should have at least 3 dimensions, but found {}".format(img.ndim))

    _assert_channels(img, [1, 3])

    inverted_img = invert(img)
    return torch.where(img >= threshold, inverted_img, img)


def _blurred_degenerate_image(img: Tensor) -> Tensor:
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32

    kernel = torch.ones((3, 3), dtype=dtype, device=img.device)
    kernel[1, 1] = 5.0
    kernel /= kernel.sum()
    kernel = kernel.expand(img.shape[-3], 1, kernel.shape[0], kernel.shape[1])

    result_tmp, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(img, [kernel.dtype, ])
    result_tmp = conv2d(result_tmp, kernel, groups=result_tmp.shape[-3])
    result_tmp = _cast_squeeze_out(result_tmp, need_cast, need_squeeze, out_dtype)

    result = img.clone()
    result[..., 1:-1, 1:-1] = result_tmp

    return result


def adjust_sharpness(img: Tensor, sharpness_factor: float) -> Tensor:
    if sharpness_factor < 0:
        raise ValueError('sharpness_factor ({}) is not non-negative.'.format(sharpness_factor))

872
    _assert_image_tensor(img)
873
874
875
876
877
878
879
880
881
882

    _assert_channels(img, [1, 3])

    if img.size(-1) <= 2 or img.size(-2) <= 2:
        return img

    return _blend(img, _blurred_degenerate_image(img), sharpness_factor)


def autocontrast(img: Tensor) -> Tensor:
883
884

    _assert_image_tensor(img)
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922

    if img.ndim < 3:
        raise TypeError("Input image tensor should have at least 3 dimensions, but found {}".format(img.ndim))

    _assert_channels(img, [1, 3])

    bound = 1.0 if img.is_floating_point() else 255.0
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32

    minimum = img.amin(dim=(-2, -1), keepdim=True).to(dtype)
    maximum = img.amax(dim=(-2, -1), keepdim=True).to(dtype)
    eq_idxs = torch.where(minimum == maximum)[0]
    minimum[eq_idxs] = 0
    maximum[eq_idxs] = bound
    scale = bound / (maximum - minimum)

    return ((img - minimum) * scale).clamp(0, bound).to(img.dtype)


def _scale_channel(img_chan):
    hist = torch.histc(img_chan.to(torch.float32), bins=256, min=0, max=255)

    nonzero_hist = hist[hist != 0]
    step = nonzero_hist[:-1].sum() // 255
    if step == 0:
        return img_chan

    lut = (torch.cumsum(hist, 0) + (step // 2)) // step
    lut = torch.nn.functional.pad(lut, [1, 0])[:-1].clamp(0, 255)

    return lut[img_chan.to(torch.int64)].to(torch.uint8)


def _equalize_single_image(img: Tensor) -> Tensor:
    return torch.stack([_scale_channel(img[c]) for c in range(img.size(0))])


def equalize(img: Tensor) -> Tensor:
923
924

    _assert_image_tensor(img)
925
926
927
928
929
930
931
932
933
934
935
936

    if not (3 <= img.ndim <= 4):
        raise TypeError("Input image tensor should have 3 or 4 dimensions, but found {}".format(img.ndim))
    if img.dtype != torch.uint8:
        raise TypeError("Only torch.uint8 image tensors are supported, but found {}".format(img.dtype))

    _assert_channels(img, [1, 3])

    if img.ndim == 3:
        return _equalize_single_image(img)

    return torch.stack([_equalize_single_image(x) for x in img])