fakedata_generation.py 21.6 KB
Newer Older
1
2
3
import os
import contextlib
import tarfile
4
import json
5
6
7
8
import numpy as np
import PIL
import torch
from common_utils import get_tmp_dir
9
import pickle
10
11
12
import random
from itertools import cycle
from torchvision.io.video import write_video
Philip Meier's avatar
Philip Meier committed
13
14
import unittest.mock
import hashlib
Philip Meier's avatar
Philip Meier committed
15
from distutils import dir_util
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import re


def mock_class_attribute(stack, target, new):
    mock = unittest.mock.patch(target, new_callable=unittest.mock.PropertyMock, return_value=new)
    stack.enter_context(mock)
    return mock


def compute_md5(file):
    with open(file, "rb") as fh:
        return hashlib.md5(fh.read()).hexdigest()


def make_tar(root, name, *files, compression=None):
    ext = ".tar"
    mode = "w"
    if compression is not None:
        ext = f"{ext}.{compression}"
        mode = f"{mode}:{compression}"

    name = os.path.splitext(name)[0] + ext
    archive = os.path.join(root, name)

    with tarfile.open(archive, mode) as fh:
        for file in files:
            fh.add(os.path.join(root, file), arcname=file)

    return name, compute_md5(archive)


def clean_dir(root, *keep):
    pattern = re.compile(f"({f')|('.join(keep)})")
    for file_or_dir in os.listdir(root):
        if pattern.search(file_or_dir):
            continue

        file_or_dir = os.path.join(root, file_or_dir)
        if os.path.isfile(file_or_dir):
            os.remove(file_or_dir)
        else:
            dir_util.remove_tree(file_or_dir)
58
59
60
61
62
63
64
65


@contextlib.contextmanager
def mnist_root(num_images, cls_name):
    def _encode(v):
        return torch.tensor(v, dtype=torch.int32).numpy().tobytes()[::-1]

    def _make_image_file(filename, num_images):
66
        img = torch.randint(0, 256, size=(28 * 28 * num_images,), dtype=torch.uint8)
67
68
69
70
71
72
73
74
        with open(filename, "wb") as f:
            f.write(_encode(2051))  # magic header
            f.write(_encode(num_images))
            f.write(_encode(28))
            f.write(_encode(28))
            f.write(img.numpy().tobytes())

    def _make_label_file(filename, num_images):
75
        labels = torch.zeros((num_images,), dtype=torch.uint8)
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
        with open(filename, "wb") as f:
            f.write(_encode(2049))  # magic header
            f.write(_encode(num_images))
            f.write(labels.numpy().tobytes())

    with get_tmp_dir() as tmp_dir:
        raw_dir = os.path.join(tmp_dir, cls_name, "raw")
        os.makedirs(raw_dir)
        _make_image_file(os.path.join(raw_dir, "train-images-idx3-ubyte"), num_images)
        _make_label_file(os.path.join(raw_dir, "train-labels-idx1-ubyte"), num_images)
        _make_image_file(os.path.join(raw_dir, "t10k-images-idx3-ubyte"), num_images)
        _make_label_file(os.path.join(raw_dir, "t10k-labels-idx1-ubyte"), num_images)
        yield tmp_dir


@contextlib.contextmanager
def cifar_root(version):
    def _get_version_params(version):
        if version == 'CIFAR10':
            return {
                'base_folder': 'cifar-10-batches-py',
                'train_files': ['data_batch_{}'.format(batch) for batch in range(1, 6)],
                'test_file': 'test_batch',
                'target_key': 'labels',
                'meta_file': 'batches.meta',
                'classes_key': 'label_names',
            }
        elif version == 'CIFAR100':
            return {
                'base_folder': 'cifar-100-python',
                'train_files': ['train'],
                'test_file': 'test',
                'target_key': 'fine_labels',
                'meta_file': 'meta',
                'classes_key': 'fine_label_names',
            }
        else:
            raise ValueError

    def _make_pickled_file(obj, file):
        with open(file, 'wb') as fh:
            pickle.dump(obj, fh, 2)

    def _make_data_file(file, target_key):
        obj = {
            'data': np.zeros((1, 32 * 32 * 3), dtype=np.uint8),
            target_key: [0]
        }
        _make_pickled_file(obj, file)

    def _make_meta_file(file, classes_key):
        obj = {
            classes_key: ['fakedata'],
        }
        _make_pickled_file(obj, file)

    params = _get_version_params(version)
    with get_tmp_dir() as root:
        base_folder = os.path.join(root, params['base_folder'])
        os.mkdir(base_folder)

        for file in list(params['train_files']) + [params['test_file']]:
            _make_data_file(os.path.join(base_folder, file), params['target_key'])

        _make_meta_file(os.path.join(base_folder, params['meta_file']),
                        params['classes_key'])

        yield root


@contextlib.contextmanager
def imagenet_root():
    import scipy.io as sio

    WNID = 'n01234567'
    CLS = 'fakedata'

    def _make_image(file):
        PIL.Image.fromarray(np.zeros((32, 32, 3), dtype=np.uint8)).save(file)

    def _make_tar(archive, content, arcname=None, compress=False):
        mode = 'w:gz' if compress else 'w'
        if arcname is None:
            arcname = os.path.basename(content)
        with tarfile.open(archive, mode) as fh:
            fh.add(content, arcname=arcname)

    def _make_train_archive(root):
        with get_tmp_dir() as tmp:
            wnid_dir = os.path.join(tmp, WNID)
            os.mkdir(wnid_dir)

            _make_image(os.path.join(wnid_dir, WNID + '_1.JPEG'))

            wnid_archive = wnid_dir + '.tar'
            _make_tar(wnid_archive, wnid_dir)

            train_archive = os.path.join(root, 'ILSVRC2012_img_train.tar')
            _make_tar(train_archive, wnid_archive)

    def _make_val_archive(root):
        with get_tmp_dir() as tmp:
            val_image = os.path.join(tmp, 'ILSVRC2012_val_00000001.JPEG')
            _make_image(val_image)

            val_archive = os.path.join(root, 'ILSVRC2012_img_val.tar')
            _make_tar(val_archive, val_image)

    def _make_devkit_archive(root):
        with get_tmp_dir() as tmp:
            data_dir = os.path.join(tmp, 'data')
            os.mkdir(data_dir)

            meta_file = os.path.join(data_dir, 'meta.mat')
            synsets = np.core.records.fromarrays([
                (0.0, 1.0),
                (WNID, ''),
                (CLS, ''),
                ('fakedata for the torchvision testsuite', ''),
                (0.0, 1.0),
            ], names=['ILSVRC2012_ID', 'WNID', 'words', 'gloss', 'num_children'])
            sio.savemat(meta_file, {'synsets': synsets})

            groundtruth_file = os.path.join(data_dir,
                                            'ILSVRC2012_validation_ground_truth.txt')
            with open(groundtruth_file, 'w') as fh:
                fh.write('0\n')

            devkit_name = 'ILSVRC2012_devkit_t12'
            devkit_archive = os.path.join(root, devkit_name + '.tar.gz')
            _make_tar(devkit_archive, tmp, arcname=devkit_name, compress=True)

    with get_tmp_dir() as root:
        _make_train_archive(root)
        _make_val_archive(root)
        _make_devkit_archive(root)

        yield root
214
215


Josh Bradley's avatar
Josh Bradley committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
@contextlib.contextmanager
def widerface_root():
    """
    Generates a dataset with the following folder structure and returns the path root:
    <root>
        └── widerface
            ├── wider_face_split
            ├── WIDER_train
            ├── WIDER_val
            └── WIDER_test

    The dataset consist of
      1 image for each dataset split (train, val, test) and annotation files
      for each split
    """

    def _make_image(file):
        PIL.Image.fromarray(np.zeros((32, 32, 3), dtype=np.uint8)).save(file)

    def _make_train_archive(root):
        extracted_dir = os.path.join(root, 'WIDER_train', 'images', '0--Parade')
        os.makedirs(extracted_dir)
        _make_image(os.path.join(extracted_dir, '0_Parade_marchingband_1_1.jpg'))

    def _make_val_archive(root):
        extracted_dir = os.path.join(root, 'WIDER_val', 'images', '0--Parade')
        os.makedirs(extracted_dir)
        _make_image(os.path.join(extracted_dir, '0_Parade_marchingband_1_2.jpg'))

    def _make_test_archive(root):
        extracted_dir = os.path.join(root, 'WIDER_test', 'images', '0--Parade')
        os.makedirs(extracted_dir)
        _make_image(os.path.join(extracted_dir, '0_Parade_marchingband_1_3.jpg'))

    def _make_annotations_archive(root):
        train_bbox_contents = '0--Parade/0_Parade_marchingband_1_1.jpg\n1\n449 330 122 149 0 0 0 0 0 0\n'
        val_bbox_contents = '0--Parade/0_Parade_marchingband_1_2.jpg\n1\n501 160 285 443 0 0 0 0 0 0\n'
        test_filelist_contents = '0--Parade/0_Parade_marchingband_1_3.jpg\n'
        extracted_dir = os.path.join(root, 'wider_face_split')
        os.mkdir(extracted_dir)

        # bbox training file
        bbox_file = os.path.join(extracted_dir, "wider_face_train_bbx_gt.txt")
        with open(bbox_file, "w") as txt_file:
            txt_file.write(train_bbox_contents)

        # bbox validation file
        bbox_file = os.path.join(extracted_dir, "wider_face_val_bbx_gt.txt")
        with open(bbox_file, "w") as txt_file:
            txt_file.write(val_bbox_contents)

        # test filelist file
        filelist_file = os.path.join(extracted_dir, "wider_face_test_filelist.txt")
        with open(filelist_file, "w") as txt_file:
            txt_file.write(test_filelist_contents)

    with get_tmp_dir() as root:
        root_base = os.path.join(root, "widerface")
        os.mkdir(root_base)
        _make_train_archive(root_base)
        _make_val_archive(root_base)
        _make_test_archive(root_base)
        _make_annotations_archive(root_base)

        yield root


283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
@contextlib.contextmanager
def cityscapes_root():

    def _make_image(file):
        PIL.Image.fromarray(np.zeros((1024, 2048, 3), dtype=np.uint8)).save(file)

    def _make_regular_target(file):
        PIL.Image.fromarray(np.zeros((1024, 2048), dtype=np.uint8)).save(file)

    def _make_color_target(file):
        PIL.Image.fromarray(np.zeros((1024, 2048, 4), dtype=np.uint8)).save(file)

    def _make_polygon_target(file):
        polygon_example = {
            'imgHeight': 1024,
            'imgWidth': 2048,
            'objects': [{'label': 'sky',
                         'polygon': [[1241, 0], [1234, 156],
                                     [1478, 197], [1611, 172],
                                     [1606, 0]]},
                        {'label': 'road',
                         'polygon': [[0, 448], [1331, 274],
                                     [1473, 265], [2047, 605],
                                     [2047, 1023], [0, 1023]]}]}
        with open(file, 'w') as outfile:
            json.dump(polygon_example, outfile)

    with get_tmp_dir() as tmp_dir:

        for mode in ['Coarse', 'Fine']:
            gt_dir = os.path.join(tmp_dir, 'gt%s' % mode)
            os.makedirs(gt_dir)

            if mode == 'Coarse':
                splits = ['train', 'train_extra', 'val']
            else:
                splits = ['train', 'test', 'val']

            for split in splits:
                split_dir = os.path.join(gt_dir, split)
                os.makedirs(split_dir)
                for city in ['bochum', 'bremen']:
                    city_dir = os.path.join(split_dir, city)
                    os.makedirs(city_dir)
                    _make_color_target(os.path.join(city_dir,
                                                    '{city}_000000_000000_gt{mode}_color.png'.format(
                                                        city=city, mode=mode)))
                    _make_regular_target(os.path.join(city_dir,
                                                      '{city}_000000_000000_gt{mode}_instanceIds.png'.format(
                                                          city=city, mode=mode)))
                    _make_regular_target(os.path.join(city_dir,
                                                      '{city}_000000_000000_gt{mode}_labelIds.png'.format(
                                                          city=city, mode=mode)))
                    _make_polygon_target(os.path.join(city_dir,
                                                      '{city}_000000_000000_gt{mode}_polygons.json'.format(
                                                          city=city, mode=mode)))

        # leftImg8bit dataset
        leftimg_dir = os.path.join(tmp_dir, 'leftImg8bit')
        os.makedirs(leftimg_dir)
        for split in ['test', 'train_extra', 'train', 'val']:
            split_dir = os.path.join(leftimg_dir, split)
            os.makedirs(split_dir)
            for city in ['bochum', 'bremen']:
                city_dir = os.path.join(split_dir, city)
                os.makedirs(city_dir)
                _make_image(os.path.join(city_dir,
                                         '{city}_000000_000000_leftImg8bit.png'.format(city=city)))

        yield tmp_dir
Philip Meier's avatar
Philip Meier committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369


@contextlib.contextmanager
def svhn_root():
    import scipy.io as sio

    def _make_mat(file):
        images = np.zeros((32, 32, 3, 2), dtype=np.uint8)
        targets = np.zeros((2,), dtype=np.uint8)
        sio.savemat(file, {'X': images, 'y': targets})

    with get_tmp_dir() as root:
        _make_mat(os.path.join(root, "train_32x32.mat"))
        _make_mat(os.path.join(root, "test_32x32.mat"))
        _make_mat(os.path.join(root, "extra_32x32.mat"))

        yield root
370

371

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
@contextlib.contextmanager
def ucf101_root():
    with get_tmp_dir() as tmp_dir:
        ucf_dir = os.path.join(tmp_dir, 'UCF-101')
        video_dir = os.path.join(ucf_dir, 'video')
        annotations = os.path.join(ucf_dir, 'annotations')

        os.makedirs(ucf_dir)
        os.makedirs(video_dir)
        os.makedirs(annotations)

        fold_files = []
        for split in {'train', 'test'}:
            for fold in range(1, 4):
                fold_file = '{:s}list{:02d}.txt'.format(split, fold)
                fold_files.append(os.path.join(annotations, fold_file))

        file_handles = [open(x, 'w') for x in fold_files]
        file_iter = cycle(file_handles)

        for i in range(0, 2):
            current_class = 'class_{0}'.format(i + 1)
            class_dir = os.path.join(video_dir, current_class)
            os.makedirs(class_dir)
            for group in range(0, 3):
                for clip in range(0, 4):
                    # Save sample file
                    clip_name = 'v_{0}_g{1}_c{2}.avi'.format(
                        current_class, group, clip)
                    clip_path = os.path.join(class_dir, clip_name)
                    length = random.randrange(10, 21)
                    this_clip = torch.randint(
                        0, 256, (length * 25, 320, 240, 3), dtype=torch.uint8)
                    write_video(clip_path, this_clip, 25)
                    # Add to annotations
                    ann_file = next(file_iter)
                    ann_file.write('{0}\n'.format(
                        os.path.join(current_class, clip_name)))
        # Close all file descriptors
        for f in file_handles:
            f.close()
        yield (video_dir, annotations)
Philip Meier's avatar
Philip Meier committed
414
415
416


@contextlib.contextmanager
417
def places365_root(split="train-standard", small=False):
Philip Meier's avatar
Philip Meier committed
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
    VARIANTS = {
        "train-standard": "standard",
        "train-challenge": "challenge",
        "val": "standard",
    }
    # {split: file}
    DEVKITS = {
        "train-standard": "filelist_places365-standard.tar",
        "train-challenge": "filelist_places365-challenge.tar",
        "val": "filelist_places365-standard.tar",
    }
    CATEGORIES = "categories_places365.txt"
    # {split: file}
    FILE_LISTS = {
        "train-standard": "places365_train_standard.txt",
        "train-challenge": "places365_train_challenge.txt",
        "val": "places365_train_standard.txt",
    }
    # {(split, small): (archive, folder_default, folder_renamed)}
    IMAGES = {
        ("train-standard", False): ("train_large_places365standard.tar", "data_large", "data_large_standard"),
        ("train-challenge", False): ("train_large_places365challenge.tar", "data_large", "data_large_challenge"),
        ("val", False): ("val_large.tar", "val_large", "val_large"),
        ("train-standard", True): ("train_256_places365standard.tar", "data_256", "data_256_standard"),
        ("train-challenge", True): ("train_256_places365challenge.tar", "data_256", "data_256_challenge"),
        ("val", True): ("val_256.tar", "val_256", "val_256"),
    }

    # (class, idx)
    CATEGORIES_CONTENT = (("/a/airfield", 0), ("/a/apartment_building/outdoor", 8), ("/b/badlands", 30))
    # (file, idx)
    FILE_LIST_CONTENT = (
        ("Places365_val_00000001.png", 0),
        *((f"{category}/Places365_train_00000001.png", idx) for category, idx in CATEGORIES_CONTENT),
    )

    def mock_target(attr, partial="torchvision.datasets.places365.Places365"):
        return f"{partial}.{attr}"

    def make_txt(root, name, seq):
Philip Meier's avatar
Philip Meier committed
458
459
        file = os.path.join(root, name)
        with open(file, "w") as fh:
Philip Meier's avatar
Philip Meier committed
460
461
            for string, idx in seq:
                fh.write(f"{string} {idx}\n")
Philip Meier's avatar
Philip Meier committed
462
463
464
        return name, compute_md5(file)

    def make_categories_txt(root, name):
Philip Meier's avatar
Philip Meier committed
465
        return make_txt(root, name, CATEGORIES_CONTENT)
Philip Meier's avatar
Philip Meier committed
466
467

    def make_file_list_txt(root, name):
Philip Meier's avatar
Philip Meier committed
468
        return make_txt(root, name, FILE_LIST_CONTENT)
Philip Meier's avatar
Philip Meier committed
469

Philip Meier's avatar
Philip Meier committed
470
471
472
    def make_image(file, size):
        os.makedirs(os.path.dirname(file), exist_ok=True)
        PIL.Image.fromarray(np.zeros((*size, 3), dtype=np.uint8)).save(file)
Philip Meier's avatar
Philip Meier committed
473
474

    def make_devkit_archive(stack, root, split):
Philip Meier's avatar
Philip Meier committed
475
        archive = DEVKITS[split]
Philip Meier's avatar
Philip Meier committed
476
477
        files = []

Philip Meier's avatar
Philip Meier committed
478
        meta = make_categories_txt(root, CATEGORIES)
479
        mock_class_attribute(stack, mock_target("_CATEGORIES_META"), meta)
Philip Meier's avatar
Philip Meier committed
480
481
        files.append(meta[0])

Philip Meier's avatar
Philip Meier committed
482
        meta = {split: make_file_list_txt(root, FILE_LISTS[split])}
483
        mock_class_attribute(stack, mock_target("_FILE_LIST_META"), meta)
Philip Meier's avatar
Philip Meier committed
484
485
        files.extend([item[0] for item in meta.values()])

Philip Meier's avatar
Philip Meier committed
486
        meta = {VARIANTS[split]: make_tar(root, archive, *files)}
487
        mock_class_attribute(stack, mock_target("_DEVKIT_META"), meta)
Philip Meier's avatar
Philip Meier committed
488
489

    def make_images_archive(stack, root, split, small):
Philip Meier's avatar
Philip Meier committed
490
        archive, folder_default, folder_renamed = IMAGES[(split, small)]
Philip Meier's avatar
Philip Meier committed
491

Philip Meier's avatar
Philip Meier committed
492
493
494
495
496
        image_size = (256, 256) if small else (512, random.randint(512, 1024))
        files, idcs = zip(*FILE_LIST_CONTENT)
        images = [file.lstrip("/").replace("/", os.sep) for file in files]
        for image in images:
            make_image(os.path.join(root, folder_default, image), image_size)
Philip Meier's avatar
Philip Meier committed
497

Philip Meier's avatar
Philip Meier committed
498
        meta = {(split, small): make_tar(root, archive, folder_default)}
499
        mock_class_attribute(stack, mock_target("_IMAGES_META"), meta)
Philip Meier's avatar
Philip Meier committed
500

Philip Meier's avatar
Philip Meier committed
501
        return [(os.path.join(root, folder_renamed, image), idx) for image, idx in zip(images, idcs)]
Philip Meier's avatar
Philip Meier committed
502

Philip Meier's avatar
Philip Meier committed
503
504
505
506
    with contextlib.ExitStack() as stack, get_tmp_dir() as root:
        make_devkit_archive(stack, root, split)
        class_to_idx = dict(CATEGORIES_CONTENT)
        classes = list(class_to_idx.keys())
507

Philip Meier's avatar
Philip Meier committed
508
        data = {"class_to_idx": class_to_idx, "classes": classes}
509
        data["imgs"] = make_images_archive(stack, root, split, small)
Philip Meier's avatar
Philip Meier committed
510

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
        clean_dir(root, ".tar$")

        yield root, data


@contextlib.contextmanager
def stl10_root(_extracted=False):
    CLASS_NAMES = ("airplane", "bird")
    ARCHIVE_NAME = "stl10_binary"
    NUM_FOLDS = 10

    def mock_target(attr, partial="torchvision.datasets.stl10.STL10"):
        return f"{partial}.{attr}"

    def make_binary_file(num_elements, root, name):
        file = os.path.join(root, name)
        np.zeros(num_elements, dtype=np.uint8).tofile(file)
        return name, compute_md5(file)

    def make_image_file(num_images, root, name, num_channels=3, height=96, width=96):
        return make_binary_file(num_images * num_channels * height * width, root, name)

    def make_label_file(num_images, root, name):
        return make_binary_file(num_images, root, name)

    def make_class_names_file(root, name="class_names.txt"):
        with open(os.path.join(root, name), "w") as fh:
            for name in CLASS_NAMES:
                fh.write(f"{name}\n")

    def make_fold_indices_file(root):
        offset = 0
        with open(os.path.join(root, "fold_indices.txt"), "w") as fh:
            for fold in range(NUM_FOLDS):
                line = " ".join([str(idx) for idx in range(offset, offset + fold + 1)])
                fh.write(f"{line}\n")
                offset += fold + 1

        return tuple(range(1, NUM_FOLDS + 1))

    def make_train_files(stack, root, num_unlabeled_images=1):
        num_images_in_fold = make_fold_indices_file(root)
        num_train_images = sum(num_images_in_fold)

        train_list = [
            list(make_image_file(num_train_images, root, "train_X.bin")),
            list(make_label_file(num_train_images, root, "train_y.bin")),
            list(make_image_file(1, root, "unlabeled_X.bin"))
        ]
        mock_class_attribute(stack, target=mock_target("train_list"), new=train_list)

        return num_images_in_fold, dict(train=num_train_images, unlabeled=num_unlabeled_images)

    def make_test_files(stack, root, num_images=2):
        test_list = [
            list(make_image_file(num_images, root, "test_X.bin")),
            list(make_label_file(num_images, root, "test_y.bin")),
        ]
        mock_class_attribute(stack, target=mock_target("test_list"), new=test_list)

        return dict(test=num_images)

    def make_archive(stack, root, name):
        archive, md5 = make_tar(root, name, name, compression="gz")
        mock_class_attribute(stack, target=mock_target("tgz_md5"), new=md5)
        return archive

    with contextlib.ExitStack() as stack, get_tmp_dir() as root:
        archive_folder = os.path.join(root, ARCHIVE_NAME)
        os.mkdir(archive_folder)

        num_images_in_folds, num_images_in_split = make_train_files(stack, archive_folder)
        num_images_in_split.update(make_test_files(stack, archive_folder))

        make_class_names_file(archive_folder)

        archive = make_archive(stack, root, ARCHIVE_NAME)

        dir_util.remove_tree(archive_folder)
        data = dict(num_images_in_folds=num_images_in_folds, num_images_in_split=num_images_in_split, archive=archive)
Philip Meier's avatar
Philip Meier committed
591

Philip Meier's avatar
Philip Meier committed
592
        yield root, data