fakedata_generation.py 18.9 KB
Newer Older
1
2
3
import os
import contextlib
import tarfile
4
import json
5
6
7
8
import numpy as np
import PIL
import torch
from common_utils import get_tmp_dir
9
import pickle
10
11
12
import random
from itertools import cycle
from torchvision.io.video import write_video
Philip Meier's avatar
Philip Meier committed
13
14
import unittest.mock
import hashlib
Philip Meier's avatar
Philip Meier committed
15
from distutils import dir_util
16
17
18
19
20
21
22
23


@contextlib.contextmanager
def mnist_root(num_images, cls_name):
    def _encode(v):
        return torch.tensor(v, dtype=torch.int32).numpy().tobytes()[::-1]

    def _make_image_file(filename, num_images):
24
        img = torch.randint(0, 256, size=(28 * 28 * num_images,), dtype=torch.uint8)
25
26
27
28
29
30
31
32
        with open(filename, "wb") as f:
            f.write(_encode(2051))  # magic header
            f.write(_encode(num_images))
            f.write(_encode(28))
            f.write(_encode(28))
            f.write(img.numpy().tobytes())

    def _make_label_file(filename, num_images):
33
        labels = torch.zeros((num_images,), dtype=torch.uint8)
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
        with open(filename, "wb") as f:
            f.write(_encode(2049))  # magic header
            f.write(_encode(num_images))
            f.write(labels.numpy().tobytes())

    with get_tmp_dir() as tmp_dir:
        raw_dir = os.path.join(tmp_dir, cls_name, "raw")
        os.makedirs(raw_dir)
        _make_image_file(os.path.join(raw_dir, "train-images-idx3-ubyte"), num_images)
        _make_label_file(os.path.join(raw_dir, "train-labels-idx1-ubyte"), num_images)
        _make_image_file(os.path.join(raw_dir, "t10k-images-idx3-ubyte"), num_images)
        _make_label_file(os.path.join(raw_dir, "t10k-labels-idx1-ubyte"), num_images)
        yield tmp_dir


@contextlib.contextmanager
def cifar_root(version):
    def _get_version_params(version):
        if version == 'CIFAR10':
            return {
                'base_folder': 'cifar-10-batches-py',
                'train_files': ['data_batch_{}'.format(batch) for batch in range(1, 6)],
                'test_file': 'test_batch',
                'target_key': 'labels',
                'meta_file': 'batches.meta',
                'classes_key': 'label_names',
            }
        elif version == 'CIFAR100':
            return {
                'base_folder': 'cifar-100-python',
                'train_files': ['train'],
                'test_file': 'test',
                'target_key': 'fine_labels',
                'meta_file': 'meta',
                'classes_key': 'fine_label_names',
            }
        else:
            raise ValueError

    def _make_pickled_file(obj, file):
        with open(file, 'wb') as fh:
            pickle.dump(obj, fh, 2)

    def _make_data_file(file, target_key):
        obj = {
            'data': np.zeros((1, 32 * 32 * 3), dtype=np.uint8),
            target_key: [0]
        }
        _make_pickled_file(obj, file)

    def _make_meta_file(file, classes_key):
        obj = {
            classes_key: ['fakedata'],
        }
        _make_pickled_file(obj, file)

    params = _get_version_params(version)
    with get_tmp_dir() as root:
        base_folder = os.path.join(root, params['base_folder'])
        os.mkdir(base_folder)

        for file in list(params['train_files']) + [params['test_file']]:
            _make_data_file(os.path.join(base_folder, file), params['target_key'])

        _make_meta_file(os.path.join(base_folder, params['meta_file']),
                        params['classes_key'])

        yield root


@contextlib.contextmanager
def imagenet_root():
    import scipy.io as sio

    WNID = 'n01234567'
    CLS = 'fakedata'

    def _make_image(file):
        PIL.Image.fromarray(np.zeros((32, 32, 3), dtype=np.uint8)).save(file)

    def _make_tar(archive, content, arcname=None, compress=False):
        mode = 'w:gz' if compress else 'w'
        if arcname is None:
            arcname = os.path.basename(content)
        with tarfile.open(archive, mode) as fh:
            fh.add(content, arcname=arcname)

    def _make_train_archive(root):
        with get_tmp_dir() as tmp:
            wnid_dir = os.path.join(tmp, WNID)
            os.mkdir(wnid_dir)

            _make_image(os.path.join(wnid_dir, WNID + '_1.JPEG'))

            wnid_archive = wnid_dir + '.tar'
            _make_tar(wnid_archive, wnid_dir)

            train_archive = os.path.join(root, 'ILSVRC2012_img_train.tar')
            _make_tar(train_archive, wnid_archive)

    def _make_val_archive(root):
        with get_tmp_dir() as tmp:
            val_image = os.path.join(tmp, 'ILSVRC2012_val_00000001.JPEG')
            _make_image(val_image)

            val_archive = os.path.join(root, 'ILSVRC2012_img_val.tar')
            _make_tar(val_archive, val_image)

    def _make_devkit_archive(root):
        with get_tmp_dir() as tmp:
            data_dir = os.path.join(tmp, 'data')
            os.mkdir(data_dir)

            meta_file = os.path.join(data_dir, 'meta.mat')
            synsets = np.core.records.fromarrays([
                (0.0, 1.0),
                (WNID, ''),
                (CLS, ''),
                ('fakedata for the torchvision testsuite', ''),
                (0.0, 1.0),
            ], names=['ILSVRC2012_ID', 'WNID', 'words', 'gloss', 'num_children'])
            sio.savemat(meta_file, {'synsets': synsets})

            groundtruth_file = os.path.join(data_dir,
                                            'ILSVRC2012_validation_ground_truth.txt')
            with open(groundtruth_file, 'w') as fh:
                fh.write('0\n')

            devkit_name = 'ILSVRC2012_devkit_t12'
            devkit_archive = os.path.join(root, devkit_name + '.tar.gz')
            _make_tar(devkit_archive, tmp, arcname=devkit_name, compress=True)

    with get_tmp_dir() as root:
        _make_train_archive(root)
        _make_val_archive(root)
        _make_devkit_archive(root)

        yield root
172
173


Josh Bradley's avatar
Josh Bradley committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
@contextlib.contextmanager
def widerface_root():
    """
    Generates a dataset with the following folder structure and returns the path root:
    <root>
        └── widerface
            ├── wider_face_split
            ├── WIDER_train
            ├── WIDER_val
            └── WIDER_test

    The dataset consist of
      1 image for each dataset split (train, val, test) and annotation files
      for each split
    """

    def _make_image(file):
        PIL.Image.fromarray(np.zeros((32, 32, 3), dtype=np.uint8)).save(file)

    def _make_train_archive(root):
        extracted_dir = os.path.join(root, 'WIDER_train', 'images', '0--Parade')
        os.makedirs(extracted_dir)
        _make_image(os.path.join(extracted_dir, '0_Parade_marchingband_1_1.jpg'))

    def _make_val_archive(root):
        extracted_dir = os.path.join(root, 'WIDER_val', 'images', '0--Parade')
        os.makedirs(extracted_dir)
        _make_image(os.path.join(extracted_dir, '0_Parade_marchingband_1_2.jpg'))

    def _make_test_archive(root):
        extracted_dir = os.path.join(root, 'WIDER_test', 'images', '0--Parade')
        os.makedirs(extracted_dir)
        _make_image(os.path.join(extracted_dir, '0_Parade_marchingband_1_3.jpg'))

    def _make_annotations_archive(root):
        train_bbox_contents = '0--Parade/0_Parade_marchingband_1_1.jpg\n1\n449 330 122 149 0 0 0 0 0 0\n'
        val_bbox_contents = '0--Parade/0_Parade_marchingband_1_2.jpg\n1\n501 160 285 443 0 0 0 0 0 0\n'
        test_filelist_contents = '0--Parade/0_Parade_marchingband_1_3.jpg\n'
        extracted_dir = os.path.join(root, 'wider_face_split')
        os.mkdir(extracted_dir)

        # bbox training file
        bbox_file = os.path.join(extracted_dir, "wider_face_train_bbx_gt.txt")
        with open(bbox_file, "w") as txt_file:
            txt_file.write(train_bbox_contents)

        # bbox validation file
        bbox_file = os.path.join(extracted_dir, "wider_face_val_bbx_gt.txt")
        with open(bbox_file, "w") as txt_file:
            txt_file.write(val_bbox_contents)

        # test filelist file
        filelist_file = os.path.join(extracted_dir, "wider_face_test_filelist.txt")
        with open(filelist_file, "w") as txt_file:
            txt_file.write(test_filelist_contents)

    with get_tmp_dir() as root:
        root_base = os.path.join(root, "widerface")
        os.mkdir(root_base)
        _make_train_archive(root_base)
        _make_val_archive(root_base)
        _make_test_archive(root_base)
        _make_annotations_archive(root_base)

        yield root


241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
@contextlib.contextmanager
def cityscapes_root():

    def _make_image(file):
        PIL.Image.fromarray(np.zeros((1024, 2048, 3), dtype=np.uint8)).save(file)

    def _make_regular_target(file):
        PIL.Image.fromarray(np.zeros((1024, 2048), dtype=np.uint8)).save(file)

    def _make_color_target(file):
        PIL.Image.fromarray(np.zeros((1024, 2048, 4), dtype=np.uint8)).save(file)

    def _make_polygon_target(file):
        polygon_example = {
            'imgHeight': 1024,
            'imgWidth': 2048,
            'objects': [{'label': 'sky',
                         'polygon': [[1241, 0], [1234, 156],
                                     [1478, 197], [1611, 172],
                                     [1606, 0]]},
                        {'label': 'road',
                         'polygon': [[0, 448], [1331, 274],
                                     [1473, 265], [2047, 605],
                                     [2047, 1023], [0, 1023]]}]}
        with open(file, 'w') as outfile:
            json.dump(polygon_example, outfile)

    with get_tmp_dir() as tmp_dir:

        for mode in ['Coarse', 'Fine']:
            gt_dir = os.path.join(tmp_dir, 'gt%s' % mode)
            os.makedirs(gt_dir)

            if mode == 'Coarse':
                splits = ['train', 'train_extra', 'val']
            else:
                splits = ['train', 'test', 'val']

            for split in splits:
                split_dir = os.path.join(gt_dir, split)
                os.makedirs(split_dir)
                for city in ['bochum', 'bremen']:
                    city_dir = os.path.join(split_dir, city)
                    os.makedirs(city_dir)
                    _make_color_target(os.path.join(city_dir,
                                                    '{city}_000000_000000_gt{mode}_color.png'.format(
                                                        city=city, mode=mode)))
                    _make_regular_target(os.path.join(city_dir,
                                                      '{city}_000000_000000_gt{mode}_instanceIds.png'.format(
                                                          city=city, mode=mode)))
                    _make_regular_target(os.path.join(city_dir,
                                                      '{city}_000000_000000_gt{mode}_labelIds.png'.format(
                                                          city=city, mode=mode)))
                    _make_polygon_target(os.path.join(city_dir,
                                                      '{city}_000000_000000_gt{mode}_polygons.json'.format(
                                                          city=city, mode=mode)))

        # leftImg8bit dataset
        leftimg_dir = os.path.join(tmp_dir, 'leftImg8bit')
        os.makedirs(leftimg_dir)
        for split in ['test', 'train_extra', 'train', 'val']:
            split_dir = os.path.join(leftimg_dir, split)
            os.makedirs(split_dir)
            for city in ['bochum', 'bremen']:
                city_dir = os.path.join(split_dir, city)
                os.makedirs(city_dir)
                _make_image(os.path.join(city_dir,
                                         '{city}_000000_000000_leftImg8bit.png'.format(city=city)))

        yield tmp_dir
Philip Meier's avatar
Philip Meier committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327


@contextlib.contextmanager
def svhn_root():
    import scipy.io as sio

    def _make_mat(file):
        images = np.zeros((32, 32, 3, 2), dtype=np.uint8)
        targets = np.zeros((2,), dtype=np.uint8)
        sio.savemat(file, {'X': images, 'y': targets})

    with get_tmp_dir() as root:
        _make_mat(os.path.join(root, "train_32x32.mat"))
        _make_mat(os.path.join(root, "test_32x32.mat"))
        _make_mat(os.path.join(root, "extra_32x32.mat"))

        yield root
328

329

330
331
332
333
@contextlib.contextmanager
def voc_root():
    with get_tmp_dir() as tmp_dir:
        voc_dir = os.path.join(tmp_dir, 'VOCdevkit',
334
                               'VOC2012', 'ImageSets', 'Main')
335
        os.makedirs(voc_dir)
336
        train_file = os.path.join(voc_dir, 'train.txt')
337
338
339
340
        with open(train_file, 'w') as f:
            f.write('test')

        yield tmp_dir
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384


@contextlib.contextmanager
def ucf101_root():
    with get_tmp_dir() as tmp_dir:
        ucf_dir = os.path.join(tmp_dir, 'UCF-101')
        video_dir = os.path.join(ucf_dir, 'video')
        annotations = os.path.join(ucf_dir, 'annotations')

        os.makedirs(ucf_dir)
        os.makedirs(video_dir)
        os.makedirs(annotations)

        fold_files = []
        for split in {'train', 'test'}:
            for fold in range(1, 4):
                fold_file = '{:s}list{:02d}.txt'.format(split, fold)
                fold_files.append(os.path.join(annotations, fold_file))

        file_handles = [open(x, 'w') for x in fold_files]
        file_iter = cycle(file_handles)

        for i in range(0, 2):
            current_class = 'class_{0}'.format(i + 1)
            class_dir = os.path.join(video_dir, current_class)
            os.makedirs(class_dir)
            for group in range(0, 3):
                for clip in range(0, 4):
                    # Save sample file
                    clip_name = 'v_{0}_g{1}_c{2}.avi'.format(
                        current_class, group, clip)
                    clip_path = os.path.join(class_dir, clip_name)
                    length = random.randrange(10, 21)
                    this_clip = torch.randint(
                        0, 256, (length * 25, 320, 240, 3), dtype=torch.uint8)
                    write_video(clip_path, this_clip, 25)
                    # Add to annotations
                    ann_file = next(file_iter)
                    ann_file.write('{0}\n'.format(
                        os.path.join(current_class, clip_name)))
        # Close all file descriptors
        for f in file_handles:
            f.close()
        yield (video_dir, annotations)
Philip Meier's avatar
Philip Meier committed
385
386
387
388


@contextlib.contextmanager
def places365_root(split="train-standard", small=False, extract_images=True):
Philip Meier's avatar
Philip Meier committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    VARIANTS = {
        "train-standard": "standard",
        "train-challenge": "challenge",
        "val": "standard",
    }
    # {split: file}
    DEVKITS = {
        "train-standard": "filelist_places365-standard.tar",
        "train-challenge": "filelist_places365-challenge.tar",
        "val": "filelist_places365-standard.tar",
    }
    CATEGORIES = "categories_places365.txt"
    # {split: file}
    FILE_LISTS = {
        "train-standard": "places365_train_standard.txt",
        "train-challenge": "places365_train_challenge.txt",
        "val": "places365_train_standard.txt",
    }
    # {(split, small): (archive, folder_default, folder_renamed)}
    IMAGES = {
        ("train-standard", False): ("train_large_places365standard.tar", "data_large", "data_large_standard"),
        ("train-challenge", False): ("train_large_places365challenge.tar", "data_large", "data_large_challenge"),
        ("val", False): ("val_large.tar", "val_large", "val_large"),
        ("train-standard", True): ("train_256_places365standard.tar", "data_256", "data_256_standard"),
        ("train-challenge", True): ("train_256_places365challenge.tar", "data_256", "data_256_challenge"),
        ("val", True): ("val_256.tar", "val_256", "val_256"),
    }

    # (class, idx)
    CATEGORIES_CONTENT = (("/a/airfield", 0), ("/a/apartment_building/outdoor", 8), ("/b/badlands", 30))
    # (file, idx)
    FILE_LIST_CONTENT = (
        ("Places365_val_00000001.png", 0),
        *((f"{category}/Places365_train_00000001.png", idx) for category, idx in CATEGORIES_CONTENT),
    )

    def mock_target(attr, partial="torchvision.datasets.places365.Places365"):
        return f"{partial}.{attr}"

    def mock_class_attribute(stack, attr, new):
        mock = unittest.mock.patch(mock_target(attr), new_callable=unittest.mock.PropertyMock, return_value=new)
        stack.enter_context(mock)
        return mock
Philip Meier's avatar
Philip Meier committed
432
433
434
435
436

    def compute_md5(file):
        with open(file, "rb") as fh:
            return hashlib.md5(fh.read()).hexdigest()

Philip Meier's avatar
Philip Meier committed
437
    def make_txt(root, name, seq):
Philip Meier's avatar
Philip Meier committed
438
439
        file = os.path.join(root, name)
        with open(file, "w") as fh:
Philip Meier's avatar
Philip Meier committed
440
441
            for string, idx in seq:
                fh.write(f"{string} {idx}\n")
Philip Meier's avatar
Philip Meier committed
442
443
444
        return name, compute_md5(file)

    def make_categories_txt(root, name):
Philip Meier's avatar
Philip Meier committed
445
        return make_txt(root, name, CATEGORIES_CONTENT)
Philip Meier's avatar
Philip Meier committed
446
447

    def make_file_list_txt(root, name):
Philip Meier's avatar
Philip Meier committed
448
        return make_txt(root, name, FILE_LIST_CONTENT)
Philip Meier's avatar
Philip Meier committed
449

Philip Meier's avatar
Philip Meier committed
450
451
452
    def make_image(file, size):
        os.makedirs(os.path.dirname(file), exist_ok=True)
        PIL.Image.fromarray(np.zeros((*size, 3), dtype=np.uint8)).save(file)
Philip Meier's avatar
Philip Meier committed
453

Philip Meier's avatar
Philip Meier committed
454
455
    def make_tar(root, name, *files, remove_files=True):
        name = f"{os.path.splitext(name)[0]}.tar"
Philip Meier's avatar
Philip Meier committed
456
457
458
459
        archive = os.path.join(root, name)

        with tarfile.open(archive, "w") as fh:
            for file in files:
Philip Meier's avatar
Philip Meier committed
460
                fh.add(os.path.join(root, file), arcname=file)
Philip Meier's avatar
Philip Meier committed
461
462

        if remove_files:
Philip Meier's avatar
Philip Meier committed
463
464
465
466
467
            for file in [os.path.join(root, file) for file in files]:
                if os.path.isdir(file):
                    dir_util.remove_tree(file)
                else:
                    os.remove(file)
Philip Meier's avatar
Philip Meier committed
468
469
470
471

        return name, compute_md5(archive)

    def make_devkit_archive(stack, root, split):
Philip Meier's avatar
Philip Meier committed
472
        archive = DEVKITS[split]
Philip Meier's avatar
Philip Meier committed
473
474
        files = []

Philip Meier's avatar
Philip Meier committed
475
        meta = make_categories_txt(root, CATEGORIES)
Philip Meier's avatar
Philip Meier committed
476
477
478
        mock_class_attribute(stack, "_CATEGORIES_META", meta)
        files.append(meta[0])

Philip Meier's avatar
Philip Meier committed
479
        meta = {split: make_file_list_txt(root, FILE_LISTS[split])}
Philip Meier's avatar
Philip Meier committed
480
481
482
        mock_class_attribute(stack, "_FILE_LIST_META", meta)
        files.extend([item[0] for item in meta.values()])

Philip Meier's avatar
Philip Meier committed
483
        meta = {VARIANTS[split]: make_tar(root, archive, *files)}
Philip Meier's avatar
Philip Meier committed
484
485
486
        mock_class_attribute(stack, "_DEVKIT_META", meta)

    def make_images_archive(stack, root, split, small):
Philip Meier's avatar
Philip Meier committed
487
        archive, folder_default, folder_renamed = IMAGES[(split, small)]
Philip Meier's avatar
Philip Meier committed
488

Philip Meier's avatar
Philip Meier committed
489
490
491
492
493
        image_size = (256, 256) if small else (512, random.randint(512, 1024))
        files, idcs = zip(*FILE_LIST_CONTENT)
        images = [file.lstrip("/").replace("/", os.sep) for file in files]
        for image in images:
            make_image(os.path.join(root, folder_default, image), image_size)
Philip Meier's avatar
Philip Meier committed
494

Philip Meier's avatar
Philip Meier committed
495
        meta = {(split, small): make_tar(root, archive, folder_default)}
Philip Meier's avatar
Philip Meier committed
496
497
        mock_class_attribute(stack, "_IMAGES_META", meta)

Philip Meier's avatar
Philip Meier committed
498
        return [(os.path.join(root, folder_renamed, image), idx) for image, idx in zip(images, idcs)]
Philip Meier's avatar
Philip Meier committed
499

Philip Meier's avatar
Philip Meier committed
500
501
502
503
504
    with contextlib.ExitStack() as stack, get_tmp_dir() as root:
        make_devkit_archive(stack, root, split)
        class_to_idx = dict(CATEGORIES_CONTENT)
        classes = list(class_to_idx.keys())
        data = {"class_to_idx": class_to_idx, "classes": classes}
Philip Meier's avatar
Philip Meier committed
505

Philip Meier's avatar
Philip Meier committed
506
507
508
509
510
        if extract_images:
            data["imgs"] = make_images_archive(stack, root, split, small)
        else:
            stack.enter_context(unittest.mock.patch(mock_target("download_images")))
            data["imgs"] = None
Philip Meier's avatar
Philip Meier committed
511

Philip Meier's avatar
Philip Meier committed
512
        yield root, data