utils.py 23 KB
Newer Older
1
import collections
2
import math
3
import pathlib
4
import warnings
5
from itertools import repeat
Kai Zhang's avatar
Kai Zhang committed
6
from types import FunctionType
7
from typing import Any, BinaryIO, List, Optional, Tuple, Union
8

9
import numpy as np
10
import torch
11
from PIL import Image, ImageColor, ImageDraw, ImageFont
12

13
14
15
16
17
18
19
20
__all__ = [
    "make_grid",
    "save_image",
    "draw_bounding_boxes",
    "draw_segmentation_masks",
    "draw_keypoints",
    "flow_to_image",
]
21

22

23
@torch.no_grad()
24
def make_grid(
25
    tensor: Union[torch.Tensor, List[torch.Tensor]],
26
27
28
    nrow: int = 8,
    padding: int = 2,
    normalize: bool = False,
29
    value_range: Optional[Tuple[int, int]] = None,
30
    scale_each: bool = False,
31
    pad_value: float = 0.0,
32
) -> torch.Tensor:
33
34
    """
    Make a grid of images.
35

36
37
38
    Args:
        tensor (Tensor or list): 4D mini-batch Tensor of shape (B x C x H x W)
            or a list of images all of the same size.
39
        nrow (int, optional): Number of images displayed in each row of the grid.
Tongzhou Wang's avatar
Tongzhou Wang committed
40
41
            The final grid size is ``(B / nrow, nrow)``. Default: ``8``.
        padding (int, optional): amount of padding. Default: ``2``.
42
        normalize (bool, optional): If True, shift the image to the range (0, 1),
43
            by the min and max values specified by ``value_range``. Default: ``False``.
44
        value_range (tuple, optional): tuple (min, max) where min and max are numbers,
45
46
            then these numbers are used to normalize the image. By default, min and max
            are computed from the tensor.
Tongzhou Wang's avatar
Tongzhou Wang committed
47
48
49
        scale_each (bool, optional): If ``True``, scale each image in the batch of
            images separately rather than the (min, max) over all images. Default: ``False``.
        pad_value (float, optional): Value for the padded pixels. Default: ``0``.
50

51
52
    Returns:
        grid (Tensor): the tensor containing grid of images.
53
    """
Kai Zhang's avatar
Kai Zhang committed
54
55
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(make_grid)
56
57
58
59
60
61
62
    if not torch.is_tensor(tensor):
        if isinstance(tensor, list):
            for t in tensor:
                if not torch.is_tensor(t):
                    raise TypeError(f"tensor or list of tensors expected, got a list containing {type(t)}")
        else:
            raise TypeError(f"tensor or list of tensors expected, got {type(tensor)}")
63

64
    # if list of tensors, convert to a 4D mini-batch Tensor
65
    if isinstance(tensor, list):
66
        tensor = torch.stack(tensor, dim=0)
67

68
    if tensor.dim() == 2:  # single image H x W
69
        tensor = tensor.unsqueeze(0)
70
    if tensor.dim() == 3:  # single image
71
        if tensor.size(0) == 1:  # if single-channel, convert to 3-channel
Adam Lerer's avatar
Adam Lerer committed
72
            tensor = torch.cat((tensor, tensor, tensor), 0)
73
        tensor = tensor.unsqueeze(0)
74

75
    if tensor.dim() == 4 and tensor.size(1) == 1:  # single-channel images
76
        tensor = torch.cat((tensor, tensor, tensor), 1)
77
78

    if normalize is True:
79
        tensor = tensor.clone()  # avoid modifying tensor in-place
80
81
        if value_range is not None and not isinstance(value_range, tuple):
            raise TypeError("value_range has to be a tuple (min, max) if specified. min and max are numbers")
82

83
84
85
        def norm_ip(img, low, high):
            img.clamp_(min=low, max=high)
            img.sub_(low).div_(max(high - low, 1e-5))
86

87
88
89
        def norm_range(t, value_range):
            if value_range is not None:
                norm_ip(t, value_range[0], value_range[1])
90
            else:
91
                norm_ip(t, float(t.min()), float(t.max()))
92
93
94

        if scale_each is True:
            for t in tensor:  # loop over mini-batch dimension
95
                norm_range(t, value_range)
96
        else:
97
            norm_range(tensor, value_range)
98

99
100
    if not isinstance(tensor, torch.Tensor):
        raise TypeError("tensor should be of type torch.Tensor")
101
    if tensor.size(0) == 1:
102
        return tensor.squeeze(0)
103

104
105
106
    # make the mini-batch of images into a grid
    nmaps = tensor.size(0)
    xmaps = min(nrow, nmaps)
107
    ymaps = int(math.ceil(float(nmaps) / xmaps))
108
    height, width = int(tensor.size(2) + padding), int(tensor.size(3) + padding)
109
110
    num_channels = tensor.size(1)
    grid = tensor.new_full((num_channels, height * ymaps + padding, width * xmaps + padding), pad_value)
111
    k = 0
112
113
    for y in range(ymaps):
        for x in range(xmaps):
114
115
            if k >= nmaps:
                break
116
117
118
119
120
            # Tensor.copy_() is a valid method but seems to be missing from the stubs
            # https://pytorch.org/docs/stable/tensors.html#torch.Tensor.copy_
            grid.narrow(1, y * height + padding, height - padding).narrow(  # type: ignore[attr-defined]
                2, x * width + padding, width - padding
            ).copy_(tensor[k])
121
122
123
124
            k = k + 1
    return grid


125
@torch.no_grad()
126
def save_image(
127
    tensor: Union[torch.Tensor, List[torch.Tensor]],
128
    fp: Union[str, pathlib.Path, BinaryIO],
129
    format: Optional[str] = None,
130
    **kwargs,
131
) -> None:
132
133
    """
    Save a given Tensor into an image file.
134
135
136
137

    Args:
        tensor (Tensor or list): Image to be saved. If given a mini-batch tensor,
            saves the tensor as a grid of images by calling ``make_grid``.
138
        fp (string or file object): A filename or a file object
139
140
        format(Optional):  If omitted, the format to use is determined from the filename extension.
            If a file object was used instead of a filename, this parameter should always be used.
141
        **kwargs: Other arguments are documented in ``make_grid``.
142
    """
143

Kai Zhang's avatar
Kai Zhang committed
144
145
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(save_image)
146
    grid = make_grid(tensor, **kwargs)
147
    # Add 0.5 after unnormalizing to [0, 255] to round to the nearest integer
148
    ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
149
    im = Image.fromarray(ndarr)
150
    im.save(fp, format=format)
151
152
153
154
155
156
157


@torch.no_grad()
def draw_bounding_boxes(
    image: torch.Tensor,
    boxes: torch.Tensor,
    labels: Optional[List[str]] = None,
158
    colors: Optional[Union[List[Union[str, Tuple[int, int, int]]], str, Tuple[int, int, int]]] = None,
159
    fill: Optional[bool] = False,
160
161
    width: int = 1,
    font: Optional[str] = None,
162
    font_size: Optional[int] = None,
163
164
165
166
167
) -> torch.Tensor:

    """
    Draws bounding boxes on given image.
    The values of the input image should be uint8 between 0 and 255.
168
    If fill is True, Resulting Tensor should be saved as PNG image.
169
170

    Args:
171
        image (Tensor): Tensor of shape (C x H x W) and dtype uint8.
172
        boxes (Tensor): Tensor of size (N, 4) containing bounding boxes in (xmin, ymin, xmax, ymax) format. Note that
173
174
175
            the boxes are absolute coordinates with respect to the image. In other words: `0 <= xmin < xmax < W` and
            `0 <= ymin < ymax < H`.
        labels (List[str]): List containing the labels of bounding boxes.
176
177
178
        colors (color or list of colors, optional): List containing the colors
            of the boxes or single color for all boxes. The color can be represented as
            PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
179
            By default, random colors are generated for boxes.
180
        fill (bool): If `True` fills the bounding box with specified color.
181
182
183
184
185
        width (int): Width of bounding box.
        font (str): A filename containing a TrueType font. If the file is not found in this filename, the loader may
            also search in other directories, such as the `fonts/` directory on Windows or `/Library/Fonts/`,
            `/System/Library/Fonts/` and `~/Library/Fonts/` on macOS.
        font_size (int): The requested font size in points.
186
187
188

    Returns:
        img (Tensor[C, H, W]): Image Tensor of dtype uint8 with bounding boxes plotted.
189
190
    """

Kai Zhang's avatar
Kai Zhang committed
191
192
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(draw_bounding_boxes)
193
194
195
196
197
198
    if not isinstance(image, torch.Tensor):
        raise TypeError(f"Tensor expected, got {type(image)}")
    elif image.dtype != torch.uint8:
        raise ValueError(f"Tensor uint8 expected, got {image.dtype}")
    elif image.dim() != 3:
        raise ValueError("Pass individual images, not batches")
199
200
    elif image.size(0) not in {1, 3}:
        raise ValueError("Only grayscale and RGB images are supported")
201
202
203
204
    elif (boxes[:, 0] > boxes[:, 2]).any() or (boxes[:, 1] > boxes[:, 3]).any():
        raise ValueError(
            "Boxes need to be in (xmin, ymin, xmax, ymax) format. Use torchvision.ops.box_convert to convert them"
        )
205

206
207
    num_boxes = boxes.shape[0]

208
209
210
211
    if num_boxes == 0:
        warnings.warn("boxes doesn't contain any box. No box was drawn")
        return image

212
213
214
215
216
217
218
    if labels is None:
        labels: Union[List[str], List[None]] = [None] * num_boxes  # type: ignore[no-redef]
    elif len(labels) != num_boxes:
        raise ValueError(
            f"Number of boxes ({num_boxes}) and labels ({len(labels)}) mismatch. Please specify labels for each box."
        )

219
    colors = _parse_colors(colors, num_objects=num_boxes)
220

221
222
223
224
225
226
227
    if font is None:
        if font_size is not None:
            warnings.warn("Argument 'font_size' will be ignored since 'font' is not set.")
        txt_font = ImageFont.load_default()
    else:
        txt_font = ImageFont.truetype(font=font, size=font_size or 10)

228
    # Handle Grayscale images
229
230
    if image.size(0) == 1:
        image = torch.tile(image, (3, 1, 1))
231

232
    ndarr = image.permute(1, 2, 0).cpu().numpy()
233
234
235
    img_to_draw = Image.fromarray(ndarr)
    img_boxes = boxes.to(torch.int64).tolist()

236
237
238
239
240
    if fill:
        draw = ImageDraw.Draw(img_to_draw, "RGBA")
    else:
        draw = ImageDraw.Draw(img_to_draw)

241
    for bbox, color, label in zip(img_boxes, colors, labels):  # type: ignore[arg-type]
242
        if fill:
243
            fill_color = color + (100,)
244
245
246
            draw.rectangle(bbox, width=width, outline=color, fill=fill_color)
        else:
            draw.rectangle(bbox, width=width, outline=color)
247

248
        if label is not None:
249
            margin = width + 1
250
            draw.text((bbox[0] + margin, bbox[1] + margin), label, fill=color, font=txt_font)
251

252
    return torch.from_numpy(np.array(img_to_draw)).permute(2, 0, 1).to(dtype=torch.uint8)
253
254
255
256
257
258


@torch.no_grad()
def draw_segmentation_masks(
    image: torch.Tensor,
    masks: torch.Tensor,
259
    alpha: float = 0.8,
260
    colors: Optional[Union[List[Union[str, Tuple[int, int, int]]], str, Tuple[int, int, int]]] = None,
261
262
263
264
265
266
267
) -> torch.Tensor:

    """
    Draws segmentation masks on given RGB image.
    The values of the input image should be uint8 between 0 and 255.

    Args:
268
269
270
271
        image (Tensor): Tensor of shape (3, H, W) and dtype uint8.
        masks (Tensor): Tensor of shape (num_masks, H, W) or (H, W) and dtype bool.
        alpha (float): Float number between 0 and 1 denoting the transparency of the masks.
            0 means full transparency, 1 means no transparency.
272
273
274
275
        colors (color or list of colors, optional): List containing the colors
            of the masks or single color for all masks. The color can be represented as
            PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
            By default, random colors are generated for each mask.
276
277

    Returns:
278
        img (Tensor[C, H, W]): Image Tensor, with segmentation masks drawn on top.
279
280
    """

Kai Zhang's avatar
Kai Zhang committed
281
282
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(draw_segmentation_masks)
283
    if not isinstance(image, torch.Tensor):
284
        raise TypeError(f"The image must be a tensor, got {type(image)}")
285
    elif image.dtype != torch.uint8:
286
        raise ValueError(f"The image dtype must be uint8, got {image.dtype}")
287
288
289
290
    elif image.dim() != 3:
        raise ValueError("Pass individual images, not batches")
    elif image.size()[0] != 3:
        raise ValueError("Pass an RGB image. Other Image formats are not supported")
291
292
293
294
295
296
297
298
    if masks.ndim == 2:
        masks = masks[None, :, :]
    if masks.ndim != 3:
        raise ValueError("masks must be of shape (H, W) or (batch_size, H, W)")
    if masks.dtype != torch.bool:
        raise ValueError(f"The masks must be of dtype bool. Got {masks.dtype}")
    if masks.shape[-2:] != image.shape[-2:]:
        raise ValueError("The image and the masks must have the same height and width")
299
300
301

    num_masks = masks.size()[0]

302
303
304
305
    if num_masks == 0:
        warnings.warn("masks doesn't contain any mask. No mask was drawn")
        return image

306
    out_dtype = torch.uint8
307
308
309
310
    colors = [
        torch.tensor(color, dtype=out_dtype, device=image.device)
        for color in _parse_colors(colors, num_objects=num_masks)
    ]
311

312
313
    img_to_draw = image.detach().clone()
    # TODO: There might be a way to vectorize this
314
    for mask, color in zip(masks, colors):
315
        img_to_draw[:, mask] = color[:, None]
316

317
318
    out = image * (1 - alpha) + img_to_draw * alpha
    return out.to(out_dtype)
319
320


321
322
323
324
@torch.no_grad()
def draw_keypoints(
    image: torch.Tensor,
    keypoints: torch.Tensor,
325
    connectivity: Optional[List[Tuple[int, int]]] = None,
326
327
328
329
330
331
332
333
334
335
336
337
338
    colors: Optional[Union[str, Tuple[int, int, int]]] = None,
    radius: int = 2,
    width: int = 3,
) -> torch.Tensor:

    """
    Draws Keypoints on given RGB image.
    The values of the input image should be uint8 between 0 and 255.

    Args:
        image (Tensor): Tensor of shape (3, H, W) and dtype uint8.
        keypoints (Tensor): Tensor of shape (num_instances, K, 2) the K keypoints location for each of the N instances,
            in the format [x, y].
339
        connectivity (List[Tuple[int, int]]]): A List of tuple where,
340
341
342
343
344
345
346
347
348
349
            each tuple contains pair of keypoints to be connected.
        colors (str, Tuple): The color can be represented as
            PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
        radius (int): Integer denoting radius of keypoint.
        width (int): Integer denoting width of line connecting keypoints.

    Returns:
        img (Tensor[C, H, W]): Image Tensor of dtype uint8 with keypoints drawn.
    """

Kai Zhang's avatar
Kai Zhang committed
350
351
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(draw_keypoints)
352
353
354
355
356
357
358
359
360
361
362
363
    if not isinstance(image, torch.Tensor):
        raise TypeError(f"The image must be a tensor, got {type(image)}")
    elif image.dtype != torch.uint8:
        raise ValueError(f"The image dtype must be uint8, got {image.dtype}")
    elif image.dim() != 3:
        raise ValueError("Pass individual images, not batches")
    elif image.size()[0] != 3:
        raise ValueError("Pass an RGB image. Other Image formats are not supported")

    if keypoints.ndim != 3:
        raise ValueError("keypoints must be of shape (num_instances, K, 2)")

364
    ndarr = image.permute(1, 2, 0).cpu().numpy()
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    img_to_draw = Image.fromarray(ndarr)
    draw = ImageDraw.Draw(img_to_draw)
    img_kpts = keypoints.to(torch.int64).tolist()

    for kpt_id, kpt_inst in enumerate(img_kpts):
        for inst_id, kpt in enumerate(kpt_inst):
            x1 = kpt[0] - radius
            x2 = kpt[0] + radius
            y1 = kpt[1] - radius
            y2 = kpt[1] + radius
            draw.ellipse([x1, y1, x2, y2], fill=colors, outline=None, width=0)

        if connectivity:
            for connection in connectivity:
                start_pt_x = kpt_inst[connection[0]][0]
                start_pt_y = kpt_inst[connection[0]][1]

                end_pt_x = kpt_inst[connection[1]][0]
                end_pt_y = kpt_inst[connection[1]][1]

                draw.line(
                    ((start_pt_x, start_pt_y), (end_pt_x, end_pt_y)),
                    width=width,
                )

    return torch.from_numpy(np.array(img_to_draw)).permute(2, 0, 1).to(dtype=torch.uint8)


393
394
395
396
397
398
399
400
# Flow visualization code adapted from https://github.com/tomrunia/OpticalFlow_Visualization
@torch.no_grad()
def flow_to_image(flow: torch.Tensor) -> torch.Tensor:

    """
    Converts a flow to an RGB image.

    Args:
401
        flow (Tensor): Flow of shape (N, 2, H, W) or (2, H, W) and dtype torch.float.
402
403

    Returns:
404
405
        img (Tensor): Image Tensor of dtype uint8 where each color corresponds
            to a given flow direction. Shape is (N, 3, H, W) or (3, H, W) depending on the input.
406
407
408
409
410
    """

    if flow.dtype != torch.float:
        raise ValueError(f"Flow should be of dtype torch.float, got {flow.dtype}.")

411
412
413
    orig_shape = flow.shape
    if flow.ndim == 3:
        flow = flow[None]  # Add batch dim
414

415
416
417
    if flow.ndim != 4 or flow.shape[1] != 2:
        raise ValueError(f"Input flow should have shape (2, H, W) or (N, 2, H, W), got {orig_shape}.")

418
    max_norm = torch.sum(flow**2, dim=1).sqrt().max()
419
420
    epsilon = torch.finfo((flow).dtype).eps
    normalized_flow = flow / (max_norm + epsilon)
421
422
423
424
425
    img = _normalized_flow_to_image(normalized_flow)

    if len(orig_shape) == 3:
        img = img[0]  # Remove batch dim
    return img
426
427
428
429
430
431


@torch.no_grad()
def _normalized_flow_to_image(normalized_flow: torch.Tensor) -> torch.Tensor:

    """
432
    Converts a batch of normalized flow to an RGB image.
433
434

    Args:
435
        normalized_flow (torch.Tensor): Normalized flow tensor of shape (N, 2, H, W)
436
    Returns:
437
       img (Tensor(N, 3, H, W)): Flow visualization image of dtype uint8.
438
439
    """

440
    N, _, H, W = normalized_flow.shape
441
442
443
    device = normalized_flow.device
    flow_image = torch.zeros((N, 3, H, W), dtype=torch.uint8, device=device)
    colorwheel = _make_colorwheel().to(device)  # shape [55x3]
444
    num_cols = colorwheel.shape[0]
445
    norm = torch.sum(normalized_flow**2, dim=1).sqrt()
446
    a = torch.atan2(-normalized_flow[:, 1, :, :], -normalized_flow[:, 0, :, :]) / torch.pi
447
448
449
450
451
452
453
454
455
456
457
458
    fk = (a + 1) / 2 * (num_cols - 1)
    k0 = torch.floor(fk).to(torch.long)
    k1 = k0 + 1
    k1[k1 == num_cols] = 0
    f = fk - k0

    for c in range(colorwheel.shape[1]):
        tmp = colorwheel[:, c]
        col0 = tmp[k0] / 255.0
        col1 = tmp[k1] / 255.0
        col = (1 - f) * col0 + f * col1
        col = 1 - norm * (1 - col)
459
        flow_image[:, c, :, :] = torch.floor(255 * col)
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
    return flow_image


def _make_colorwheel() -> torch.Tensor:
    """
    Generates a color wheel for optical flow visualization as presented in:
    Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
    URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf.

    Returns:
        colorwheel (Tensor[55, 3]): Colorwheel Tensor.
    """

    RY = 15
    YG = 6
    GC = 4
    CB = 11
    BM = 13
    MR = 6

    ncols = RY + YG + GC + CB + BM + MR
    colorwheel = torch.zeros((ncols, 3))
    col = 0

    # RY
    colorwheel[0:RY, 0] = 255
    colorwheel[0:RY, 1] = torch.floor(255 * torch.arange(0, RY) / RY)
    col = col + RY
    # YG
    colorwheel[col : col + YG, 0] = 255 - torch.floor(255 * torch.arange(0, YG) / YG)
    colorwheel[col : col + YG, 1] = 255
    col = col + YG
    # GC
    colorwheel[col : col + GC, 1] = 255
    colorwheel[col : col + GC, 2] = torch.floor(255 * torch.arange(0, GC) / GC)
    col = col + GC
    # CB
    colorwheel[col : col + CB, 1] = 255 - torch.floor(255 * torch.arange(CB) / CB)
    colorwheel[col : col + CB, 2] = 255
    col = col + CB
    # BM
    colorwheel[col : col + BM, 2] = 255
    colorwheel[col : col + BM, 0] = torch.floor(255 * torch.arange(0, BM) / BM)
    col = col + BM
    # MR
    colorwheel[col : col + MR, 2] = 255 - torch.floor(255 * torch.arange(MR) / MR)
    colorwheel[col : col + MR, 0] = 255
    return colorwheel


510
def _generate_color_palette(num_objects: int):
511
    palette = torch.tensor([2**25 - 1, 2**15 - 1, 2**21 - 1])
512
    return [tuple((i * palette) % 255) for i in range(num_objects)]
513
514


515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
def _parse_colors(
    colors: Union[None, str, Tuple[int, int, int], List[Union[str, Tuple[int, int, int]]]],
    *,
    num_objects: int,
) -> List[Tuple[int, int, int]]:
    """
    Parses a specification of colors for a set of objects.

    Args:
        colors: A specification of colors for the objects. This can be one of the following:
            - None: to generate a color palette automatically.
            - A list of colors: where each color is either a string (specifying a named color) or an RGB tuple.
            - A string or an RGB tuple: to use the same color for all objects.

            If `colors` is a tuple, it should be a 3-tuple specifying the RGB values of the color.
            If `colors` is a list, it should have at least as many elements as the number of objects to color.

        num_objects (int): The number of objects to color.

    Returns:
        A list of 3-tuples, specifying the RGB values of the colors.

    Raises:
        ValueError: If the number of colors in the list is less than the number of objects to color.
                    If `colors` is not a list, tuple, string or None.
    """
    if colors is None:
        colors = _generate_color_palette(num_objects)
    elif isinstance(colors, list):
        if len(colors) < num_objects:
            raise ValueError(
                f"Number of colors must be equal or larger than the number of objects, but got {len(colors)} < {num_objects}."
            )
    elif not isinstance(colors, (tuple, str)):
        raise ValueError("`colors` must be a tuple or a string, or a list thereof, but got {colors}.")
    elif isinstance(colors, tuple) and len(colors) != 3:
        raise ValueError("If passed as tuple, colors should be an RGB triplet, but got {colors}.")
    else:  # colors specifies a single color for all objects
        colors = [colors] * num_objects

    return [ImageColor.getrgb(color) if isinstance(color, str) else color for color in colors]


Kai Zhang's avatar
Kai Zhang committed
558
def _log_api_usage_once(obj: Any) -> None:
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575

    """
    Logs API usage(module and name) within an organization.
    In a large ecosystem, it's often useful to track the PyTorch and
    TorchVision APIs usage. This API provides the similar functionality to the
    logging module in the Python stdlib. It can be used for debugging purpose
    to log which methods are used and by default it is inactive, unless the user
    manually subscribes a logger via the `SetAPIUsageLogger method <https://github.com/pytorch/pytorch/blob/eb3b9fe719b21fae13c7a7cf3253f970290a573e/c10/util/Logging.cpp#L114>`_.
    Please note it is triggered only once for the same API call within a process.
    It does not collect any data from open-source users since it is no-op by default.
    For more information, please refer to
    * PyTorch note: https://pytorch.org/docs/stable/notes/large_scale_deployments.html#api-usage-logging;
    * Logging policy: https://github.com/pytorch/vision/issues/5052;

    Args:
        obj (class instance or method): an object to extract info from.
    """
576
577
578
    module = obj.__module__
    if not module.startswith("torchvision"):
        module = f"torchvision.internal.{module}"
Kai Zhang's avatar
Kai Zhang committed
579
580
581
    name = obj.__class__.__name__
    if isinstance(obj, FunctionType):
        name = obj.__name__
582
    torch._C._log_api_usage_once(f"{module}.{name}")
583
584
585
586
587


def _make_ntuple(x: Any, n: int) -> Tuple[Any, ...]:
    """
    Make n-tuple from input x. If x is an iterable, then we just convert it to tuple.
588
    Otherwise, we will make a tuple of length n, all with value of x.
589
590
591
592
593
594
595
596
597
    reference: https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/utils.py#L8

    Args:
        x (Any): input value
        n (int): length of the resulting tuple
    """
    if isinstance(x, collections.abc.Iterable):
        return tuple(x)
    return tuple(repeat(x, n))