utils.py 16.6 KB
Newer Older
1
import math
2
import pathlib
3
import warnings
Kai Zhang's avatar
Kai Zhang committed
4
from types import FunctionType
5
from typing import Any, BinaryIO, List, Optional, Tuple, Union
6

7
import numpy as np
8
import torch
9
from PIL import Image, ImageColor, ImageDraw, ImageFont
10

11
__all__ = ["make_grid", "save_image", "draw_bounding_boxes", "draw_segmentation_masks", "draw_keypoints"]
12

13

14
@torch.no_grad()
15
def make_grid(
16
    tensor: Union[torch.Tensor, List[torch.Tensor]],
17
18
19
    nrow: int = 8,
    padding: int = 2,
    normalize: bool = False,
20
    value_range: Optional[Tuple[int, int]] = None,
21
    scale_each: bool = False,
22
    pad_value: float = 0.0,
23
    **kwargs,
24
) -> torch.Tensor:
25
26
    """
    Make a grid of images.
27

28
29
30
    Args:
        tensor (Tensor or list): 4D mini-batch Tensor of shape (B x C x H x W)
            or a list of images all of the same size.
31
        nrow (int, optional): Number of images displayed in each row of the grid.
Tongzhou Wang's avatar
Tongzhou Wang committed
32
33
            The final grid size is ``(B / nrow, nrow)``. Default: ``8``.
        padding (int, optional): amount of padding. Default: ``2``.
34
        normalize (bool, optional): If True, shift the image to the range (0, 1),
35
            by the min and max values specified by ``value_range``. Default: ``False``.
36
        value_range (tuple, optional): tuple (min, max) where min and max are numbers,
37
38
            then these numbers are used to normalize the image. By default, min and max
            are computed from the tensor.
Tongzhou Wang's avatar
Tongzhou Wang committed
39
40
41
        scale_each (bool, optional): If ``True``, scale each image in the batch of
            images separately rather than the (min, max) over all images. Default: ``False``.
        pad_value (float, optional): Value for the padded pixels. Default: ``0``.
42

43
44
    Returns:
        grid (Tensor): the tensor containing grid of images.
45
    """
Kai Zhang's avatar
Kai Zhang committed
46
47
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(make_grid)
48
49
    if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
        raise TypeError(f"tensor or list of tensors expected, got {type(tensor)}")
50
51
52
53
54

    if "range" in kwargs.keys():
        warning = "range will be deprecated, please use value_range instead."
        warnings.warn(warning)
        value_range = kwargs["range"]
55

56
    # if list of tensors, convert to a 4D mini-batch Tensor
57
    if isinstance(tensor, list):
58
        tensor = torch.stack(tensor, dim=0)
59

60
    if tensor.dim() == 2:  # single image H x W
61
        tensor = tensor.unsqueeze(0)
62
    if tensor.dim() == 3:  # single image
63
        if tensor.size(0) == 1:  # if single-channel, convert to 3-channel
Adam Lerer's avatar
Adam Lerer committed
64
            tensor = torch.cat((tensor, tensor, tensor), 0)
65
        tensor = tensor.unsqueeze(0)
66

67
    if tensor.dim() == 4 and tensor.size(1) == 1:  # single-channel images
68
        tensor = torch.cat((tensor, tensor, tensor), 1)
69
70

    if normalize is True:
71
        tensor = tensor.clone()  # avoid modifying tensor in-place
72
        if value_range is not None:
73
74
75
            assert isinstance(
                value_range, tuple
            ), "value_range has to be a tuple (min, max) if specified. min and max are numbers"
76

77
78
79
        def norm_ip(img, low, high):
            img.clamp_(min=low, max=high)
            img.sub_(low).div_(max(high - low, 1e-5))
80

81
82
83
        def norm_range(t, value_range):
            if value_range is not None:
                norm_ip(t, value_range[0], value_range[1])
84
            else:
85
                norm_ip(t, float(t.min()), float(t.max()))
86
87
88

        if scale_each is True:
            for t in tensor:  # loop over mini-batch dimension
89
                norm_range(t, value_range)
90
        else:
91
            norm_range(tensor, value_range)
92

Kai Zhang's avatar
Kai Zhang committed
93
    assert isinstance(tensor, torch.Tensor)
94
    if tensor.size(0) == 1:
95
        return tensor.squeeze(0)
96

97
98
99
    # make the mini-batch of images into a grid
    nmaps = tensor.size(0)
    xmaps = min(nrow, nmaps)
100
    ymaps = int(math.ceil(float(nmaps) / xmaps))
101
    height, width = int(tensor.size(2) + padding), int(tensor.size(3) + padding)
102
103
    num_channels = tensor.size(1)
    grid = tensor.new_full((num_channels, height * ymaps + padding, width * xmaps + padding), pad_value)
104
    k = 0
105
106
    for y in range(ymaps):
        for x in range(xmaps):
107
108
            if k >= nmaps:
                break
109
110
111
112
113
            # Tensor.copy_() is a valid method but seems to be missing from the stubs
            # https://pytorch.org/docs/stable/tensors.html#torch.Tensor.copy_
            grid.narrow(1, y * height + padding, height - padding).narrow(  # type: ignore[attr-defined]
                2, x * width + padding, width - padding
            ).copy_(tensor[k])
114
115
116
117
            k = k + 1
    return grid


118
@torch.no_grad()
119
def save_image(
120
    tensor: Union[torch.Tensor, List[torch.Tensor]],
121
    fp: Union[str, pathlib.Path, BinaryIO],
122
    format: Optional[str] = None,
123
    **kwargs,
124
) -> None:
125
126
    """
    Save a given Tensor into an image file.
127
128
129
130

    Args:
        tensor (Tensor or list): Image to be saved. If given a mini-batch tensor,
            saves the tensor as a grid of images by calling ``make_grid``.
131
        fp (string or file object): A filename or a file object
132
133
        format(Optional):  If omitted, the format to use is determined from the filename extension.
            If a file object was used instead of a filename, this parameter should always be used.
134
        **kwargs: Other arguments are documented in ``make_grid``.
135
    """
136

Kai Zhang's avatar
Kai Zhang committed
137
138
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(save_image)
139
    grid = make_grid(tensor, **kwargs)
140
    # Add 0.5 after unnormalizing to [0, 255] to round to nearest integer
141
    ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
142
    im = Image.fromarray(ndarr)
143
    im.save(fp, format=format)
144
145
146
147
148
149
150


@torch.no_grad()
def draw_bounding_boxes(
    image: torch.Tensor,
    boxes: torch.Tensor,
    labels: Optional[List[str]] = None,
151
    colors: Optional[Union[List[Union[str, Tuple[int, int, int]]], str, Tuple[int, int, int]]] = None,
152
    fill: Optional[bool] = False,
153
154
    width: int = 1,
    font: Optional[str] = None,
155
    font_size: int = 10,
156
157
158
159
160
) -> torch.Tensor:

    """
    Draws bounding boxes on given image.
    The values of the input image should be uint8 between 0 and 255.
161
    If fill is True, Resulting Tensor should be saved as PNG image.
162
163

    Args:
164
        image (Tensor): Tensor of shape (C x H x W) and dtype uint8.
165
        boxes (Tensor): Tensor of size (N, 4) containing bounding boxes in (xmin, ymin, xmax, ymax) format. Note that
166
167
168
            the boxes are absolute coordinates with respect to the image. In other words: `0 <= xmin < xmax < W` and
            `0 <= ymin < ymax < H`.
        labels (List[str]): List containing the labels of bounding boxes.
169
170
171
        colors (color or list of colors, optional): List containing the colors
            of the boxes or single color for all boxes. The color can be represented as
            PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
172
        fill (bool): If `True` fills the bounding box with specified color.
173
174
175
176
177
        width (int): Width of bounding box.
        font (str): A filename containing a TrueType font. If the file is not found in this filename, the loader may
            also search in other directories, such as the `fonts/` directory on Windows or `/Library/Fonts/`,
            `/System/Library/Fonts/` and `~/Library/Fonts/` on macOS.
        font_size (int): The requested font size in points.
178
179
180

    Returns:
        img (Tensor[C, H, W]): Image Tensor of dtype uint8 with bounding boxes plotted.
181
182
    """

Kai Zhang's avatar
Kai Zhang committed
183
184
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(draw_bounding_boxes)
185
186
187
188
189
190
    if not isinstance(image, torch.Tensor):
        raise TypeError(f"Tensor expected, got {type(image)}")
    elif image.dtype != torch.uint8:
        raise ValueError(f"Tensor uint8 expected, got {image.dtype}")
    elif image.dim() != 3:
        raise ValueError("Pass individual images, not batches")
191
192
193
194
195
    elif image.size(0) not in {1, 3}:
        raise ValueError("Only grayscale and RGB images are supported")

    if image.size(0) == 1:
        image = torch.tile(image, (3, 1, 1))
196

197
    ndarr = image.permute(1, 2, 0).cpu().numpy()
198
199
200
201
    img_to_draw = Image.fromarray(ndarr)

    img_boxes = boxes.to(torch.int64).tolist()

202
203
204
205
206
207
    if fill:
        draw = ImageDraw.Draw(img_to_draw, "RGBA")

    else:
        draw = ImageDraw.Draw(img_to_draw)

208
    txt_font = ImageFont.load_default() if font is None else ImageFont.truetype(font=font, size=font_size)
209
210

    for i, bbox in enumerate(img_boxes):
211
212
        if colors is None:
            color = None
213
        elif isinstance(colors, list):
214
            color = colors[i]
215
216
        else:
            color = colors
217
218
219
220
221
222
223
224
225
226
227
228

        if fill:
            if color is None:
                fill_color = (255, 255, 255, 100)
            elif isinstance(color, str):
                # This will automatically raise Error if rgb cannot be parsed.
                fill_color = ImageColor.getrgb(color) + (100,)
            elif isinstance(color, tuple):
                fill_color = color + (100,)
            draw.rectangle(bbox, width=width, outline=color, fill=fill_color)
        else:
            draw.rectangle(bbox, width=width, outline=color)
229
230

        if labels is not None:
231
232
            margin = width + 1
            draw.text((bbox[0] + margin, bbox[1] + margin), labels[i], fill=color, font=txt_font)
233

234
    return torch.from_numpy(np.array(img_to_draw)).permute(2, 0, 1).to(dtype=torch.uint8)
235
236
237
238
239
240


@torch.no_grad()
def draw_segmentation_masks(
    image: torch.Tensor,
    masks: torch.Tensor,
241
    alpha: float = 0.8,
242
    colors: Optional[Union[List[Union[str, Tuple[int, int, int]]], str, Tuple[int, int, int]]] = None,
243
244
245
246
247
248
249
) -> torch.Tensor:

    """
    Draws segmentation masks on given RGB image.
    The values of the input image should be uint8 between 0 and 255.

    Args:
250
251
252
253
        image (Tensor): Tensor of shape (3, H, W) and dtype uint8.
        masks (Tensor): Tensor of shape (num_masks, H, W) or (H, W) and dtype bool.
        alpha (float): Float number between 0 and 1 denoting the transparency of the masks.
            0 means full transparency, 1 means no transparency.
254
255
256
257
        colors (color or list of colors, optional): List containing the colors
            of the masks or single color for all masks. The color can be represented as
            PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
            By default, random colors are generated for each mask.
258
259

    Returns:
260
        img (Tensor[C, H, W]): Image Tensor, with segmentation masks drawn on top.
261
262
    """

Kai Zhang's avatar
Kai Zhang committed
263
264
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(draw_segmentation_masks)
265
    if not isinstance(image, torch.Tensor):
266
        raise TypeError(f"The image must be a tensor, got {type(image)}")
267
    elif image.dtype != torch.uint8:
268
        raise ValueError(f"The image dtype must be uint8, got {image.dtype}")
269
270
271
272
    elif image.dim() != 3:
        raise ValueError("Pass individual images, not batches")
    elif image.size()[0] != 3:
        raise ValueError("Pass an RGB image. Other Image formats are not supported")
273
274
275
276
277
278
279
280
    if masks.ndim == 2:
        masks = masks[None, :, :]
    if masks.ndim != 3:
        raise ValueError("masks must be of shape (H, W) or (batch_size, H, W)")
    if masks.dtype != torch.bool:
        raise ValueError(f"The masks must be of dtype bool. Got {masks.dtype}")
    if masks.shape[-2:] != image.shape[-2:]:
        raise ValueError("The image and the masks must have the same height and width")
281
282

    num_masks = masks.size()[0]
283
284
    if colors is not None and num_masks > len(colors):
        raise ValueError(f"There are more masks ({num_masks}) than colors ({len(colors)})")
285
286

    if colors is None:
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
        colors = _generate_color_palette(num_masks)

    if not isinstance(colors, list):
        colors = [colors]
    if not isinstance(colors[0], (tuple, str)):
        raise ValueError("colors must be a tuple or a string, or a list thereof")
    if isinstance(colors[0], tuple) and len(colors[0]) != 3:
        raise ValueError("It seems that you passed a tuple of colors instead of a list of colors")

    out_dtype = torch.uint8

    colors_ = []
    for color in colors:
        if isinstance(color, str):
            color = ImageColor.getrgb(color)
302
        colors_.append(torch.tensor(color, dtype=out_dtype))
303

304
305
306
307
    img_to_draw = image.detach().clone()
    # TODO: There might be a way to vectorize this
    for mask, color in zip(masks, colors_):
        img_to_draw[:, mask] = color[:, None]
308

309
310
    out = image * (1 - alpha) + img_to_draw * alpha
    return out.to(out_dtype)
311
312


313
314
315
316
@torch.no_grad()
def draw_keypoints(
    image: torch.Tensor,
    keypoints: torch.Tensor,
317
    connectivity: Optional[List[Tuple[int, int]]] = None,
318
319
320
321
322
323
324
325
326
327
328
329
330
    colors: Optional[Union[str, Tuple[int, int, int]]] = None,
    radius: int = 2,
    width: int = 3,
) -> torch.Tensor:

    """
    Draws Keypoints on given RGB image.
    The values of the input image should be uint8 between 0 and 255.

    Args:
        image (Tensor): Tensor of shape (3, H, W) and dtype uint8.
        keypoints (Tensor): Tensor of shape (num_instances, K, 2) the K keypoints location for each of the N instances,
            in the format [x, y].
331
        connectivity (List[Tuple[int, int]]]): A List of tuple where,
332
333
334
335
336
337
338
339
340
341
            each tuple contains pair of keypoints to be connected.
        colors (str, Tuple): The color can be represented as
            PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
        radius (int): Integer denoting radius of keypoint.
        width (int): Integer denoting width of line connecting keypoints.

    Returns:
        img (Tensor[C, H, W]): Image Tensor of dtype uint8 with keypoints drawn.
    """

Kai Zhang's avatar
Kai Zhang committed
342
343
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(draw_keypoints)
344
345
346
347
348
349
350
351
352
353
354
355
    if not isinstance(image, torch.Tensor):
        raise TypeError(f"The image must be a tensor, got {type(image)}")
    elif image.dtype != torch.uint8:
        raise ValueError(f"The image dtype must be uint8, got {image.dtype}")
    elif image.dim() != 3:
        raise ValueError("Pass individual images, not batches")
    elif image.size()[0] != 3:
        raise ValueError("Pass an RGB image. Other Image formats are not supported")

    if keypoints.ndim != 3:
        raise ValueError("keypoints must be of shape (num_instances, K, 2)")

356
    ndarr = image.permute(1, 2, 0).cpu().numpy()
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
    img_to_draw = Image.fromarray(ndarr)
    draw = ImageDraw.Draw(img_to_draw)
    img_kpts = keypoints.to(torch.int64).tolist()

    for kpt_id, kpt_inst in enumerate(img_kpts):
        for inst_id, kpt in enumerate(kpt_inst):
            x1 = kpt[0] - radius
            x2 = kpt[0] + radius
            y1 = kpt[1] - radius
            y2 = kpt[1] + radius
            draw.ellipse([x1, y1, x2, y2], fill=colors, outline=None, width=0)

        if connectivity:
            for connection in connectivity:
                start_pt_x = kpt_inst[connection[0]][0]
                start_pt_y = kpt_inst[connection[0]][1]

                end_pt_x = kpt_inst[connection[1]][0]
                end_pt_y = kpt_inst[connection[1]][1]

                draw.line(
                    ((start_pt_x, start_pt_y), (end_pt_x, end_pt_y)),
                    width=width,
                )

    return torch.from_numpy(np.array(img_to_draw)).permute(2, 0, 1).to(dtype=torch.uint8)


385
def _generate_color_palette(num_masks: int):
386
387
    palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
    return [tuple((i * palette) % 255) for i in range(num_masks)]
388
389


Kai Zhang's avatar
Kai Zhang committed
390
def _log_api_usage_once(obj: Any) -> None:
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

    """
    Logs API usage(module and name) within an organization.
    In a large ecosystem, it's often useful to track the PyTorch and
    TorchVision APIs usage. This API provides the similar functionality to the
    logging module in the Python stdlib. It can be used for debugging purpose
    to log which methods are used and by default it is inactive, unless the user
    manually subscribes a logger via the `SetAPIUsageLogger method <https://github.com/pytorch/pytorch/blob/eb3b9fe719b21fae13c7a7cf3253f970290a573e/c10/util/Logging.cpp#L114>`_.
    Please note it is triggered only once for the same API call within a process.
    It does not collect any data from open-source users since it is no-op by default.
    For more information, please refer to
    * PyTorch note: https://pytorch.org/docs/stable/notes/large_scale_deployments.html#api-usage-logging;
    * Logging policy: https://github.com/pytorch/vision/issues/5052;

    Args:
        obj (class instance or method): an object to extract info from.
    """
Kai Zhang's avatar
Kai Zhang committed
408
    if not obj.__module__.startswith("torchvision"):
409
        return
Kai Zhang's avatar
Kai Zhang committed
410
411
412
413
    name = obj.__class__.__name__
    if isinstance(obj, FunctionType):
        name = obj.__name__
    torch._C._log_api_usage_once(f"{obj.__module__}.{name}")