utils.py 21.7 KB
Newer Older
1
import math
2
import pathlib
3
import warnings
Kai Zhang's avatar
Kai Zhang committed
4
from types import FunctionType
5
from typing import Any, BinaryIO, List, Optional, Tuple, Union
6

7
import numpy as np
8
import torch
9
from PIL import Image, ImageColor, ImageDraw, ImageFont
10

11
12
13
14
15
16
17
18
__all__ = [
    "make_grid",
    "save_image",
    "draw_bounding_boxes",
    "draw_segmentation_masks",
    "draw_keypoints",
    "flow_to_image",
]
19

20

21
@torch.no_grad()
22
def make_grid(
23
    tensor: Union[torch.Tensor, List[torch.Tensor]],
24
25
26
    nrow: int = 8,
    padding: int = 2,
    normalize: bool = False,
27
    value_range: Optional[Tuple[int, int]] = None,
28
    scale_each: bool = False,
29
    pad_value: float = 0.0,
30
    **kwargs,
31
) -> torch.Tensor:
32
33
    """
    Make a grid of images.
34

35
36
37
    Args:
        tensor (Tensor or list): 4D mini-batch Tensor of shape (B x C x H x W)
            or a list of images all of the same size.
38
        nrow (int, optional): Number of images displayed in each row of the grid.
Tongzhou Wang's avatar
Tongzhou Wang committed
39
40
            The final grid size is ``(B / nrow, nrow)``. Default: ``8``.
        padding (int, optional): amount of padding. Default: ``2``.
41
        normalize (bool, optional): If True, shift the image to the range (0, 1),
42
            by the min and max values specified by ``value_range``. Default: ``False``.
43
        value_range (tuple, optional): tuple (min, max) where min and max are numbers,
44
45
            then these numbers are used to normalize the image. By default, min and max
            are computed from the tensor.
46
47
48
49
        range (tuple. optional):
            .. warning::
                This parameter was deprecated in ``0.12`` and will be removed in ``0.14``. Please use ``value_range``
                instead.
Tongzhou Wang's avatar
Tongzhou Wang committed
50
51
52
        scale_each (bool, optional): If ``True``, scale each image in the batch of
            images separately rather than the (min, max) over all images. Default: ``False``.
        pad_value (float, optional): Value for the padded pixels. Default: ``0``.
53

54
55
    Returns:
        grid (Tensor): the tensor containing grid of images.
56
    """
Kai Zhang's avatar
Kai Zhang committed
57
58
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(make_grid)
59
60
61
62
63
64
65
    if not torch.is_tensor(tensor):
        if isinstance(tensor, list):
            for t in tensor:
                if not torch.is_tensor(t):
                    raise TypeError(f"tensor or list of tensors expected, got a list containing {type(t)}")
        else:
            raise TypeError(f"tensor or list of tensors expected, got {type(tensor)}")
66
67

    if "range" in kwargs.keys():
68
69
70
71
        warnings.warn(
            "The parameter 'range' is deprecated since 0.12 and will be removed in 0.14. "
            "Please use 'value_range' instead."
        )
72
        value_range = kwargs["range"]
73

74
    # if list of tensors, convert to a 4D mini-batch Tensor
75
    if isinstance(tensor, list):
76
        tensor = torch.stack(tensor, dim=0)
77

78
    if tensor.dim() == 2:  # single image H x W
79
        tensor = tensor.unsqueeze(0)
80
    if tensor.dim() == 3:  # single image
81
        if tensor.size(0) == 1:  # if single-channel, convert to 3-channel
Adam Lerer's avatar
Adam Lerer committed
82
            tensor = torch.cat((tensor, tensor, tensor), 0)
83
        tensor = tensor.unsqueeze(0)
84

85
    if tensor.dim() == 4 and tensor.size(1) == 1:  # single-channel images
86
        tensor = torch.cat((tensor, tensor, tensor), 1)
87
88

    if normalize is True:
89
        tensor = tensor.clone()  # avoid modifying tensor in-place
90
91
        if value_range is not None and not isinstance(value_range, tuple):
            raise TypeError("value_range has to be a tuple (min, max) if specified. min and max are numbers")
92

93
94
95
        def norm_ip(img, low, high):
            img.clamp_(min=low, max=high)
            img.sub_(low).div_(max(high - low, 1e-5))
96

97
98
99
        def norm_range(t, value_range):
            if value_range is not None:
                norm_ip(t, value_range[0], value_range[1])
100
            else:
101
                norm_ip(t, float(t.min()), float(t.max()))
102
103
104

        if scale_each is True:
            for t in tensor:  # loop over mini-batch dimension
105
                norm_range(t, value_range)
106
        else:
107
            norm_range(tensor, value_range)
108

109
110
    if not isinstance(tensor, torch.Tensor):
        raise TypeError("tensor should be of type torch.Tensor")
111
    if tensor.size(0) == 1:
112
        return tensor.squeeze(0)
113

114
115
116
    # make the mini-batch of images into a grid
    nmaps = tensor.size(0)
    xmaps = min(nrow, nmaps)
117
    ymaps = int(math.ceil(float(nmaps) / xmaps))
118
    height, width = int(tensor.size(2) + padding), int(tensor.size(3) + padding)
119
120
    num_channels = tensor.size(1)
    grid = tensor.new_full((num_channels, height * ymaps + padding, width * xmaps + padding), pad_value)
121
    k = 0
122
123
    for y in range(ymaps):
        for x in range(xmaps):
124
125
            if k >= nmaps:
                break
126
127
128
129
130
            # Tensor.copy_() is a valid method but seems to be missing from the stubs
            # https://pytorch.org/docs/stable/tensors.html#torch.Tensor.copy_
            grid.narrow(1, y * height + padding, height - padding).narrow(  # type: ignore[attr-defined]
                2, x * width + padding, width - padding
            ).copy_(tensor[k])
131
132
133
134
            k = k + 1
    return grid


135
@torch.no_grad()
136
def save_image(
137
    tensor: Union[torch.Tensor, List[torch.Tensor]],
138
    fp: Union[str, pathlib.Path, BinaryIO],
139
    format: Optional[str] = None,
140
    **kwargs,
141
) -> None:
142
143
    """
    Save a given Tensor into an image file.
144
145
146
147

    Args:
        tensor (Tensor or list): Image to be saved. If given a mini-batch tensor,
            saves the tensor as a grid of images by calling ``make_grid``.
148
        fp (string or file object): A filename or a file object
149
150
        format(Optional):  If omitted, the format to use is determined from the filename extension.
            If a file object was used instead of a filename, this parameter should always be used.
151
        **kwargs: Other arguments are documented in ``make_grid``.
152
    """
153

Kai Zhang's avatar
Kai Zhang committed
154
155
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(save_image)
156
    grid = make_grid(tensor, **kwargs)
157
    # Add 0.5 after unnormalizing to [0, 255] to round to nearest integer
158
    ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
159
    im = Image.fromarray(ndarr)
160
    im.save(fp, format=format)
161
162
163
164
165
166
167


@torch.no_grad()
def draw_bounding_boxes(
    image: torch.Tensor,
    boxes: torch.Tensor,
    labels: Optional[List[str]] = None,
168
    colors: Optional[Union[List[Union[str, Tuple[int, int, int]]], str, Tuple[int, int, int]]] = None,
169
    fill: Optional[bool] = False,
170
171
    width: int = 1,
    font: Optional[str] = None,
172
    font_size: Optional[int] = None,
173
174
175
176
177
) -> torch.Tensor:

    """
    Draws bounding boxes on given image.
    The values of the input image should be uint8 between 0 and 255.
178
    If fill is True, Resulting Tensor should be saved as PNG image.
179
180

    Args:
181
        image (Tensor): Tensor of shape (C x H x W) and dtype uint8.
182
        boxes (Tensor): Tensor of size (N, 4) containing bounding boxes in (xmin, ymin, xmax, ymax) format. Note that
183
184
185
            the boxes are absolute coordinates with respect to the image. In other words: `0 <= xmin < xmax < W` and
            `0 <= ymin < ymax < H`.
        labels (List[str]): List containing the labels of bounding boxes.
186
187
188
        colors (color or list of colors, optional): List containing the colors
            of the boxes or single color for all boxes. The color can be represented as
            PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
189
            By default, random colors are generated for boxes.
190
        fill (bool): If `True` fills the bounding box with specified color.
191
192
193
194
195
        width (int): Width of bounding box.
        font (str): A filename containing a TrueType font. If the file is not found in this filename, the loader may
            also search in other directories, such as the `fonts/` directory on Windows or `/Library/Fonts/`,
            `/System/Library/Fonts/` and `~/Library/Fonts/` on macOS.
        font_size (int): The requested font size in points.
196
197
198

    Returns:
        img (Tensor[C, H, W]): Image Tensor of dtype uint8 with bounding boxes plotted.
199
200
    """

Kai Zhang's avatar
Kai Zhang committed
201
202
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(draw_bounding_boxes)
203
204
205
206
207
208
    if not isinstance(image, torch.Tensor):
        raise TypeError(f"Tensor expected, got {type(image)}")
    elif image.dtype != torch.uint8:
        raise ValueError(f"Tensor uint8 expected, got {image.dtype}")
    elif image.dim() != 3:
        raise ValueError("Pass individual images, not batches")
209
210
211
    elif image.size(0) not in {1, 3}:
        raise ValueError("Only grayscale and RGB images are supported")

212
213
    num_boxes = boxes.shape[0]

214
215
216
217
    if num_boxes == 0:
        warnings.warn("boxes doesn't contain any box. No box was drawn")
        return image

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    if labels is None:
        labels: Union[List[str], List[None]] = [None] * num_boxes  # type: ignore[no-redef]
    elif len(labels) != num_boxes:
        raise ValueError(
            f"Number of boxes ({num_boxes}) and labels ({len(labels)}) mismatch. Please specify labels for each box."
        )

    if colors is None:
        colors = _generate_color_palette(num_boxes)
    elif isinstance(colors, list):
        if len(colors) < num_boxes:
            raise ValueError(f"Number of colors ({len(colors)}) is less than number of boxes ({num_boxes}). ")
    else:  # colors specifies a single color for all boxes
        colors = [colors] * num_boxes

    colors = [(ImageColor.getrgb(color) if isinstance(color, str) else color) for color in colors]

235
236
237
238
239
240
241
    if font is None:
        if font_size is not None:
            warnings.warn("Argument 'font_size' will be ignored since 'font' is not set.")
        txt_font = ImageFont.load_default()
    else:
        txt_font = ImageFont.truetype(font=font, size=font_size or 10)

242
    # Handle Grayscale images
243
244
    if image.size(0) == 1:
        image = torch.tile(image, (3, 1, 1))
245

246
    ndarr = image.permute(1, 2, 0).cpu().numpy()
247
248
249
    img_to_draw = Image.fromarray(ndarr)
    img_boxes = boxes.to(torch.int64).tolist()

250
251
252
253
254
    if fill:
        draw = ImageDraw.Draw(img_to_draw, "RGBA")
    else:
        draw = ImageDraw.Draw(img_to_draw)

255
    for bbox, color, label in zip(img_boxes, colors, labels):  # type: ignore[arg-type]
256
        if fill:
257
            fill_color = color + (100,)
258
259
260
            draw.rectangle(bbox, width=width, outline=color, fill=fill_color)
        else:
            draw.rectangle(bbox, width=width, outline=color)
261

262
        if label is not None:
263
            margin = width + 1
264
            draw.text((bbox[0] + margin, bbox[1] + margin), label, fill=color, font=txt_font)
265

266
    return torch.from_numpy(np.array(img_to_draw)).permute(2, 0, 1).to(dtype=torch.uint8)
267
268
269
270
271
272


@torch.no_grad()
def draw_segmentation_masks(
    image: torch.Tensor,
    masks: torch.Tensor,
273
    alpha: float = 0.8,
274
    colors: Optional[Union[List[Union[str, Tuple[int, int, int]]], str, Tuple[int, int, int]]] = None,
275
276
277
278
279
280
281
) -> torch.Tensor:

    """
    Draws segmentation masks on given RGB image.
    The values of the input image should be uint8 between 0 and 255.

    Args:
282
283
284
285
        image (Tensor): Tensor of shape (3, H, W) and dtype uint8.
        masks (Tensor): Tensor of shape (num_masks, H, W) or (H, W) and dtype bool.
        alpha (float): Float number between 0 and 1 denoting the transparency of the masks.
            0 means full transparency, 1 means no transparency.
286
287
288
289
        colors (color or list of colors, optional): List containing the colors
            of the masks or single color for all masks. The color can be represented as
            PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
            By default, random colors are generated for each mask.
290
291

    Returns:
292
        img (Tensor[C, H, W]): Image Tensor, with segmentation masks drawn on top.
293
294
    """

Kai Zhang's avatar
Kai Zhang committed
295
296
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(draw_segmentation_masks)
297
    if not isinstance(image, torch.Tensor):
298
        raise TypeError(f"The image must be a tensor, got {type(image)}")
299
    elif image.dtype != torch.uint8:
300
        raise ValueError(f"The image dtype must be uint8, got {image.dtype}")
301
302
303
304
    elif image.dim() != 3:
        raise ValueError("Pass individual images, not batches")
    elif image.size()[0] != 3:
        raise ValueError("Pass an RGB image. Other Image formats are not supported")
305
306
307
308
309
310
311
312
    if masks.ndim == 2:
        masks = masks[None, :, :]
    if masks.ndim != 3:
        raise ValueError("masks must be of shape (H, W) or (batch_size, H, W)")
    if masks.dtype != torch.bool:
        raise ValueError(f"The masks must be of dtype bool. Got {masks.dtype}")
    if masks.shape[-2:] != image.shape[-2:]:
        raise ValueError("The image and the masks must have the same height and width")
313
314

    num_masks = masks.size()[0]
315
316
    if colors is not None and num_masks > len(colors):
        raise ValueError(f"There are more masks ({num_masks}) than colors ({len(colors)})")
317

318
319
320
321
    if num_masks == 0:
        warnings.warn("masks doesn't contain any mask. No mask was drawn")
        return image

322
    if colors is None:
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
        colors = _generate_color_palette(num_masks)

    if not isinstance(colors, list):
        colors = [colors]
    if not isinstance(colors[0], (tuple, str)):
        raise ValueError("colors must be a tuple or a string, or a list thereof")
    if isinstance(colors[0], tuple) and len(colors[0]) != 3:
        raise ValueError("It seems that you passed a tuple of colors instead of a list of colors")

    out_dtype = torch.uint8

    colors_ = []
    for color in colors:
        if isinstance(color, str):
            color = ImageColor.getrgb(color)
338
        colors_.append(torch.tensor(color, dtype=out_dtype))
339

340
341
342
343
    img_to_draw = image.detach().clone()
    # TODO: There might be a way to vectorize this
    for mask, color in zip(masks, colors_):
        img_to_draw[:, mask] = color[:, None]
344

345
346
    out = image * (1 - alpha) + img_to_draw * alpha
    return out.to(out_dtype)
347
348


349
350
351
352
@torch.no_grad()
def draw_keypoints(
    image: torch.Tensor,
    keypoints: torch.Tensor,
353
    connectivity: Optional[List[Tuple[int, int]]] = None,
354
355
356
357
358
359
360
361
362
363
364
365
366
    colors: Optional[Union[str, Tuple[int, int, int]]] = None,
    radius: int = 2,
    width: int = 3,
) -> torch.Tensor:

    """
    Draws Keypoints on given RGB image.
    The values of the input image should be uint8 between 0 and 255.

    Args:
        image (Tensor): Tensor of shape (3, H, W) and dtype uint8.
        keypoints (Tensor): Tensor of shape (num_instances, K, 2) the K keypoints location for each of the N instances,
            in the format [x, y].
367
        connectivity (List[Tuple[int, int]]]): A List of tuple where,
368
369
370
371
372
373
374
375
376
377
            each tuple contains pair of keypoints to be connected.
        colors (str, Tuple): The color can be represented as
            PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
        radius (int): Integer denoting radius of keypoint.
        width (int): Integer denoting width of line connecting keypoints.

    Returns:
        img (Tensor[C, H, W]): Image Tensor of dtype uint8 with keypoints drawn.
    """

Kai Zhang's avatar
Kai Zhang committed
378
379
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(draw_keypoints)
380
381
382
383
384
385
386
387
388
389
390
391
    if not isinstance(image, torch.Tensor):
        raise TypeError(f"The image must be a tensor, got {type(image)}")
    elif image.dtype != torch.uint8:
        raise ValueError(f"The image dtype must be uint8, got {image.dtype}")
    elif image.dim() != 3:
        raise ValueError("Pass individual images, not batches")
    elif image.size()[0] != 3:
        raise ValueError("Pass an RGB image. Other Image formats are not supported")

    if keypoints.ndim != 3:
        raise ValueError("keypoints must be of shape (num_instances, K, 2)")

392
    ndarr = image.permute(1, 2, 0).cpu().numpy()
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
    img_to_draw = Image.fromarray(ndarr)
    draw = ImageDraw.Draw(img_to_draw)
    img_kpts = keypoints.to(torch.int64).tolist()

    for kpt_id, kpt_inst in enumerate(img_kpts):
        for inst_id, kpt in enumerate(kpt_inst):
            x1 = kpt[0] - radius
            x2 = kpt[0] + radius
            y1 = kpt[1] - radius
            y2 = kpt[1] + radius
            draw.ellipse([x1, y1, x2, y2], fill=colors, outline=None, width=0)

        if connectivity:
            for connection in connectivity:
                start_pt_x = kpt_inst[connection[0]][0]
                start_pt_y = kpt_inst[connection[0]][1]

                end_pt_x = kpt_inst[connection[1]][0]
                end_pt_y = kpt_inst[connection[1]][1]

                draw.line(
                    ((start_pt_x, start_pt_y), (end_pt_x, end_pt_y)),
                    width=width,
                )

    return torch.from_numpy(np.array(img_to_draw)).permute(2, 0, 1).to(dtype=torch.uint8)


421
422
423
424
425
426
427
428
# Flow visualization code adapted from https://github.com/tomrunia/OpticalFlow_Visualization
@torch.no_grad()
def flow_to_image(flow: torch.Tensor) -> torch.Tensor:

    """
    Converts a flow to an RGB image.

    Args:
429
        flow (Tensor): Flow of shape (N, 2, H, W) or (2, H, W) and dtype torch.float.
430
431

    Returns:
432
433
        img (Tensor): Image Tensor of dtype uint8 where each color corresponds
            to a given flow direction. Shape is (N, 3, H, W) or (3, H, W) depending on the input.
434
435
436
437
438
    """

    if flow.dtype != torch.float:
        raise ValueError(f"Flow should be of dtype torch.float, got {flow.dtype}.")

439
440
441
    orig_shape = flow.shape
    if flow.ndim == 3:
        flow = flow[None]  # Add batch dim
442

443
444
445
446
    if flow.ndim != 4 or flow.shape[1] != 2:
        raise ValueError(f"Input flow should have shape (2, H, W) or (N, 2, H, W), got {orig_shape}.")

    max_norm = torch.sum(flow ** 2, dim=1).sqrt().max()
447
448
    epsilon = torch.finfo((flow).dtype).eps
    normalized_flow = flow / (max_norm + epsilon)
449
450
451
452
453
    img = _normalized_flow_to_image(normalized_flow)

    if len(orig_shape) == 3:
        img = img[0]  # Remove batch dim
    return img
454
455
456
457
458
459


@torch.no_grad()
def _normalized_flow_to_image(normalized_flow: torch.Tensor) -> torch.Tensor:

    """
460
    Converts a batch of normalized flow to an RGB image.
461
462

    Args:
463
        normalized_flow (torch.Tensor): Normalized flow tensor of shape (N, 2, H, W)
464
    Returns:
465
       img (Tensor(N, 3, H, W)): Flow visualization image of dtype uint8.
466
467
    """

468
    N, _, H, W = normalized_flow.shape
469
470
471
    device = normalized_flow.device
    flow_image = torch.zeros((N, 3, H, W), dtype=torch.uint8, device=device)
    colorwheel = _make_colorwheel().to(device)  # shape [55x3]
472
    num_cols = colorwheel.shape[0]
473
474
    norm = torch.sum(normalized_flow ** 2, dim=1).sqrt()
    a = torch.atan2(-normalized_flow[:, 1, :, :], -normalized_flow[:, 0, :, :]) / torch.pi
475
476
477
478
479
480
481
482
483
484
485
486
    fk = (a + 1) / 2 * (num_cols - 1)
    k0 = torch.floor(fk).to(torch.long)
    k1 = k0 + 1
    k1[k1 == num_cols] = 0
    f = fk - k0

    for c in range(colorwheel.shape[1]):
        tmp = colorwheel[:, c]
        col0 = tmp[k0] / 255.0
        col1 = tmp[k1] / 255.0
        col = (1 - f) * col0 + f * col1
        col = 1 - norm * (1 - col)
487
        flow_image[:, c, :, :] = torch.floor(255 * col)
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
    return flow_image


def _make_colorwheel() -> torch.Tensor:
    """
    Generates a color wheel for optical flow visualization as presented in:
    Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
    URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf.

    Returns:
        colorwheel (Tensor[55, 3]): Colorwheel Tensor.
    """

    RY = 15
    YG = 6
    GC = 4
    CB = 11
    BM = 13
    MR = 6

    ncols = RY + YG + GC + CB + BM + MR
    colorwheel = torch.zeros((ncols, 3))
    col = 0

    # RY
    colorwheel[0:RY, 0] = 255
    colorwheel[0:RY, 1] = torch.floor(255 * torch.arange(0, RY) / RY)
    col = col + RY
    # YG
    colorwheel[col : col + YG, 0] = 255 - torch.floor(255 * torch.arange(0, YG) / YG)
    colorwheel[col : col + YG, 1] = 255
    col = col + YG
    # GC
    colorwheel[col : col + GC, 1] = 255
    colorwheel[col : col + GC, 2] = torch.floor(255 * torch.arange(0, GC) / GC)
    col = col + GC
    # CB
    colorwheel[col : col + CB, 1] = 255 - torch.floor(255 * torch.arange(CB) / CB)
    colorwheel[col : col + CB, 2] = 255
    col = col + CB
    # BM
    colorwheel[col : col + BM, 2] = 255
    colorwheel[col : col + BM, 0] = torch.floor(255 * torch.arange(0, BM) / BM)
    col = col + BM
    # MR
    colorwheel[col : col + MR, 2] = 255 - torch.floor(255 * torch.arange(MR) / MR)
    colorwheel[col : col + MR, 0] = 255
    return colorwheel


538
def _generate_color_palette(num_objects: int):
539
    palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
540
    return [tuple((i * palette) % 255) for i in range(num_objects)]
541
542


Kai Zhang's avatar
Kai Zhang committed
543
def _log_api_usage_once(obj: Any) -> None:
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

    """
    Logs API usage(module and name) within an organization.
    In a large ecosystem, it's often useful to track the PyTorch and
    TorchVision APIs usage. This API provides the similar functionality to the
    logging module in the Python stdlib. It can be used for debugging purpose
    to log which methods are used and by default it is inactive, unless the user
    manually subscribes a logger via the `SetAPIUsageLogger method <https://github.com/pytorch/pytorch/blob/eb3b9fe719b21fae13c7a7cf3253f970290a573e/c10/util/Logging.cpp#L114>`_.
    Please note it is triggered only once for the same API call within a process.
    It does not collect any data from open-source users since it is no-op by default.
    For more information, please refer to
    * PyTorch note: https://pytorch.org/docs/stable/notes/large_scale_deployments.html#api-usage-logging;
    * Logging policy: https://github.com/pytorch/vision/issues/5052;

    Args:
        obj (class instance or method): an object to extract info from.
    """
Kai Zhang's avatar
Kai Zhang committed
561
    if not obj.__module__.startswith("torchvision"):
562
        return
Kai Zhang's avatar
Kai Zhang committed
563
564
565
566
    name = obj.__class__.__name__
    if isinstance(obj, FunctionType):
        name = obj.__name__
    torch._C._log_api_usage_once(f"{obj.__module__}.{name}")