utils.py 12.1 KB
Newer Older
1
import math
2
import pathlib
3
import warnings
4
5
from typing import Union, Optional, List, Tuple, Text, BinaryIO

6
import numpy as np
7
import torch
8
from PIL import Image, ImageDraw, ImageFont, ImageColor
9

10
__all__ = ["make_grid", "save_image", "draw_bounding_boxes", "draw_segmentation_masks"]
11

12

13
@torch.no_grad()
14
def make_grid(
15
    tensor: Union[torch.Tensor, List[torch.Tensor]],
16
17
18
    nrow: int = 8,
    padding: int = 2,
    normalize: bool = False,
19
    value_range: Optional[Tuple[int, int]] = None,
20
21
    scale_each: bool = False,
    pad_value: int = 0,
22
    **kwargs,
23
) -> torch.Tensor:
24
25
    """
    Make a grid of images.
26

27
28
29
    Args:
        tensor (Tensor or list): 4D mini-batch Tensor of shape (B x C x H x W)
            or a list of images all of the same size.
30
        nrow (int, optional): Number of images displayed in each row of the grid.
Tongzhou Wang's avatar
Tongzhou Wang committed
31
32
            The final grid size is ``(B / nrow, nrow)``. Default: ``8``.
        padding (int, optional): amount of padding. Default: ``2``.
33
        normalize (bool, optional): If True, shift the image to the range (0, 1),
34
            by the min and max values specified by ``value_range``. Default: ``False``.
35
        value_range (tuple, optional): tuple (min, max) where min and max are numbers,
36
37
            then these numbers are used to normalize the image. By default, min and max
            are computed from the tensor.
Tongzhou Wang's avatar
Tongzhou Wang committed
38
39
40
        scale_each (bool, optional): If ``True``, scale each image in the batch of
            images separately rather than the (min, max) over all images. Default: ``False``.
        pad_value (float, optional): Value for the padded pixels. Default: ``0``.
41

42
43
    Returns:
        grid (Tensor): the tensor containing grid of images.
44
    """
45
46
    if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
        raise TypeError(f"tensor or list of tensors expected, got {type(tensor)}")
47
48
49
50
51

    if "range" in kwargs.keys():
        warning = "range will be deprecated, please use value_range instead."
        warnings.warn(warning)
        value_range = kwargs["range"]
52

53
    # if list of tensors, convert to a 4D mini-batch Tensor
54
    if isinstance(tensor, list):
55
        tensor = torch.stack(tensor, dim=0)
56

57
    if tensor.dim() == 2:  # single image H x W
58
        tensor = tensor.unsqueeze(0)
59
    if tensor.dim() == 3:  # single image
60
        if tensor.size(0) == 1:  # if single-channel, convert to 3-channel
Adam Lerer's avatar
Adam Lerer committed
61
            tensor = torch.cat((tensor, tensor, tensor), 0)
62
        tensor = tensor.unsqueeze(0)
63

64
    if tensor.dim() == 4 and tensor.size(1) == 1:  # single-channel images
65
        tensor = torch.cat((tensor, tensor, tensor), 1)
66
67

    if normalize is True:
68
        tensor = tensor.clone()  # avoid modifying tensor in-place
69
        if value_range is not None:
70
71
72
            assert isinstance(
                value_range, tuple
            ), "value_range has to be a tuple (min, max) if specified. min and max are numbers"
73

74
75
76
        def norm_ip(img, low, high):
            img.clamp_(min=low, max=high)
            img.sub_(low).div_(max(high - low, 1e-5))
77

78
79
80
        def norm_range(t, value_range):
            if value_range is not None:
                norm_ip(t, value_range[0], value_range[1])
81
            else:
82
                norm_ip(t, float(t.min()), float(t.max()))
83
84
85

        if scale_each is True:
            for t in tensor:  # loop over mini-batch dimension
86
                norm_range(t, value_range)
87
        else:
88
            norm_range(tensor, value_range)
89

90
    if tensor.size(0) == 1:
91
        return tensor.squeeze(0)
92

93
94
95
    # make the mini-batch of images into a grid
    nmaps = tensor.size(0)
    xmaps = min(nrow, nmaps)
96
    ymaps = int(math.ceil(float(nmaps) / xmaps))
97
    height, width = int(tensor.size(2) + padding), int(tensor.size(3) + padding)
98
99
    num_channels = tensor.size(1)
    grid = tensor.new_full((num_channels, height * ymaps + padding, width * xmaps + padding), pad_value)
100
    k = 0
101
102
    for y in range(ymaps):
        for x in range(xmaps):
103
104
            if k >= nmaps:
                break
105
106
107
108
109
            # Tensor.copy_() is a valid method but seems to be missing from the stubs
            # https://pytorch.org/docs/stable/tensors.html#torch.Tensor.copy_
            grid.narrow(1, y * height + padding, height - padding).narrow(  # type: ignore[attr-defined]
                2, x * width + padding, width - padding
            ).copy_(tensor[k])
110
111
112
113
            k = k + 1
    return grid


114
@torch.no_grad()
115
def save_image(
116
    tensor: Union[torch.Tensor, List[torch.Tensor]],
117
118
    fp: Union[Text, pathlib.Path, BinaryIO],
    format: Optional[str] = None,
119
    **kwargs,
120
) -> None:
121
122
    """
    Save a given Tensor into an image file.
123
124
125
126

    Args:
        tensor (Tensor or list): Image to be saved. If given a mini-batch tensor,
            saves the tensor as a grid of images by calling ``make_grid``.
127
        fp (string or file object): A filename or a file object
128
129
        format(Optional):  If omitted, the format to use is determined from the filename extension.
            If a file object was used instead of a filename, this parameter should always be used.
130
        **kwargs: Other arguments are documented in ``make_grid``.
131
    """
132
133

    grid = make_grid(tensor, **kwargs)
134
    # Add 0.5 after unnormalizing to [0, 255] to round to nearest integer
135
    ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
136
    im = Image.fromarray(ndarr)
137
    im.save(fp, format=format)
138
139
140
141
142
143
144


@torch.no_grad()
def draw_bounding_boxes(
    image: torch.Tensor,
    boxes: torch.Tensor,
    labels: Optional[List[str]] = None,
145
    colors: Optional[Union[List[Union[str, Tuple[int, int, int]]], str, Tuple[int, int, int]]] = None,
146
    fill: Optional[bool] = False,
147
148
    width: int = 1,
    font: Optional[str] = None,
149
    font_size: int = 10,
150
151
152
153
154
) -> torch.Tensor:

    """
    Draws bounding boxes on given image.
    The values of the input image should be uint8 between 0 and 255.
155
    If fill is True, Resulting Tensor should be saved as PNG image.
156
157

    Args:
158
        image (Tensor): Tensor of shape (C x H x W) and dtype uint8.
159
        boxes (Tensor): Tensor of size (N, 4) containing bounding boxes in (xmin, ymin, xmax, ymax) format. Note that
160
161
162
            the boxes are absolute coordinates with respect to the image. In other words: `0 <= xmin < xmax < W` and
            `0 <= ymin < ymax < H`.
        labels (List[str]): List containing the labels of bounding boxes.
163
164
165
        colors (color or list of colors, optional): List containing the colors
            of the boxes or single color for all boxes. The color can be represented as
            PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
166
        fill (bool): If `True` fills the bounding box with specified color.
167
168
169
170
171
        width (int): Width of bounding box.
        font (str): A filename containing a TrueType font. If the file is not found in this filename, the loader may
            also search in other directories, such as the `fonts/` directory on Windows or `/Library/Fonts/`,
            `/System/Library/Fonts/` and `~/Library/Fonts/` on macOS.
        font_size (int): The requested font size in points.
172
173
174

    Returns:
        img (Tensor[C, H, W]): Image Tensor of dtype uint8 with bounding boxes plotted.
175
176
177
178
179
180
181
182
    """

    if not isinstance(image, torch.Tensor):
        raise TypeError(f"Tensor expected, got {type(image)}")
    elif image.dtype != torch.uint8:
        raise ValueError(f"Tensor uint8 expected, got {image.dtype}")
    elif image.dim() != 3:
        raise ValueError("Pass individual images, not batches")
183
184
185
186
187
    elif image.size(0) not in {1, 3}:
        raise ValueError("Only grayscale and RGB images are supported")

    if image.size(0) == 1:
        image = torch.tile(image, (3, 1, 1))
188
189
190
191
192
193

    ndarr = image.permute(1, 2, 0).numpy()
    img_to_draw = Image.fromarray(ndarr)

    img_boxes = boxes.to(torch.int64).tolist()

194
195
196
197
198
199
    if fill:
        draw = ImageDraw.Draw(img_to_draw, "RGBA")

    else:
        draw = ImageDraw.Draw(img_to_draw)

200
    txt_font = ImageFont.load_default() if font is None else ImageFont.truetype(font=font, size=font_size)
201
202

    for i, bbox in enumerate(img_boxes):
203
204
        if colors is None:
            color = None
205
        elif isinstance(colors, list):
206
            color = colors[i]
207
208
        else:
            color = colors
209
210
211
212
213
214
215
216
217
218
219
220

        if fill:
            if color is None:
                fill_color = (255, 255, 255, 100)
            elif isinstance(color, str):
                # This will automatically raise Error if rgb cannot be parsed.
                fill_color = ImageColor.getrgb(color) + (100,)
            elif isinstance(color, tuple):
                fill_color = color + (100,)
            draw.rectangle(bbox, width=width, outline=color, fill=fill_color)
        else:
            draw.rectangle(bbox, width=width, outline=color)
221
222

        if labels is not None:
223
224
            margin = width + 1
            draw.text((bbox[0] + margin, bbox[1] + margin), labels[i], fill=color, font=txt_font)
225

226
    return torch.from_numpy(np.array(img_to_draw)).permute(2, 0, 1).to(dtype=torch.uint8)
227
228
229
230
231
232


@torch.no_grad()
def draw_segmentation_masks(
    image: torch.Tensor,
    masks: torch.Tensor,
233
    alpha: float = 0.8,
234
    colors: Optional[Union[List[Union[str, Tuple[int, int, int]]], str, Tuple[int, int, int]]] = None,
235
236
237
238
239
240
241
) -> torch.Tensor:

    """
    Draws segmentation masks on given RGB image.
    The values of the input image should be uint8 between 0 and 255.

    Args:
242
243
244
245
        image (Tensor): Tensor of shape (3, H, W) and dtype uint8.
        masks (Tensor): Tensor of shape (num_masks, H, W) or (H, W) and dtype bool.
        alpha (float): Float number between 0 and 1 denoting the transparency of the masks.
            0 means full transparency, 1 means no transparency.
246
247
248
249
        colors (color or list of colors, optional): List containing the colors
            of the masks or single color for all masks. The color can be represented as
            PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
            By default, random colors are generated for each mask.
250
251

    Returns:
252
        img (Tensor[C, H, W]): Image Tensor, with segmentation masks drawn on top.
253
254
255
    """

    if not isinstance(image, torch.Tensor):
256
        raise TypeError(f"The image must be a tensor, got {type(image)}")
257
    elif image.dtype != torch.uint8:
258
        raise ValueError(f"The image dtype must be uint8, got {image.dtype}")
259
260
261
262
    elif image.dim() != 3:
        raise ValueError("Pass individual images, not batches")
    elif image.size()[0] != 3:
        raise ValueError("Pass an RGB image. Other Image formats are not supported")
263
264
265
266
267
268
269
270
    if masks.ndim == 2:
        masks = masks[None, :, :]
    if masks.ndim != 3:
        raise ValueError("masks must be of shape (H, W) or (batch_size, H, W)")
    if masks.dtype != torch.bool:
        raise ValueError(f"The masks must be of dtype bool. Got {masks.dtype}")
    if masks.shape[-2:] != image.shape[-2:]:
        raise ValueError("The image and the masks must have the same height and width")
271
272

    num_masks = masks.size()[0]
273
274
    if colors is not None and num_masks > len(colors):
        raise ValueError(f"There are more masks ({num_masks}) than colors ({len(colors)})")
275
276

    if colors is None:
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
        colors = _generate_color_palette(num_masks)

    if not isinstance(colors, list):
        colors = [colors]
    if not isinstance(colors[0], (tuple, str)):
        raise ValueError("colors must be a tuple or a string, or a list thereof")
    if isinstance(colors[0], tuple) and len(colors[0]) != 3:
        raise ValueError("It seems that you passed a tuple of colors instead of a list of colors")

    out_dtype = torch.uint8

    colors_ = []
    for color in colors:
        if isinstance(color, str):
            color = ImageColor.getrgb(color)
292
        colors_.append(torch.tensor(color, dtype=out_dtype))
293

294
295
296
297
    img_to_draw = image.detach().clone()
    # TODO: There might be a way to vectorize this
    for mask, color in zip(masks, colors_):
        img_to_draw[:, mask] = color[:, None]
298

299
300
    out = image * (1 - alpha) + img_to_draw * alpha
    return out.to(out_dtype)
301
302


303
def _generate_color_palette(num_masks: int):
304
305
    palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
    return [tuple((i * palette) % 255) for i in range(num_masks)]