test_datasets.py 20.2 KB
Newer Older
1
import contextlib
Francisco Massa's avatar
Francisco Massa committed
2
import sys
3
import os
4
import unittest
Philip Meier's avatar
Philip Meier committed
5
from unittest import mock
6
import numpy as np
7
import PIL
8
from PIL import Image
9
from torch._utils_internal import get_file_path_2
10
import torchvision
11
from torchvision.datasets import utils
12
from common_utils import get_tmp_dir
Philip Meier's avatar
Philip Meier committed
13
from fakedata_generation import mnist_root, cifar_root, imagenet_root, \
14
    cityscapes_root, svhn_root, voc_root, ucf101_root, places365_root, widerface_root, stl10_root
15
import xml.etree.ElementTree as ET
Philip Meier's avatar
Philip Meier committed
16
17
from urllib.request import Request, urlopen
import itertools
18
19


20
21
22
23
24
25
try:
    import scipy
    HAS_SCIPY = True
except ImportError:
    HAS_SCIPY = False

26
27
28
29
30
31
try:
    import av
    HAS_PYAV = True
except ImportError:
    HAS_PYAV = False

32

33
class DatasetTestcase(unittest.TestCase):
34
35
36
37
38
39
    def generic_classification_dataset_test(self, dataset, num_images=1):
        self.assertEqual(len(dataset), num_images)
        img, target = dataset[0]
        self.assertTrue(isinstance(img, PIL.Image.Image))
        self.assertTrue(isinstance(target, int))

40
41
42
43
44
45
    def generic_segmentation_dataset_test(self, dataset, num_images=1):
        self.assertEqual(len(dataset), num_images)
        img, target = dataset[0]
        self.assertTrue(isinstance(img, PIL.Image.Image))
        self.assertTrue(isinstance(target, PIL.Image.Image))

46
47

class Tester(DatasetTestcase):
48
    def test_imagefolder(self):
49
50
51
52
        # TODO: create the fake data on-the-fly
        FAKEDATA_DIR = get_file_path_2(
            os.path.dirname(os.path.abspath(__file__)), 'assets', 'fakedata')

53
        with get_tmp_dir(src=os.path.join(FAKEDATA_DIR, 'imagefolder')) as root:
54
            classes = sorted(['a', 'b'])
55
56
57
58
59
60
            class_a_image_files = [
                os.path.join(root, 'a', file) for file in ('a1.png', 'a2.png', 'a3.png')
            ]
            class_b_image_files = [
                os.path.join(root, 'b', file) for file in ('b1.png', 'b2.png', 'b3.png', 'b4.png')
            ]
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
            dataset = torchvision.datasets.ImageFolder(root, loader=lambda x: x)

            # test if all classes are present
            self.assertEqual(classes, sorted(dataset.classes))

            # test if combination of classes and class_to_index functions correctly
            for cls in classes:
                self.assertEqual(cls, dataset.classes[dataset.class_to_idx[cls]])

            # test if all images were detected correctly
            class_a_idx = dataset.class_to_idx['a']
            class_b_idx = dataset.class_to_idx['b']
            imgs_a = [(img_file, class_a_idx) for img_file in class_a_image_files]
            imgs_b = [(img_file, class_b_idx) for img_file in class_b_image_files]
            imgs = sorted(imgs_a + imgs_b)
            self.assertEqual(imgs, dataset.imgs)

            # test if the datasets outputs all images correctly
            outputs = sorted([dataset[i] for i in range(len(dataset))])
            self.assertEqual(imgs, outputs)

            # redo all tests with specified valid image files
83
84
            dataset = torchvision.datasets.ImageFolder(
                root, loader=lambda x: x, is_valid_file=lambda x: '3' in x)
85
86
87
88
89
90
91
92
93
94
95
96
97
98
            self.assertEqual(classes, sorted(dataset.classes))

            class_a_idx = dataset.class_to_idx['a']
            class_b_idx = dataset.class_to_idx['b']
            imgs_a = [(img_file, class_a_idx) for img_file in class_a_image_files
                      if '3' in img_file]
            imgs_b = [(img_file, class_b_idx) for img_file in class_b_image_files
                      if '3' in img_file]
            imgs = sorted(imgs_a + imgs_b)
            self.assertEqual(imgs, dataset.imgs)

            outputs = sorted([dataset[i] for i in range(len(dataset))])
            self.assertEqual(imgs, outputs)

99
100
101
102
103
104
105
106
107
108
    def test_imagefolder_empty(self):
        with get_tmp_dir() as root:
            with self.assertRaises(RuntimeError):
                torchvision.datasets.ImageFolder(root, loader=lambda x: x)

            with self.assertRaises(RuntimeError):
                torchvision.datasets.ImageFolder(
                    root, loader=lambda x: x, is_valid_file=lambda x: False
                )

109
110
111
    @mock.patch('torchvision.datasets.mnist.download_and_extract_archive')
    def test_mnist(self, mock_download_extract):
        num_examples = 30
112
        with mnist_root(num_examples, "MNIST") as root:
113
            dataset = torchvision.datasets.MNIST(root, download=True)
114
            self.generic_classification_dataset_test(dataset, num_images=num_examples)
115
            img, target = dataset[0]
116
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
117

118
119
120
    @mock.patch('torchvision.datasets.mnist.download_and_extract_archive')
    def test_kmnist(self, mock_download_extract):
        num_examples = 30
121
        with mnist_root(num_examples, "KMNIST") as root:
122
            dataset = torchvision.datasets.KMNIST(root, download=True)
123
            self.generic_classification_dataset_test(dataset, num_images=num_examples)
124
            img, target = dataset[0]
125
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
126

127
128
129
    @mock.patch('torchvision.datasets.mnist.download_and_extract_archive')
    def test_fashionmnist(self, mock_download_extract):
        num_examples = 30
130
        with mnist_root(num_examples, "FashionMNIST") as root:
131
            dataset = torchvision.datasets.FashionMNIST(root, download=True)
132
            self.generic_classification_dataset_test(dataset, num_images=num_examples)
133
            img, target = dataset[0]
134
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
135

136
    @mock.patch('torchvision.datasets.imagenet._verify_archive')
137
    @unittest.skipIf(not HAS_SCIPY, "scipy unavailable")
138
    def test_imagenet(self, mock_verify):
139
        with imagenet_root() as root:
140
            dataset = torchvision.datasets.ImageNet(root, split='train')
141
            self.generic_classification_dataset_test(dataset)
142

143
            dataset = torchvision.datasets.ImageNet(root, split='val')
144
            self.generic_classification_dataset_test(dataset)
145

Josh Bradley's avatar
Josh Bradley committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    @mock.patch('torchvision.datasets.WIDERFace._check_integrity')
    @unittest.skipIf('win' in sys.platform, 'temporarily disabled on Windows')
    def test_widerface(self, mock_check_integrity):
        mock_check_integrity.return_value = True
        with widerface_root() as root:
            dataset = torchvision.datasets.WIDERFace(root, split='train')
            self.assertEqual(len(dataset), 1)
            img, target = dataset[0]
            self.assertTrue(isinstance(img, PIL.Image.Image))

            dataset = torchvision.datasets.WIDERFace(root, split='val')
            self.assertEqual(len(dataset), 1)
            img, target = dataset[0]
            self.assertTrue(isinstance(img, PIL.Image.Image))

            dataset = torchvision.datasets.WIDERFace(root, split='test')
            self.assertEqual(len(dataset), 1)
            img, target = dataset[0]
            self.assertTrue(isinstance(img, PIL.Image.Image))

Philip Meier's avatar
Philip Meier committed
166
167
168
169
170
171
172
    @mock.patch('torchvision.datasets.cifar.check_integrity')
    @mock.patch('torchvision.datasets.cifar.CIFAR10._check_integrity')
    def test_cifar10(self, mock_ext_check, mock_int_check):
        mock_ext_check.return_value = True
        mock_int_check.return_value = True
        with cifar_root('CIFAR10') as root:
            dataset = torchvision.datasets.CIFAR10(root, train=True, download=True)
173
            self.generic_classification_dataset_test(dataset, num_images=5)
Philip Meier's avatar
Philip Meier committed
174
            img, target = dataset[0]
175
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
Philip Meier's avatar
Philip Meier committed
176
177

            dataset = torchvision.datasets.CIFAR10(root, train=False, download=True)
178
            self.generic_classification_dataset_test(dataset)
Philip Meier's avatar
Philip Meier committed
179
            img, target = dataset[0]
180
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
Philip Meier's avatar
Philip Meier committed
181
182
183
184
185
186
187
188

    @mock.patch('torchvision.datasets.cifar.check_integrity')
    @mock.patch('torchvision.datasets.cifar.CIFAR10._check_integrity')
    def test_cifar100(self, mock_ext_check, mock_int_check):
        mock_ext_check.return_value = True
        mock_int_check.return_value = True
        with cifar_root('CIFAR100') as root:
            dataset = torchvision.datasets.CIFAR100(root, train=True, download=True)
189
            self.generic_classification_dataset_test(dataset)
Philip Meier's avatar
Philip Meier committed
190
            img, target = dataset[0]
191
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
Philip Meier's avatar
Philip Meier committed
192
193

            dataset = torchvision.datasets.CIFAR100(root, train=False, download=True)
194
            self.generic_classification_dataset_test(dataset)
Philip Meier's avatar
Philip Meier committed
195
            img, target = dataset[0]
196
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
Philip Meier's avatar
Philip Meier committed
197

Francisco Massa's avatar
Francisco Massa committed
198
    @unittest.skipIf('win' in sys.platform, 'temporarily disabled on Windows')
199
200
201
202
203
204
205
206
207
208
209
210
    def test_cityscapes(self):
        with cityscapes_root() as root:

            for mode in ['coarse', 'fine']:

                if mode == 'coarse':
                    splits = ['train', 'train_extra', 'val']
                else:
                    splits = ['train', 'val', 'test']

                for split in splits:
                    for target_type in ['semantic', 'instance']:
211
212
                        dataset = torchvision.datasets.Cityscapes(
                            root, split=split, target_type=target_type, mode=mode)
213
214
                        self.generic_segmentation_dataset_test(dataset, num_images=2)

215
216
                    color_dataset = torchvision.datasets.Cityscapes(
                        root, split=split, target_type='color', mode=mode)
217
218
219
220
                    color_img, color_target = color_dataset[0]
                    self.assertTrue(isinstance(color_img, PIL.Image.Image))
                    self.assertTrue(np.array(color_target).shape[2] == 4)

221
222
                    polygon_dataset = torchvision.datasets.Cityscapes(
                        root, split=split, target_type='polygon', mode=mode)
223
224
225
226
227
228
229
230
                    polygon_img, polygon_target = polygon_dataset[0]
                    self.assertTrue(isinstance(polygon_img, PIL.Image.Image))
                    self.assertTrue(isinstance(polygon_target, dict))
                    self.assertTrue(isinstance(polygon_target['imgHeight'], int))
                    self.assertTrue(isinstance(polygon_target['objects'], list))

                    # Test multiple target types
                    targets_combo = ['semantic', 'polygon', 'color']
231
232
                    multiple_types_dataset = torchvision.datasets.Cityscapes(
                        root, split=split, target_type=targets_combo, mode=mode)
233
234
235
236
237
238
239
240
241
242
                    output = multiple_types_dataset[0]
                    self.assertTrue(isinstance(output, tuple))
                    self.assertTrue(len(output) == 2)
                    self.assertTrue(isinstance(output[0], PIL.Image.Image))
                    self.assertTrue(isinstance(output[1], tuple))
                    self.assertTrue(len(output[1]) == 3)
                    self.assertTrue(isinstance(output[1][0], PIL.Image.Image))  # semantic
                    self.assertTrue(isinstance(output[1][1], dict))  # polygon
                    self.assertTrue(isinstance(output[1][2], PIL.Image.Image))  # color

Philip Meier's avatar
Philip Meier committed
243
    @mock.patch('torchvision.datasets.SVHN._check_integrity')
244
    @unittest.skipIf(not HAS_SCIPY, "scipy unavailable")
Philip Meier's avatar
Philip Meier committed
245
246
247
248
249
250
251
252
253
254
255
256
    def test_svhn(self, mock_check):
        mock_check.return_value = True
        with svhn_root() as root:
            dataset = torchvision.datasets.SVHN(root, split="train")
            self.generic_classification_dataset_test(dataset, num_images=2)

            dataset = torchvision.datasets.SVHN(root, split="test")
            self.generic_classification_dataset_test(dataset, num_images=2)

            dataset = torchvision.datasets.SVHN(root, split="extra")
            self.generic_classification_dataset_test(dataset, num_images=2)

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
    @mock.patch('torchvision.datasets.voc.download_extract')
    def test_voc_parse_xml(self, mock_download_extract):
        with voc_root() as root:
            dataset = torchvision.datasets.VOCDetection(root)

            single_object_xml = """<annotation>
              <object>
                <name>cat</name>
              </object>
            </annotation>"""
            multiple_object_xml = """<annotation>
              <object>
                <name>cat</name>
              </object>
              <object>
                <name>dog</name>
              </object>
            </annotation>"""
275
276

            single_object_parsed = dataset.parse_voc_xml(ET.fromstring(single_object_xml))
277
278
            multiple_object_parsed = dataset.parse_voc_xml(ET.fromstring(multiple_object_xml))

279
280
281
282
283
284
285
286
287
            self.assertEqual(single_object_parsed, {'annotation': {'object': [{'name': 'cat'}]}})
            self.assertEqual(multiple_object_parsed,
                             {'annotation': {
                                 'object': [{
                                     'name': 'cat'
                                 }, {
                                     'name': 'dog'
                                 }]
                             }})
288

289
290
    @unittest.skipIf(not HAS_PYAV, "PyAV unavailable")
    def test_ucf101(self):
291
        cached_meta_data = None
292
293
294
295
        with ucf101_root() as (root, ann_root):
            for split in {True, False}:
                for fold in range(1, 4):
                    for length in {10, 15, 20}:
296
297
298
299
                        dataset = torchvision.datasets.UCF101(root, ann_root, length, fold=fold, train=split,
                                                              num_workers=2, _precomputed_metadata=cached_meta_data)
                        if cached_meta_data is None:
                            cached_meta_data = dataset.metadata
300
301
302
303
304
305
306
307
308
309
310
311
                        self.assertGreater(len(dataset), 0)

                        video, audio, label = dataset[0]
                        self.assertEqual(video.size(), (length, 320, 240, 3))
                        self.assertEqual(audio.numel(), 0)
                        self.assertEqual(label, 0)

                        video, audio, label = dataset[len(dataset) - 1]
                        self.assertEqual(video.size(), (length, 320, 240, 3))
                        self.assertEqual(audio.numel(), 0)
                        self.assertEqual(label, 1)

Philip Meier's avatar
Philip Meier committed
312
    def test_places365(self):
Philip Meier's avatar
Philip Meier committed
313
        for split, small in itertools.product(("train-standard", "train-challenge", "val"), (False, True)):
Philip Meier's avatar
Philip Meier committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
            with places365_root(split=split, small=small) as places365:
                root, data = places365

                dataset = torchvision.datasets.Places365(root, split=split, small=small, download=True)
                self.generic_classification_dataset_test(dataset, num_images=len(data["imgs"]))

    def test_places365_transforms(self):
        expected_image = "image"
        expected_target = "target"

        def transform(image):
            return expected_image

        def target_transform(target):
            return expected_target

        with places365_root() as places365:
            root, data = places365

            dataset = torchvision.datasets.Places365(
                root, transform=transform, target_transform=target_transform, download=True
            )
            actual_image, actual_target = dataset[0]

            self.assertEqual(actual_image, expected_image)
            self.assertEqual(actual_target, expected_target)

    def test_places365_devkit_download(self):
Philip Meier's avatar
Philip Meier committed
342
        for split in ("train-standard", "train-challenge", "val"):
Philip Meier's avatar
Philip Meier committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
            with self.subTest(split=split):
                with places365_root(split=split) as places365:
                    root, data = places365

                    dataset = torchvision.datasets.Places365(root, split=split, download=True)

                    with self.subTest("classes"):
                        self.assertSequenceEqual(dataset.classes, data["classes"])

                    with self.subTest("class_to_idx"):
                        self.assertDictEqual(dataset.class_to_idx, data["class_to_idx"])

                    with self.subTest("imgs"):
                        self.assertSequenceEqual(dataset.imgs, data["imgs"])

    def test_places365_devkit_no_download(self):
Philip Meier's avatar
Philip Meier committed
359
        for split in ("train-standard", "train-challenge", "val"):
Philip Meier's avatar
Philip Meier committed
360
            with self.subTest(split=split):
361
                with places365_root(split=split) as places365:
Philip Meier's avatar
Philip Meier committed
362
363
364
365
366
367
                    root, data = places365

                    with self.assertRaises(RuntimeError):
                        torchvision.datasets.Places365(root, split=split, download=False)

    def test_places365_images_download(self):
Philip Meier's avatar
Philip Meier committed
368
        for split, small in itertools.product(("train-standard", "train-challenge", "val"), (False, True)):
Philip Meier's avatar
Philip Meier committed
369
370
371
372
373
374
375
376
377
378
379
            with self.subTest(split=split, small=small):
                with places365_root(split=split, small=small) as places365:
                    root, data = places365

                    dataset = torchvision.datasets.Places365(root, split=split, small=small, download=True)

                    assert all(os.path.exists(item[0]) for item in dataset.imgs)

    def test_places365_images_download_preexisting(self):
        split = "train-standard"
        small = False
Philip Meier's avatar
Philip Meier committed
380
        images_dir = "data_large_standard"
Philip Meier's avatar
Philip Meier committed
381
382
383
384
385
386
387
388
389

        with places365_root(split=split, small=small) as places365:
            root, data = places365
            os.mkdir(os.path.join(root, images_dir))

            with self.assertRaises(RuntimeError):
                torchvision.datasets.Places365(root, split=split, small=small, download=True)

    def test_places365_repr_smoke(self):
390
        with places365_root() as places365:
Philip Meier's avatar
Philip Meier committed
391
392
393
394
395
            root, data = places365

            dataset = torchvision.datasets.Places365(root, download=True)
            self.assertIsInstance(repr(dataset), str)

396

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
class STL10Tester(DatasetTestcase):
    @contextlib.contextmanager
    def mocked_root(self):
        with stl10_root() as (root, data):
            yield root, data

    @contextlib.contextmanager
    def mocked_dataset(self, pre_extract=False, download=True, **kwargs):
        with self.mocked_root() as (root, data):
            if pre_extract:
                utils.extract_archive(os.path.join(root, data["archive"]))
            dataset = torchvision.datasets.STL10(root, download=download, **kwargs)
            yield dataset, data

    def test_not_found(self):
        with self.assertRaises(RuntimeError):
            with self.mocked_dataset(download=False):
                pass

    def test_splits(self):
        for split in ('train', 'train+unlabeled', 'unlabeled', 'test'):
            with self.mocked_dataset(split=split) as (dataset, data):
                num_images = sum([data["num_images_in_split"][part] for part in split.split("+")])
                self.generic_classification_dataset_test(dataset, num_images=num_images)

    def test_folds(self):
        for fold in range(10):
            with self.mocked_dataset(split="train", folds=fold) as (dataset, data):
                num_images = data["num_images_in_folds"][fold]
                self.assertEqual(len(dataset), num_images)

    def test_invalid_folds1(self):
        with self.assertRaises(ValueError):
            with self.mocked_dataset(folds=10):
                pass

    def test_invalid_folds2(self):
        with self.assertRaises(ValueError):
            with self.mocked_dataset(folds="0"):
                pass

    def test_transforms(self):
        expected_image = "image"
        expected_target = "target"

        def transform(image):
            return expected_image

        def target_transform(target):
            return expected_target

        with self.mocked_dataset(transform=transform, target_transform=target_transform) as (dataset, _):
            actual_image, actual_target = dataset[0]

            self.assertEqual(actual_image, expected_image)
            self.assertEqual(actual_target, expected_target)

    def test_unlabeled(self):
        with self.mocked_dataset(split="unlabeled") as (dataset, _):
            labels = [dataset[idx][1] for idx in range(len(dataset))]
            self.assertTrue(all([label == -1 for label in labels]))

    @unittest.mock.patch("torchvision.datasets.stl10.download_and_extract_archive")
    def test_download_preexisting(self, mock):
        with self.mocked_dataset(pre_extract=True) as (dataset, data):
            mock.assert_not_called()

    def test_repr_smoke(self):
        with self.mocked_dataset() as (dataset, _):
            self.assertIsInstance(repr(dataset), str)


469
470
if __name__ == '__main__':
    unittest.main()