phototour.py 7.91 KB
Newer Older
edgarriba's avatar
edgarriba committed
1
2
3
import os
import numpy as np
from PIL import Image
4
from typing import Any, Callable, List, Optional, Tuple, Union
edgarriba's avatar
edgarriba committed
5
6

import torch
7
from .vision import VisionDataset
edgarriba's avatar
edgarriba committed
8

9
from .utils import download_url
soumith's avatar
soumith committed
10

edgarriba's avatar
edgarriba committed
11

12
class PhotoTour(VisionDataset):
13
14
15
16
17
18
19
20
21
22
23
    """`Multi-view Stereo Correspondence <http://matthewalunbrown.com/patchdata/patchdata.html>`_ Dataset.

    .. note::

        We only provide the newer version of the dataset, since the authors state that it

            is more suitable for training descriptors based on difference of Gaussian, or Harris corners, as the
            patches are centred on real interest point detections, rather than being projections of 3D points as is the
            case in the old dataset.

        The original dataset is available under http://phototour.cs.washington.edu/patches/default.htm.
24
25
26
27
28
29
30
31
32
33
34
35


    Args:
        root (string): Root directory where images are.
        name (string): Name of the dataset to load.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.

    """
edgarriba's avatar
edgarriba committed
36
    urls = {
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
        'notredame_harris': [
            'http://matthewalunbrown.com/patchdata/notredame_harris.zip',
            'notredame_harris.zip',
            '69f8c90f78e171349abdf0307afefe4d'
        ],
        'yosemite_harris': [
            'http://matthewalunbrown.com/patchdata/yosemite_harris.zip',
            'yosemite_harris.zip',
            'a73253d1c6fbd3ba2613c45065c00d46'
        ],
        'liberty_harris': [
            'http://matthewalunbrown.com/patchdata/liberty_harris.zip',
            'liberty_harris.zip',
            'c731fcfb3abb4091110d0ae8c7ba182c'
        ],
soumith's avatar
soumith committed
52
        'notredame': [
53
            'http://icvl.ee.ic.ac.uk/vbalnt/notredame.zip',
soumith's avatar
soumith committed
54
55
56
57
            'notredame.zip',
            '509eda8535847b8c0a90bbb210c83484'
        ],
        'yosemite': [
58
            'http://icvl.ee.ic.ac.uk/vbalnt/yosemite.zip',
soumith's avatar
soumith committed
59
60
61
62
            'yosemite.zip',
            '533b2e8eb7ede31be40abc317b2fd4f0'
        ],
        'liberty': [
63
            'http://icvl.ee.ic.ac.uk/vbalnt/liberty.zip',
soumith's avatar
soumith committed
64
65
66
            'liberty.zip',
            'fdd9152f138ea5ef2091746689176414'
        ],
edgarriba's avatar
edgarriba committed
67
    }
68
69
70
71
    means = {'notredame': 0.4854, 'yosemite': 0.4844, 'liberty': 0.4437,
             'notredame_harris': 0.4854, 'yosemite_harris': 0.4844, 'liberty_harris': 0.4437}
    stds = {'notredame': 0.1864, 'yosemite': 0.1818, 'liberty': 0.2019,
            'notredame_harris': 0.1864, 'yosemite_harris': 0.1818, 'liberty_harris': 0.2019}
72
73
    lens = {'notredame': 468159, 'yosemite': 633587, 'liberty': 450092,
            'liberty_harris': 379587, 'yosemite_harris': 450912, 'notredame_harris': 325295}
edgarriba's avatar
edgarriba committed
74
75
76
77
    image_ext = 'bmp'
    info_file = 'info.txt'
    matches_files = 'm50_100000_100000_0.txt'

78
79
80
    def __init__(
            self, root: str, name: str, train: bool = True, transform: Optional[Callable] = None, download: bool = False
    ) -> None:
81
        super(PhotoTour, self).__init__(root, transform=transform)
edgarriba's avatar
edgarriba committed
82
        self.name = name
moskomule's avatar
moskomule committed
83
84
85
        self.data_dir = os.path.join(self.root, name)
        self.data_down = os.path.join(self.root, '{}.zip'.format(name))
        self.data_file = os.path.join(self.root, '{}.pt'.format(name))
edgarriba's avatar
edgarriba committed
86
87

        self.train = train
88
89
        self.mean = self.means[name]
        self.std = self.stds[name]
edgarriba's avatar
edgarriba committed
90
91
92
93

        if download:
            self.download()

soumith's avatar
soumith committed
94
        if not self._check_datafile_exists():
edgarriba's avatar
edgarriba committed
95
96
97
98
99
100
            raise RuntimeError('Dataset not found.' +
                               ' You can use download=True to download it')

        # load the serialized data
        self.data, self.labels, self.matches = torch.load(self.data_file)

101
    def __getitem__(self, index: int) -> Union[torch.Tensor, Tuple[Any, Any, torch.Tensor]]:
102
103
104
105
106
107
108
        """
        Args:
            index (int): Index

        Returns:
            tuple: (data1, data2, matches)
        """
edgarriba's avatar
edgarriba committed
109
110
111
112
113
114
115
116
117
118
119
120
        if self.train:
            data = self.data[index]
            if self.transform is not None:
                data = self.transform(data)
            return data
        m = self.matches[index]
        data1, data2 = self.data[m[0]], self.data[m[1]]
        if self.transform is not None:
            data1 = self.transform(data1)
            data2 = self.transform(data2)
        return data1, data2, m[2]

121
    def __len__(self) -> int:
edgarriba's avatar
edgarriba committed
122
123
124
125
        if self.train:
            return self.lens[self.name]
        return len(self.matches)

126
    def _check_datafile_exists(self) -> bool:
edgarriba's avatar
edgarriba committed
127
128
        return os.path.exists(self.data_file)

129
    def _check_downloaded(self) -> bool:
edgarriba's avatar
edgarriba committed
130
131
        return os.path.exists(self.data_dir)

132
    def download(self) -> None:
soumith's avatar
soumith committed
133
        if self._check_datafile_exists():
edgarriba's avatar
edgarriba committed
134
135
136
137
138
            print('# Found cached data {}'.format(self.data_file))
            return

        if not self._check_downloaded():
            # download files
soumith's avatar
soumith committed
139
140
141
142
            url = self.urls[self.name][0]
            filename = self.urls[self.name][1]
            md5 = self.urls[self.name][2]
            fpath = os.path.join(self.root, filename)
edgarriba's avatar
edgarriba committed
143

soumith's avatar
soumith committed
144
            download_url(url, self.root, filename, md5)
edgarriba's avatar
edgarriba committed
145
146
147
148

            print('# Extracting data {}\n'.format(self.data_down))

            import zipfile
soumith's avatar
soumith committed
149
            with zipfile.ZipFile(fpath, 'r') as z:
edgarriba's avatar
edgarriba committed
150
                z.extractall(self.data_dir)
soumith's avatar
soumith committed
151
152

            os.unlink(fpath)
edgarriba's avatar
edgarriba committed
153
154
155
156

        # process and save as torch files
        print('# Caching data {}'.format(self.data_file))

soumith's avatar
soumith committed
157
        dataset = (
edgarriba's avatar
edgarriba committed
158
159
160
161
162
163
            read_image_file(self.data_dir, self.image_ext, self.lens[self.name]),
            read_info_file(self.data_dir, self.info_file),
            read_matches_files(self.data_dir, self.matches_files)
        )

        with open(self.data_file, 'wb') as f:
soumith's avatar
soumith committed
164
            torch.save(dataset, f)
edgarriba's avatar
edgarriba committed
165

166
    def extra_repr(self) -> str:
167
        return "Split: {}".format("Train" if self.train is True else "Test")
168

edgarriba's avatar
edgarriba committed
169

170
def read_image_file(data_dir: str, image_ext: str, n: int) -> torch.Tensor:
edgarriba's avatar
edgarriba committed
171
172
    """Return a Tensor containing the patches
    """
173

174
    def PIL2array(_img: Image.Image) -> np.ndarray:
edgarriba's avatar
edgarriba committed
175
176
177
178
        """Convert PIL image type to numpy 2D array
        """
        return np.array(_img.getdata(), dtype=np.uint8).reshape(64, 64)

179
    def find_files(_data_dir: str, _image_ext: str) -> List[str]:
edgarriba's avatar
edgarriba committed
180
181
182
183
184
185
186
187
188
189
190
191
        """Return a list with the file names of the images containing the patches
        """
        files = []
        # find those files with the specified extension
        for file_dir in os.listdir(_data_dir):
            if file_dir.endswith(_image_ext):
                files.append(os.path.join(_data_dir, file_dir))
        return sorted(files)  # sort files in ascend order to keep relations

    patches = []
    list_files = find_files(data_dir, image_ext)

soumith's avatar
soumith committed
192
193
    for fpath in list_files:
        img = Image.open(fpath)
edgarriba's avatar
edgarriba committed
194
195
196
197
198
199
200
        for y in range(0, 1024, 64):
            for x in range(0, 1024, 64):
                patch = img.crop((x, y, x + 64, y + 64))
                patches.append(PIL2array(patch))
    return torch.ByteTensor(np.array(patches[:n]))


201
def read_info_file(data_dir: str, info_file: str) -> torch.Tensor:
edgarriba's avatar
edgarriba committed
202
203
204
205
206
207
208
209
    """Return a Tensor containing the list of labels
       Read the file and keep only the ID of the 3D point.
    """
    with open(os.path.join(data_dir, info_file), 'r') as f:
        labels = [int(line.split()[0]) for line in f]
    return torch.LongTensor(labels)


210
def read_matches_files(data_dir: str, matches_file: str) -> torch.Tensor:
edgarriba's avatar
edgarriba committed
211
212
213
214
215
216
217
    """Return a Tensor containing the ground truth matches
       Read the file and keep only 3D point ID.
       Matches are represented with a 1, non matches with a 0.
    """
    matches = []
    with open(os.path.join(data_dir, matches_file), 'r') as f:
        for line in f:
218
            line_split = line.split()
219
220
            matches.append([int(line_split[0]), int(line_split[3]),
                            int(line_split[1] == line_split[4])])
edgarriba's avatar
edgarriba committed
221
    return torch.LongTensor(matches)