phototour.py 5.92 KB
Newer Older
edgarriba's avatar
edgarriba committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import errno
import numpy as np
from PIL import Image

import torch
import torch.utils.data as data


class PhotoTour(data.Dataset):
    urls = {
        'notredame': 'http://www.iis.ee.ic.ac.uk/~vbalnt/phototourism-patches/notredame.zip',
        'yosemite': 'http://www.iis.ee.ic.ac.uk/~vbalnt/phototourism-patches/yosemite.zip',
        'liberty': 'http://www.iis.ee.ic.ac.uk/~vbalnt/phototourism-patches/liberty.zip'
    }
    mean = {'notredame': 0.4854, 'yosemite': 0.4844, 'liberty': 0.4437}
    std = {'notredame': 0.1864, 'yosemite': 0.1818, 'liberty': 0.2019}
    lens = {'notredame': 468159, 'yosemite': 633587, 'liberty': 450092}

    image_ext = 'bmp'
    info_file = 'info.txt'
    matches_files = 'm50_100000_100000_0.txt'

    def __init__(self, root, name, train=True, transform=None, download=False):
        self.root = root
        self.name = name
        self.data_dir = os.path.join(root, name)
        self.data_down = os.path.join(root, '{}.zip'.format(name))
        self.data_file = os.path.join(root, '{}.pt'.format(name))

        self.train = train
        self.transform = transform

        self.mean = self.mean[name]
        self.std = self.std[name]

        if download:
            self.download()

        if not self._check_exists():
            raise RuntimeError('Dataset not found.' +
                               ' You can use download=True to download it')

        # load the serialized data
        self.data, self.labels, self.matches = torch.load(self.data_file)

    def __getitem__(self, index):
        if self.train:
            data = self.data[index]
            if self.transform is not None:
                data = self.transform(data)
            return data
        m = self.matches[index]
        data1, data2 = self.data[m[0]], self.data[m[1]]
        if self.transform is not None:
            data1 = self.transform(data1)
            data2 = self.transform(data2)
        return data1, data2, m[2]

    def __len__(self):
        if self.train:
            return self.lens[self.name]
        return len(self.matches)

    def _check_exists(self):
        return os.path.exists(self.data_file)

    def _check_downloaded(self):
        return os.path.exists(self.data_dir)

    def download(self):
        from six.moves import urllib
        print('\n-- Loading PhotoTour dataset: {}\n'.format(self.name))

        if self._check_exists():
            print('# Found cached data {}'.format(self.data_file))
            return

        if not self._check_downloaded():
            # download files
            url = self.urls[self.name]
            filename = url.rpartition('/')[2]
            file_path = os.path.join(self.root, filename)

            try:
                os.makedirs(self.root)
            except OSError as e:
                if e.errno == errno.EEXIST:
                    pass
                else:
                    raise

            print('# Downloading {} into {}\n\nIt might take while.'
                  ' Please grab yourself a coffee and relax.'
                  .format(url, file_path))

            urllib.request.urlretrieve(url, file_path)
            assert os.path.exists(file_path)

            print('# Extracting data {}\n'.format(self.data_down))

            import zipfile
            with zipfile.ZipFile(file_path, 'r') as z:
                z.extractall(self.data_dir)
            os.unlink(file_path)

        # process and save as torch files
        print('# Caching data {}'.format(self.data_file))

        data_set = (
            read_image_file(self.data_dir, self.image_ext, self.lens[self.name]),
            read_info_file(self.data_dir, self.info_file),
            read_matches_files(self.data_dir, self.matches_files)
        )

        with open(self.data_file, 'wb') as f:
            torch.save(data_set, f)


def read_image_file(data_dir, image_ext, n):
    """Return a Tensor containing the patches
    """
    def PIL2array(_img):
        """Convert PIL image type to numpy 2D array
        """
        return np.array(_img.getdata(), dtype=np.uint8).reshape(64, 64)

    def find_files(_data_dir, _image_ext):
        """Return a list with the file names of the images containing the patches
        """
        files = []
        # find those files with the specified extension
        for file_dir in os.listdir(_data_dir):
            if file_dir.endswith(_image_ext):
                files.append(os.path.join(_data_dir, file_dir))
        return sorted(files)  # sort files in ascend order to keep relations

    patches = []
    list_files = find_files(data_dir, image_ext)

    for file_path in list_files:
        img = Image.open(file_path)
        for y in range(0, 1024, 64):
            for x in range(0, 1024, 64):
                patch = img.crop((x, y, x + 64, y + 64))
                patches.append(PIL2array(patch))
    return torch.ByteTensor(np.array(patches[:n]))


def read_info_file(data_dir, info_file):
    """Return a Tensor containing the list of labels
       Read the file and keep only the ID of the 3D point.
    """
    labels = []
    with open(os.path.join(data_dir, info_file), 'r') as f:
        labels = [int(line.split()[0]) for line in f]
    return torch.LongTensor(labels)


def read_matches_files(data_dir, matches_file):
    """Return a Tensor containing the ground truth matches
       Read the file and keep only 3D point ID.
       Matches are represented with a 1, non matches with a 0.
    """
    matches = []
    with open(os.path.join(data_dir, matches_file), 'r') as f:
        for line in f:
            l = line.split()
            matches.append([int(l[0]), int(l[3]), int(l[1] == l[4])])
    return torch.LongTensor(matches)


if __name__ == '__main__':
    dataset = PhotoTour(root='/home/eriba/datasets/patches_dataset',
                        name='notredame',
                        download=True)

    print('Loaded PhotoTour: {} with {} images.'
          .format(dataset.name, len(dataset.data)))

    assert len(dataset.data) == len(dataset.labels)