Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
62e3fbd8
Unverified
Commit
62e3fbd8
authored
Aug 03, 2020
by
Philip Meier
Committed by
GitHub
Aug 03, 2020
Browse files
add typehints for torchvision.datasets.phototour (#2531)
parent
1a6148d4
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
21 additions
and
18 deletions
+21
-18
torchvision/datasets/phototour.py
torchvision/datasets/phototour.py
+21
-18
No files found.
torchvision/datasets/phototour.py
View file @
62e3fbd8
import
os
import
numpy
as
np
from
PIL
import
Image
from
typing
import
Any
,
Callable
,
List
,
Optional
,
Tuple
,
Union
import
torch
from
.vision
import
VisionDataset
...
...
@@ -54,17 +55,19 @@ class PhotoTour(VisionDataset):
'fdd9152f138ea5ef2091746689176414'
],
}
mean
=
{
'notredame'
:
0.4854
,
'yosemite'
:
0.4844
,
'liberty'
:
0.4437
,
'notredame_harris'
:
0.4854
,
'yosemite_harris'
:
0.4844
,
'liberty_harris'
:
0.4437
}
std
=
{
'notredame'
:
0.1864
,
'yosemite'
:
0.1818
,
'liberty'
:
0.2019
,
'notredame_harris'
:
0.1864
,
'yosemite_harris'
:
0.1818
,
'liberty_harris'
:
0.2019
}
mean
s
=
{
'notredame'
:
0.4854
,
'yosemite'
:
0.4844
,
'liberty'
:
0.4437
,
'notredame_harris'
:
0.4854
,
'yosemite_harris'
:
0.4844
,
'liberty_harris'
:
0.4437
}
std
s
=
{
'notredame'
:
0.1864
,
'yosemite'
:
0.1818
,
'liberty'
:
0.2019
,
'notredame_harris'
:
0.1864
,
'yosemite_harris'
:
0.1818
,
'liberty_harris'
:
0.2019
}
lens
=
{
'notredame'
:
468159
,
'yosemite'
:
633587
,
'liberty'
:
450092
,
'liberty_harris'
:
379587
,
'yosemite_harris'
:
450912
,
'notredame_harris'
:
325295
}
image_ext
=
'bmp'
info_file
=
'info.txt'
matches_files
=
'm50_100000_100000_0.txt'
def
__init__
(
self
,
root
,
name
,
train
=
True
,
transform
=
None
,
download
=
False
):
def
__init__
(
self
,
root
:
str
,
name
:
str
,
train
:
bool
=
True
,
transform
:
Optional
[
Callable
]
=
None
,
download
:
bool
=
False
)
->
None
:
super
(
PhotoTour
,
self
).
__init__
(
root
,
transform
=
transform
)
self
.
name
=
name
self
.
data_dir
=
os
.
path
.
join
(
self
.
root
,
name
)
...
...
@@ -72,8 +75,8 @@ class PhotoTour(VisionDataset):
self
.
data_file
=
os
.
path
.
join
(
self
.
root
,
'{}.pt'
.
format
(
name
))
self
.
train
=
train
self
.
mean
=
self
.
mean
[
name
]
self
.
std
=
self
.
std
[
name
]
self
.
mean
=
self
.
mean
s
[
name
]
self
.
std
=
self
.
std
s
[
name
]
if
download
:
self
.
download
()
...
...
@@ -85,7 +88,7 @@ class PhotoTour(VisionDataset):
# load the serialized data
self
.
data
,
self
.
labels
,
self
.
matches
=
torch
.
load
(
self
.
data_file
)
def
__getitem__
(
self
,
index
)
:
def
__getitem__
(
self
,
index
:
int
)
->
Union
[
torch
.
Tensor
,
Tuple
[
Any
,
Any
,
torch
.
Tensor
]]
:
"""
Args:
index (int): Index
...
...
@@ -105,18 +108,18 @@ class PhotoTour(VisionDataset):
data2
=
self
.
transform
(
data2
)
return
data1
,
data2
,
m
[
2
]
def
__len__
(
self
):
def
__len__
(
self
)
->
int
:
if
self
.
train
:
return
self
.
lens
[
self
.
name
]
return
len
(
self
.
matches
)
def
_check_datafile_exists
(
self
):
def
_check_datafile_exists
(
self
)
->
bool
:
return
os
.
path
.
exists
(
self
.
data_file
)
def
_check_downloaded
(
self
):
def
_check_downloaded
(
self
)
->
bool
:
return
os
.
path
.
exists
(
self
.
data_dir
)
def
download
(
self
):
def
download
(
self
)
->
None
:
if
self
.
_check_datafile_exists
():
print
(
'# Found cached data {}'
.
format
(
self
.
data_file
))
return
...
...
@@ -150,20 +153,20 @@ class PhotoTour(VisionDataset):
with
open
(
self
.
data_file
,
'wb'
)
as
f
:
torch
.
save
(
dataset
,
f
)
def
extra_repr
(
self
):
def
extra_repr
(
self
)
->
str
:
return
"Split: {}"
.
format
(
"Train"
if
self
.
train
is
True
else
"Test"
)
def
read_image_file
(
data_dir
,
image_ext
,
n
)
:
def
read_image_file
(
data_dir
:
str
,
image_ext
:
str
,
n
:
int
)
->
torch
.
Tensor
:
"""Return a Tensor containing the patches
"""
def
PIL2array
(
_img
)
:
def
PIL2array
(
_img
:
Image
.
Image
)
->
np
.
ndarray
:
"""Convert PIL image type to numpy 2D array
"""
return
np
.
array
(
_img
.
getdata
(),
dtype
=
np
.
uint8
).
reshape
(
64
,
64
)
def
find_files
(
_data_dir
,
_image_ext
)
:
def
find_files
(
_data_dir
:
str
,
_image_ext
:
str
)
->
List
[
str
]
:
"""Return a list with the file names of the images containing the patches
"""
files
=
[]
...
...
@@ -185,7 +188,7 @@ def read_image_file(data_dir, image_ext, n):
return
torch
.
ByteTensor
(
np
.
array
(
patches
[:
n
]))
def
read_info_file
(
data_dir
,
info_file
)
:
def
read_info_file
(
data_dir
:
str
,
info_file
:
str
)
->
torch
.
Tensor
:
"""Return a Tensor containing the list of labels
Read the file and keep only the ID of the 3D point.
"""
...
...
@@ -195,7 +198,7 @@ def read_info_file(data_dir, info_file):
return
torch
.
LongTensor
(
labels
)
def
read_matches_files
(
data_dir
,
matches_file
)
:
def
read_matches_files
(
data_dir
:
str
,
matches_file
:
str
)
->
torch
.
Tensor
:
"""Return a Tensor containing the ground truth matches
Read the file and keep only 3D point ID.
Matches are represented with a 1, non matches with a 0.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment