phototour.py 7.45 KB
Newer Older
edgarriba's avatar
edgarriba committed
1
2
3
4
5
6
7
8
import os
import errno
import numpy as np
from PIL import Image

import torch
import torch.utils.data as data

soumith's avatar
soumith committed
9
10
from .utils import download_url, check_integrity

edgarriba's avatar
edgarriba committed
11
12

class PhotoTour(data.Dataset):
13
14
15
16
17
18
19
20
21
22
23
24
25
    """`Learning Local Image Descriptors Data <http://phototour.cs.washington.edu/patches/default.htm>`_ Dataset.


    Args:
        root (string): Root directory where images are.
        name (string): Name of the dataset to load.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.

    """
edgarriba's avatar
edgarriba committed
26
    urls = {
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
        'notredame_harris': [
            'http://matthewalunbrown.com/patchdata/notredame_harris.zip',
            'notredame_harris.zip',
            '69f8c90f78e171349abdf0307afefe4d'
        ],
        'yosemite_harris': [
            'http://matthewalunbrown.com/patchdata/yosemite_harris.zip',
            'yosemite_harris.zip',
            'a73253d1c6fbd3ba2613c45065c00d46'
        ],
        'liberty_harris': [
            'http://matthewalunbrown.com/patchdata/liberty_harris.zip',
            'liberty_harris.zip',
            'c731fcfb3abb4091110d0ae8c7ba182c'
        ],
soumith's avatar
soumith committed
42
        'notredame': [
43
            'http://icvl.ee.ic.ac.uk/vbalnt/notredame.zip',
soumith's avatar
soumith committed
44
45
46
47
            'notredame.zip',
            '509eda8535847b8c0a90bbb210c83484'
        ],
        'yosemite': [
48
            'http://icvl.ee.ic.ac.uk/vbalnt/yosemite.zip',
soumith's avatar
soumith committed
49
50
51
52
            'yosemite.zip',
            '533b2e8eb7ede31be40abc317b2fd4f0'
        ],
        'liberty': [
53
            'http://icvl.ee.ic.ac.uk/vbalnt/liberty.zip',
soumith's avatar
soumith committed
54
55
56
            'liberty.zip',
            'fdd9152f138ea5ef2091746689176414'
        ],
edgarriba's avatar
edgarriba committed
57
    }
58
59
60
61
62
63
    mean = {'notredame': 0.4854, 'yosemite': 0.4844, 'liberty': 0.4437,
            'notredame_harris': 0.4854, 'yosemite_harris': 0.4844, 'liberty_harris': 0.4437}
    std = {'notredame': 0.1864, 'yosemite': 0.1818, 'liberty': 0.2019,
           'notredame_harris': 0.1864, 'yosemite_harris': 0.1818, 'liberty_harris': 0.2019}
    lens = {'notredame': 468159, 'yosemite': 633587, 'liberty': 450092,
            'liberty_harris': 379587, 'yosemite_harris': 450912, 'notredame_harris': 325295}
edgarriba's avatar
edgarriba committed
64
65
66
67
68
    image_ext = 'bmp'
    info_file = 'info.txt'
    matches_files = 'm50_100000_100000_0.txt'

    def __init__(self, root, name, train=True, transform=None, download=False):
69
        self.root = os.path.expanduser(root)
edgarriba's avatar
edgarriba committed
70
        self.name = name
moskomule's avatar
moskomule committed
71
72
73
        self.data_dir = os.path.join(self.root, name)
        self.data_down = os.path.join(self.root, '{}.zip'.format(name))
        self.data_file = os.path.join(self.root, '{}.pt'.format(name))
edgarriba's avatar
edgarriba committed
74
75
76
77
78
79
80
81
82

        self.train = train
        self.transform = transform
        self.mean = self.mean[name]
        self.std = self.std[name]

        if download:
            self.download()

soumith's avatar
soumith committed
83
        if not self._check_datafile_exists():
edgarriba's avatar
edgarriba committed
84
85
86
87
88
89
90
            raise RuntimeError('Dataset not found.' +
                               ' You can use download=True to download it')

        # load the serialized data
        self.data, self.labels, self.matches = torch.load(self.data_file)

    def __getitem__(self, index):
91
92
93
94
95
96
97
        """
        Args:
            index (int): Index

        Returns:
            tuple: (data1, data2, matches)
        """
edgarriba's avatar
edgarriba committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        if self.train:
            data = self.data[index]
            if self.transform is not None:
                data = self.transform(data)
            return data
        m = self.matches[index]
        data1, data2 = self.data[m[0]], self.data[m[1]]
        if self.transform is not None:
            data1 = self.transform(data1)
            data2 = self.transform(data2)
        return data1, data2, m[2]

    def __len__(self):
        if self.train:
            return self.lens[self.name]
        return len(self.matches)

soumith's avatar
soumith committed
115
    def _check_datafile_exists(self):
edgarriba's avatar
edgarriba committed
116
117
118
119
120
121
        return os.path.exists(self.data_file)

    def _check_downloaded(self):
        return os.path.exists(self.data_dir)

    def download(self):
soumith's avatar
soumith committed
122
        if self._check_datafile_exists():
edgarriba's avatar
edgarriba committed
123
124
125
126
127
            print('# Found cached data {}'.format(self.data_file))
            return

        if not self._check_downloaded():
            # download files
soumith's avatar
soumith committed
128
129
130
131
            url = self.urls[self.name][0]
            filename = self.urls[self.name][1]
            md5 = self.urls[self.name][2]
            fpath = os.path.join(self.root, filename)
edgarriba's avatar
edgarriba committed
132

soumith's avatar
soumith committed
133
            download_url(url, self.root, filename, md5)
edgarriba's avatar
edgarriba committed
134
135
136
137

            print('# Extracting data {}\n'.format(self.data_down))

            import zipfile
soumith's avatar
soumith committed
138
            with zipfile.ZipFile(fpath, 'r') as z:
edgarriba's avatar
edgarriba committed
139
                z.extractall(self.data_dir)
soumith's avatar
soumith committed
140
141

            os.unlink(fpath)
edgarriba's avatar
edgarriba committed
142
143
144
145

        # process and save as torch files
        print('# Caching data {}'.format(self.data_file))

soumith's avatar
soumith committed
146
        dataset = (
edgarriba's avatar
edgarriba committed
147
148
149
150
151
152
            read_image_file(self.data_dir, self.image_ext, self.lens[self.name]),
            read_info_file(self.data_dir, self.info_file),
            read_matches_files(self.data_dir, self.matches_files)
        )

        with open(self.data_file, 'wb') as f:
soumith's avatar
soumith committed
153
            torch.save(dataset, f)
edgarriba's avatar
edgarriba committed
154

155
156
157
158
159
160
161
162
163
164
    def __repr__(self):
        fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
        fmt_str += '    Number of datapoints: {}\n'.format(self.__len__())
        tmp = 'train' if self.train is True else 'test'
        fmt_str += '    Split: {}\n'.format(tmp)
        fmt_str += '    Root Location: {}\n'.format(self.root)
        tmp = '    Transforms (if any): '
        fmt_str += '{0}{1}'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        return fmt_str

edgarriba's avatar
edgarriba committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

def read_image_file(data_dir, image_ext, n):
    """Return a Tensor containing the patches
    """
    def PIL2array(_img):
        """Convert PIL image type to numpy 2D array
        """
        return np.array(_img.getdata(), dtype=np.uint8).reshape(64, 64)

    def find_files(_data_dir, _image_ext):
        """Return a list with the file names of the images containing the patches
        """
        files = []
        # find those files with the specified extension
        for file_dir in os.listdir(_data_dir):
            if file_dir.endswith(_image_ext):
                files.append(os.path.join(_data_dir, file_dir))
        return sorted(files)  # sort files in ascend order to keep relations

    patches = []
    list_files = find_files(data_dir, image_ext)

soumith's avatar
soumith committed
187
188
    for fpath in list_files:
        img = Image.open(fpath)
edgarriba's avatar
edgarriba committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
        for y in range(0, 1024, 64):
            for x in range(0, 1024, 64):
                patch = img.crop((x, y, x + 64, y + 64))
                patches.append(PIL2array(patch))
    return torch.ByteTensor(np.array(patches[:n]))


def read_info_file(data_dir, info_file):
    """Return a Tensor containing the list of labels
       Read the file and keep only the ID of the 3D point.
    """
    labels = []
    with open(os.path.join(data_dir, info_file), 'r') as f:
        labels = [int(line.split()[0]) for line in f]
    return torch.LongTensor(labels)


def read_matches_files(data_dir, matches_file):
    """Return a Tensor containing the ground truth matches
       Read the file and keep only 3D point ID.
       Matches are represented with a 1, non matches with a 0.
    """
    matches = []
    with open(os.path.join(data_dir, matches_file), 'r') as f:
        for line in f:
            l = line.split()
            matches.append([int(l[0]), int(l[3]), int(l[1] == l[4])])
    return torch.LongTensor(matches)