utils.py 22 KB
Newer Older
1
import collections
2
import math
3
import pathlib
4
import warnings
5
from itertools import repeat
Kai Zhang's avatar
Kai Zhang committed
6
from types import FunctionType
7
from typing import Any, BinaryIO, List, Optional, Tuple, Union
8

9
import numpy as np
10
import torch
11
from PIL import Image, ImageColor, ImageDraw, ImageFont
12

13
14
15
16
17
18
19
20
__all__ = [
    "make_grid",
    "save_image",
    "draw_bounding_boxes",
    "draw_segmentation_masks",
    "draw_keypoints",
    "flow_to_image",
]
21

22

23
@torch.no_grad()
24
def make_grid(
25
    tensor: Union[torch.Tensor, List[torch.Tensor]],
26
27
28
    nrow: int = 8,
    padding: int = 2,
    normalize: bool = False,
29
    value_range: Optional[Tuple[int, int]] = None,
30
    scale_each: bool = False,
31
    pad_value: float = 0.0,
32
    **kwargs,
33
) -> torch.Tensor:
34
35
    """
    Make a grid of images.
36

37
38
39
    Args:
        tensor (Tensor or list): 4D mini-batch Tensor of shape (B x C x H x W)
            or a list of images all of the same size.
40
        nrow (int, optional): Number of images displayed in each row of the grid.
Tongzhou Wang's avatar
Tongzhou Wang committed
41
42
            The final grid size is ``(B / nrow, nrow)``. Default: ``8``.
        padding (int, optional): amount of padding. Default: ``2``.
43
        normalize (bool, optional): If True, shift the image to the range (0, 1),
44
            by the min and max values specified by ``value_range``. Default: ``False``.
45
        value_range (tuple, optional): tuple (min, max) where min and max are numbers,
46
47
            then these numbers are used to normalize the image. By default, min and max
            are computed from the tensor.
Tongzhou Wang's avatar
Tongzhou Wang committed
48
49
50
        scale_each (bool, optional): If ``True``, scale each image in the batch of
            images separately rather than the (min, max) over all images. Default: ``False``.
        pad_value (float, optional): Value for the padded pixels. Default: ``0``.
51

52
53
    Returns:
        grid (Tensor): the tensor containing grid of images.
54
    """
Kai Zhang's avatar
Kai Zhang committed
55
56
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(make_grid)
57
58
59
60
61
62
63
    if not torch.is_tensor(tensor):
        if isinstance(tensor, list):
            for t in tensor:
                if not torch.is_tensor(t):
                    raise TypeError(f"tensor or list of tensors expected, got a list containing {type(t)}")
        else:
            raise TypeError(f"tensor or list of tensors expected, got {type(tensor)}")
64

65
    # if list of tensors, convert to a 4D mini-batch Tensor
66
    if isinstance(tensor, list):
67
        tensor = torch.stack(tensor, dim=0)
68

69
    if tensor.dim() == 2:  # single image H x W
70
        tensor = tensor.unsqueeze(0)
71
    if tensor.dim() == 3:  # single image
72
        if tensor.size(0) == 1:  # if single-channel, convert to 3-channel
Adam Lerer's avatar
Adam Lerer committed
73
            tensor = torch.cat((tensor, tensor, tensor), 0)
74
        tensor = tensor.unsqueeze(0)
75

76
    if tensor.dim() == 4 and tensor.size(1) == 1:  # single-channel images
77
        tensor = torch.cat((tensor, tensor, tensor), 1)
78
79

    if normalize is True:
80
        tensor = tensor.clone()  # avoid modifying tensor in-place
81
82
        if value_range is not None and not isinstance(value_range, tuple):
            raise TypeError("value_range has to be a tuple (min, max) if specified. min and max are numbers")
83

84
85
86
        def norm_ip(img, low, high):
            img.clamp_(min=low, max=high)
            img.sub_(low).div_(max(high - low, 1e-5))
87

88
89
90
        def norm_range(t, value_range):
            if value_range is not None:
                norm_ip(t, value_range[0], value_range[1])
91
            else:
92
                norm_ip(t, float(t.min()), float(t.max()))
93
94
95

        if scale_each is True:
            for t in tensor:  # loop over mini-batch dimension
96
                norm_range(t, value_range)
97
        else:
98
            norm_range(tensor, value_range)
99

100
101
    if not isinstance(tensor, torch.Tensor):
        raise TypeError("tensor should be of type torch.Tensor")
102
    if tensor.size(0) == 1:
103
        return tensor.squeeze(0)
104

105
106
107
    # make the mini-batch of images into a grid
    nmaps = tensor.size(0)
    xmaps = min(nrow, nmaps)
108
    ymaps = int(math.ceil(float(nmaps) / xmaps))
109
    height, width = int(tensor.size(2) + padding), int(tensor.size(3) + padding)
110
111
    num_channels = tensor.size(1)
    grid = tensor.new_full((num_channels, height * ymaps + padding, width * xmaps + padding), pad_value)
112
    k = 0
113
114
    for y in range(ymaps):
        for x in range(xmaps):
115
116
            if k >= nmaps:
                break
117
118
119
120
121
            # Tensor.copy_() is a valid method but seems to be missing from the stubs
            # https://pytorch.org/docs/stable/tensors.html#torch.Tensor.copy_
            grid.narrow(1, y * height + padding, height - padding).narrow(  # type: ignore[attr-defined]
                2, x * width + padding, width - padding
            ).copy_(tensor[k])
122
123
124
125
            k = k + 1
    return grid


126
@torch.no_grad()
127
def save_image(
128
    tensor: Union[torch.Tensor, List[torch.Tensor]],
129
    fp: Union[str, pathlib.Path, BinaryIO],
130
    format: Optional[str] = None,
131
    **kwargs,
132
) -> None:
133
134
    """
    Save a given Tensor into an image file.
135
136
137
138

    Args:
        tensor (Tensor or list): Image to be saved. If given a mini-batch tensor,
            saves the tensor as a grid of images by calling ``make_grid``.
139
        fp (string or file object): A filename or a file object
140
141
        format(Optional):  If omitted, the format to use is determined from the filename extension.
            If a file object was used instead of a filename, this parameter should always be used.
142
        **kwargs: Other arguments are documented in ``make_grid``.
143
    """
144

Kai Zhang's avatar
Kai Zhang committed
145
146
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(save_image)
147
    grid = make_grid(tensor, **kwargs)
148
    # Add 0.5 after unnormalizing to [0, 255] to round to nearest integer
149
    ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
150
    im = Image.fromarray(ndarr)
151
    im.save(fp, format=format)
152
153
154
155
156
157
158


@torch.no_grad()
def draw_bounding_boxes(
    image: torch.Tensor,
    boxes: torch.Tensor,
    labels: Optional[List[str]] = None,
159
    colors: Optional[Union[List[Union[str, Tuple[int, int, int]]], str, Tuple[int, int, int]]] = None,
160
    fill: Optional[bool] = False,
161
162
    width: int = 1,
    font: Optional[str] = None,
163
    font_size: Optional[int] = None,
164
165
166
167
168
) -> torch.Tensor:

    """
    Draws bounding boxes on given image.
    The values of the input image should be uint8 between 0 and 255.
169
    If fill is True, Resulting Tensor should be saved as PNG image.
170
171

    Args:
172
        image (Tensor): Tensor of shape (C x H x W) and dtype uint8.
173
        boxes (Tensor): Tensor of size (N, 4) containing bounding boxes in (xmin, ymin, xmax, ymax) format. Note that
174
175
176
            the boxes are absolute coordinates with respect to the image. In other words: `0 <= xmin < xmax < W` and
            `0 <= ymin < ymax < H`.
        labels (List[str]): List containing the labels of bounding boxes.
177
178
179
        colors (color or list of colors, optional): List containing the colors
            of the boxes or single color for all boxes. The color can be represented as
            PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
180
            By default, random colors are generated for boxes.
181
        fill (bool): If `True` fills the bounding box with specified color.
182
183
184
185
186
        width (int): Width of bounding box.
        font (str): A filename containing a TrueType font. If the file is not found in this filename, the loader may
            also search in other directories, such as the `fonts/` directory on Windows or `/Library/Fonts/`,
            `/System/Library/Fonts/` and `~/Library/Fonts/` on macOS.
        font_size (int): The requested font size in points.
187
188
189

    Returns:
        img (Tensor[C, H, W]): Image Tensor of dtype uint8 with bounding boxes plotted.
190
191
    """

Kai Zhang's avatar
Kai Zhang committed
192
193
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(draw_bounding_boxes)
194
195
196
197
198
199
    if not isinstance(image, torch.Tensor):
        raise TypeError(f"Tensor expected, got {type(image)}")
    elif image.dtype != torch.uint8:
        raise ValueError(f"Tensor uint8 expected, got {image.dtype}")
    elif image.dim() != 3:
        raise ValueError("Pass individual images, not batches")
200
201
    elif image.size(0) not in {1, 3}:
        raise ValueError("Only grayscale and RGB images are supported")
202
203
204
205
    elif (boxes[:, 0] > boxes[:, 2]).any() or (boxes[:, 1] > boxes[:, 3]).any():
        raise ValueError(
            "Boxes need to be in (xmin, ymin, xmax, ymax) format. Use torchvision.ops.box_convert to convert them"
        )
206

207
208
    num_boxes = boxes.shape[0]

209
210
211
212
    if num_boxes == 0:
        warnings.warn("boxes doesn't contain any box. No box was drawn")
        return image

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    if labels is None:
        labels: Union[List[str], List[None]] = [None] * num_boxes  # type: ignore[no-redef]
    elif len(labels) != num_boxes:
        raise ValueError(
            f"Number of boxes ({num_boxes}) and labels ({len(labels)}) mismatch. Please specify labels for each box."
        )

    if colors is None:
        colors = _generate_color_palette(num_boxes)
    elif isinstance(colors, list):
        if len(colors) < num_boxes:
            raise ValueError(f"Number of colors ({len(colors)}) is less than number of boxes ({num_boxes}). ")
    else:  # colors specifies a single color for all boxes
        colors = [colors] * num_boxes

    colors = [(ImageColor.getrgb(color) if isinstance(color, str) else color) for color in colors]

230
231
232
233
234
235
236
    if font is None:
        if font_size is not None:
            warnings.warn("Argument 'font_size' will be ignored since 'font' is not set.")
        txt_font = ImageFont.load_default()
    else:
        txt_font = ImageFont.truetype(font=font, size=font_size or 10)

237
    # Handle Grayscale images
238
239
    if image.size(0) == 1:
        image = torch.tile(image, (3, 1, 1))
240

241
    ndarr = image.permute(1, 2, 0).cpu().numpy()
242
243
244
    img_to_draw = Image.fromarray(ndarr)
    img_boxes = boxes.to(torch.int64).tolist()

245
246
247
248
249
    if fill:
        draw = ImageDraw.Draw(img_to_draw, "RGBA")
    else:
        draw = ImageDraw.Draw(img_to_draw)

250
    for bbox, color, label in zip(img_boxes, colors, labels):  # type: ignore[arg-type]
251
        if fill:
252
            fill_color = color + (100,)
253
254
255
            draw.rectangle(bbox, width=width, outline=color, fill=fill_color)
        else:
            draw.rectangle(bbox, width=width, outline=color)
256

257
        if label is not None:
258
            margin = width + 1
259
            draw.text((bbox[0] + margin, bbox[1] + margin), label, fill=color, font=txt_font)
260

261
    return torch.from_numpy(np.array(img_to_draw)).permute(2, 0, 1).to(dtype=torch.uint8)
262
263
264
265
266
267


@torch.no_grad()
def draw_segmentation_masks(
    image: torch.Tensor,
    masks: torch.Tensor,
268
    alpha: float = 0.8,
269
    colors: Optional[Union[List[Union[str, Tuple[int, int, int]]], str, Tuple[int, int, int]]] = None,
270
271
272
273
274
275
276
) -> torch.Tensor:

    """
    Draws segmentation masks on given RGB image.
    The values of the input image should be uint8 between 0 and 255.

    Args:
277
278
279
280
        image (Tensor): Tensor of shape (3, H, W) and dtype uint8.
        masks (Tensor): Tensor of shape (num_masks, H, W) or (H, W) and dtype bool.
        alpha (float): Float number between 0 and 1 denoting the transparency of the masks.
            0 means full transparency, 1 means no transparency.
281
282
283
284
        colors (color or list of colors, optional): List containing the colors
            of the masks or single color for all masks. The color can be represented as
            PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
            By default, random colors are generated for each mask.
285
286

    Returns:
287
        img (Tensor[C, H, W]): Image Tensor, with segmentation masks drawn on top.
288
289
    """

Kai Zhang's avatar
Kai Zhang committed
290
291
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(draw_segmentation_masks)
292
    if not isinstance(image, torch.Tensor):
293
        raise TypeError(f"The image must be a tensor, got {type(image)}")
294
    elif image.dtype != torch.uint8:
295
        raise ValueError(f"The image dtype must be uint8, got {image.dtype}")
296
297
298
299
    elif image.dim() != 3:
        raise ValueError("Pass individual images, not batches")
    elif image.size()[0] != 3:
        raise ValueError("Pass an RGB image. Other Image formats are not supported")
300
301
302
303
304
305
306
307
    if masks.ndim == 2:
        masks = masks[None, :, :]
    if masks.ndim != 3:
        raise ValueError("masks must be of shape (H, W) or (batch_size, H, W)")
    if masks.dtype != torch.bool:
        raise ValueError(f"The masks must be of dtype bool. Got {masks.dtype}")
    if masks.shape[-2:] != image.shape[-2:]:
        raise ValueError("The image and the masks must have the same height and width")
308
309

    num_masks = masks.size()[0]
310
311
    if colors is not None and num_masks > len(colors):
        raise ValueError(f"There are more masks ({num_masks}) than colors ({len(colors)})")
312

313
314
315
316
    if num_masks == 0:
        warnings.warn("masks doesn't contain any mask. No mask was drawn")
        return image

317
    if colors is None:
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
        colors = _generate_color_palette(num_masks)

    if not isinstance(colors, list):
        colors = [colors]
    if not isinstance(colors[0], (tuple, str)):
        raise ValueError("colors must be a tuple or a string, or a list thereof")
    if isinstance(colors[0], tuple) and len(colors[0]) != 3:
        raise ValueError("It seems that you passed a tuple of colors instead of a list of colors")

    out_dtype = torch.uint8

    colors_ = []
    for color in colors:
        if isinstance(color, str):
            color = ImageColor.getrgb(color)
333
        colors_.append(torch.tensor(color, dtype=out_dtype))
334

335
336
337
338
    img_to_draw = image.detach().clone()
    # TODO: There might be a way to vectorize this
    for mask, color in zip(masks, colors_):
        img_to_draw[:, mask] = color[:, None]
339

340
341
    out = image * (1 - alpha) + img_to_draw * alpha
    return out.to(out_dtype)
342
343


344
345
346
347
@torch.no_grad()
def draw_keypoints(
    image: torch.Tensor,
    keypoints: torch.Tensor,
348
    connectivity: Optional[List[Tuple[int, int]]] = None,
349
350
351
352
353
354
355
356
357
358
359
360
361
    colors: Optional[Union[str, Tuple[int, int, int]]] = None,
    radius: int = 2,
    width: int = 3,
) -> torch.Tensor:

    """
    Draws Keypoints on given RGB image.
    The values of the input image should be uint8 between 0 and 255.

    Args:
        image (Tensor): Tensor of shape (3, H, W) and dtype uint8.
        keypoints (Tensor): Tensor of shape (num_instances, K, 2) the K keypoints location for each of the N instances,
            in the format [x, y].
362
        connectivity (List[Tuple[int, int]]]): A List of tuple where,
363
364
365
366
367
368
369
370
371
372
            each tuple contains pair of keypoints to be connected.
        colors (str, Tuple): The color can be represented as
            PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
        radius (int): Integer denoting radius of keypoint.
        width (int): Integer denoting width of line connecting keypoints.

    Returns:
        img (Tensor[C, H, W]): Image Tensor of dtype uint8 with keypoints drawn.
    """

Kai Zhang's avatar
Kai Zhang committed
373
374
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(draw_keypoints)
375
376
377
378
379
380
381
382
383
384
385
386
    if not isinstance(image, torch.Tensor):
        raise TypeError(f"The image must be a tensor, got {type(image)}")
    elif image.dtype != torch.uint8:
        raise ValueError(f"The image dtype must be uint8, got {image.dtype}")
    elif image.dim() != 3:
        raise ValueError("Pass individual images, not batches")
    elif image.size()[0] != 3:
        raise ValueError("Pass an RGB image. Other Image formats are not supported")

    if keypoints.ndim != 3:
        raise ValueError("keypoints must be of shape (num_instances, K, 2)")

387
    ndarr = image.permute(1, 2, 0).cpu().numpy()
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    img_to_draw = Image.fromarray(ndarr)
    draw = ImageDraw.Draw(img_to_draw)
    img_kpts = keypoints.to(torch.int64).tolist()

    for kpt_id, kpt_inst in enumerate(img_kpts):
        for inst_id, kpt in enumerate(kpt_inst):
            x1 = kpt[0] - radius
            x2 = kpt[0] + radius
            y1 = kpt[1] - radius
            y2 = kpt[1] + radius
            draw.ellipse([x1, y1, x2, y2], fill=colors, outline=None, width=0)

        if connectivity:
            for connection in connectivity:
                start_pt_x = kpt_inst[connection[0]][0]
                start_pt_y = kpt_inst[connection[0]][1]

                end_pt_x = kpt_inst[connection[1]][0]
                end_pt_y = kpt_inst[connection[1]][1]

                draw.line(
                    ((start_pt_x, start_pt_y), (end_pt_x, end_pt_y)),
                    width=width,
                )

    return torch.from_numpy(np.array(img_to_draw)).permute(2, 0, 1).to(dtype=torch.uint8)


416
417
418
419
420
421
422
423
# Flow visualization code adapted from https://github.com/tomrunia/OpticalFlow_Visualization
@torch.no_grad()
def flow_to_image(flow: torch.Tensor) -> torch.Tensor:

    """
    Converts a flow to an RGB image.

    Args:
424
        flow (Tensor): Flow of shape (N, 2, H, W) or (2, H, W) and dtype torch.float.
425
426

    Returns:
427
428
        img (Tensor): Image Tensor of dtype uint8 where each color corresponds
            to a given flow direction. Shape is (N, 3, H, W) or (3, H, W) depending on the input.
429
430
431
432
433
    """

    if flow.dtype != torch.float:
        raise ValueError(f"Flow should be of dtype torch.float, got {flow.dtype}.")

434
435
436
    orig_shape = flow.shape
    if flow.ndim == 3:
        flow = flow[None]  # Add batch dim
437

438
439
440
    if flow.ndim != 4 or flow.shape[1] != 2:
        raise ValueError(f"Input flow should have shape (2, H, W) or (N, 2, H, W), got {orig_shape}.")

441
    max_norm = torch.sum(flow**2, dim=1).sqrt().max()
442
443
    epsilon = torch.finfo((flow).dtype).eps
    normalized_flow = flow / (max_norm + epsilon)
444
445
446
447
448
    img = _normalized_flow_to_image(normalized_flow)

    if len(orig_shape) == 3:
        img = img[0]  # Remove batch dim
    return img
449
450
451
452
453
454


@torch.no_grad()
def _normalized_flow_to_image(normalized_flow: torch.Tensor) -> torch.Tensor:

    """
455
    Converts a batch of normalized flow to an RGB image.
456
457

    Args:
458
        normalized_flow (torch.Tensor): Normalized flow tensor of shape (N, 2, H, W)
459
    Returns:
460
       img (Tensor(N, 3, H, W)): Flow visualization image of dtype uint8.
461
462
    """

463
    N, _, H, W = normalized_flow.shape
464
465
466
    device = normalized_flow.device
    flow_image = torch.zeros((N, 3, H, W), dtype=torch.uint8, device=device)
    colorwheel = _make_colorwheel().to(device)  # shape [55x3]
467
    num_cols = colorwheel.shape[0]
468
    norm = torch.sum(normalized_flow**2, dim=1).sqrt()
469
    a = torch.atan2(-normalized_flow[:, 1, :, :], -normalized_flow[:, 0, :, :]) / torch.pi
470
471
472
473
474
475
476
477
478
479
480
481
    fk = (a + 1) / 2 * (num_cols - 1)
    k0 = torch.floor(fk).to(torch.long)
    k1 = k0 + 1
    k1[k1 == num_cols] = 0
    f = fk - k0

    for c in range(colorwheel.shape[1]):
        tmp = colorwheel[:, c]
        col0 = tmp[k0] / 255.0
        col1 = tmp[k1] / 255.0
        col = (1 - f) * col0 + f * col1
        col = 1 - norm * (1 - col)
482
        flow_image[:, c, :, :] = torch.floor(255 * col)
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
    return flow_image


def _make_colorwheel() -> torch.Tensor:
    """
    Generates a color wheel for optical flow visualization as presented in:
    Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
    URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf.

    Returns:
        colorwheel (Tensor[55, 3]): Colorwheel Tensor.
    """

    RY = 15
    YG = 6
    GC = 4
    CB = 11
    BM = 13
    MR = 6

    ncols = RY + YG + GC + CB + BM + MR
    colorwheel = torch.zeros((ncols, 3))
    col = 0

    # RY
    colorwheel[0:RY, 0] = 255
    colorwheel[0:RY, 1] = torch.floor(255 * torch.arange(0, RY) / RY)
    col = col + RY
    # YG
    colorwheel[col : col + YG, 0] = 255 - torch.floor(255 * torch.arange(0, YG) / YG)
    colorwheel[col : col + YG, 1] = 255
    col = col + YG
    # GC
    colorwheel[col : col + GC, 1] = 255
    colorwheel[col : col + GC, 2] = torch.floor(255 * torch.arange(0, GC) / GC)
    col = col + GC
    # CB
    colorwheel[col : col + CB, 1] = 255 - torch.floor(255 * torch.arange(CB) / CB)
    colorwheel[col : col + CB, 2] = 255
    col = col + CB
    # BM
    colorwheel[col : col + BM, 2] = 255
    colorwheel[col : col + BM, 0] = torch.floor(255 * torch.arange(0, BM) / BM)
    col = col + BM
    # MR
    colorwheel[col : col + MR, 2] = 255 - torch.floor(255 * torch.arange(MR) / MR)
    colorwheel[col : col + MR, 0] = 255
    return colorwheel


533
def _generate_color_palette(num_objects: int):
534
    palette = torch.tensor([2**25 - 1, 2**15 - 1, 2**21 - 1])
535
    return [tuple((i * palette) % 255) for i in range(num_objects)]
536
537


Kai Zhang's avatar
Kai Zhang committed
538
def _log_api_usage_once(obj: Any) -> None:
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555

    """
    Logs API usage(module and name) within an organization.
    In a large ecosystem, it's often useful to track the PyTorch and
    TorchVision APIs usage. This API provides the similar functionality to the
    logging module in the Python stdlib. It can be used for debugging purpose
    to log which methods are used and by default it is inactive, unless the user
    manually subscribes a logger via the `SetAPIUsageLogger method <https://github.com/pytorch/pytorch/blob/eb3b9fe719b21fae13c7a7cf3253f970290a573e/c10/util/Logging.cpp#L114>`_.
    Please note it is triggered only once for the same API call within a process.
    It does not collect any data from open-source users since it is no-op by default.
    For more information, please refer to
    * PyTorch note: https://pytorch.org/docs/stable/notes/large_scale_deployments.html#api-usage-logging;
    * Logging policy: https://github.com/pytorch/vision/issues/5052;

    Args:
        obj (class instance or method): an object to extract info from.
    """
556
557
558
    module = obj.__module__
    if not module.startswith("torchvision"):
        module = f"torchvision.internal.{module}"
Kai Zhang's avatar
Kai Zhang committed
559
560
561
    name = obj.__class__.__name__
    if isinstance(obj, FunctionType):
        name = obj.__name__
562
    torch._C._log_api_usage_once(f"{module}.{name}")
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577


def _make_ntuple(x: Any, n: int) -> Tuple[Any, ...]:
    """
    Make n-tuple from input x. If x is an iterable, then we just convert it to tuple.
    Otherwise we will make a tuple of length n, all with value of x.
    reference: https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/utils.py#L8

    Args:
        x (Any): input value
        n (int): length of the resulting tuple
    """
    if isinstance(x, collections.abc.Iterable):
        return tuple(x)
    return tuple(repeat(x, n))