resnet.py 8.48 KB
Newer Older
1
2
3
4
5
import torch.nn as nn
import torch.utils.model_zoo as model_zoo


__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
6
           'resnet152', 'resnext50_32x4d', 'resnext101_32x8d']
7
8
9


model_urls = {
10
11
12
13
14
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
15
16
17
}


18
def conv3x3(in_planes, out_planes, stride=1, groups=1):
19
    """3x3 convolution with padding"""
20
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
21
                     padding=1, groups=groups, bias=False)
22
23


24
25
26
27
28
def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


Soumith Chintala's avatar
Soumith Chintala committed
29
class BasicBlock(nn.Module):
30
31
    expansion = 1

32
    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, norm_layer=None):
33
        super(BasicBlock, self).__init__()
34
35
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
36
37
        if groups != 1:
            raise ValueError('BasicBlock only supports groups=1')
38
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
39
        self.conv1 = conv3x3(inplanes, planes, stride)
40
        self.bn1 = norm_layer(planes)
41
42
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
43
        self.bn2 = norm_layer(planes)
44
45
46
47
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
48
        identity = x
49
50
51
52
53
54
55
56
57

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
58
            identity = self.downsample(x)
59

60
        out += identity
61
62
63
64
65
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
66
class Bottleneck(nn.Module):
67
68
    expansion = 4

69
    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, norm_layer=None):
70
        super(Bottleneck, self).__init__()
71
72
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
73
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
74
        self.conv1 = conv1x1(inplanes, planes)
75
        self.bn1 = norm_layer(planes)
76
        self.conv2 = conv3x3(planes, planes, stride, groups)
77
        self.bn2 = norm_layer(planes)
78
        self.conv3 = conv1x1(planes, planes * self.expansion)
79
        self.bn3 = norm_layer(planes * self.expansion)
80
81
82
83
84
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
85
        identity = x
86
87
88
89
90
91
92
93
94
95
96
97
98

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
99
            identity = self.downsample(x)
100

101
        out += identity
102
103
104
105
106
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
107
class ResNet(nn.Module):
108

109
110
    def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
            groups=1,width_per_group=64, norm_layer=None):
111
        super(ResNet, self).__init__()
112
113
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
114
115
116
        planes = [int(width_per_group * groups * 2 ** i) for i in range(4)]
        self.inplanes = planes[0]
        self.conv1 = nn.Conv2d(3, planes[0], kernel_size=7, stride=2, padding=3,
117
                               bias=False)
118
        self.bn1 = norm_layer(planes[0])
119
120
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
121
122
123
124
        self.layer1 = self._make_layer(block, planes[0], layers[0], groups=groups, norm_layer=norm_layer)
        self.layer2 = self._make_layer(block, planes[1], layers[1], stride=2, groups=groups, norm_layer=norm_layer)
        self.layer3 = self._make_layer(block, planes[2], layers[2], stride=2, groups=groups, norm_layer=norm_layer)
        self.layer4 = self._make_layer(block, planes[3], layers[3], stride=2, groups=groups, norm_layer=norm_layer)
125
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
126
        self.fc = nn.Linear(planes[3] * block.expansion, num_classes)
127
128
129

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
130
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
131
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
132
133
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
134

135
136
137
138
139
140
141
142
143
144
        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)

145
    def _make_layer(self, block, planes, blocks, stride=1, groups=1, norm_layer=None):
146
147
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
148
149
150
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
151
                conv1x1(self.inplanes, planes * block.expansion, stride),
152
                norm_layer(planes * block.expansion),
153
154
155
            )

        layers = []
156
        layers.append(block(self.inplanes, planes, stride, downsample, groups, norm_layer))
157
        self.inplanes = planes * block.expansion
158
        for _ in range(1, blocks):
159
            layers.append(block(self.inplanes, planes, groups=groups, norm_layer=norm_layer))
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)

        return x


181
def resnet18(pretrained=False, **kwargs):
182
183
184
185
186
    """Constructs a ResNet-18 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
187
    model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
188
189
190
191
192
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
    return model


193
def resnet34(pretrained=False, **kwargs):
194
195
196
197
198
    """Constructs a ResNet-34 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
199
    model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
200
201
202
203
204
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
    return model


205
def resnet50(pretrained=False, **kwargs):
206
207
208
209
210
    """Constructs a ResNet-50 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
211
    model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
212
213
214
215
216
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
    return model


217
def resnet101(pretrained=False, **kwargs):
218
219
220
221
222
    """Constructs a ResNet-101 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
223
    model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
Sam Gross's avatar
Sam Gross committed
224
225
226
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
    return model
227
228


229
def resnet152(pretrained=False, **kwargs):
230
231
232
233
234
    """Constructs a ResNet-152 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
235
    model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
236
237
238
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
    return model
239
240
241
242
243
244
245
246
247
248
249
250
251
252


def resnext50_32x4d(pretrained=False, **kwargs):
    model = ResNet(Bottleneck, [3, 4, 6, 3], groups=4, width_per_group=32, **kwargs)
    #if pretrained:
    #    model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
    return model


def resnext101_32x8d(pretrained=False, **kwargs):
    model = ResNet(Bottleneck, [3, 4, 23, 3], groups=8, width_per_group=32, **kwargs)
    #if pretrained:
    #    model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
    return model