"vscode:/vscode.git/clone" did not exist on "e3da44bb02cbcbb4e7269606905590b754b712e8"
models.rst 22.6 KB
Newer Older
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
1
torchvision.models
2
3
4
5
6
##################


The models subpackage contains definitions of models for addressing
different tasks, including: image classification, pixelwise semantic
7
8
segmentation, object detection, instance segmentation, person
keypoint detection and video classification.
9
10
11
12


Classification
==============
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
13

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
14
The models subpackage contains definitions for the following model
15
architectures for image classification:
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
16
17
18
19
20
21
22

-  `AlexNet`_
-  `VGG`_
-  `ResNet`_
-  `SqueezeNet`_
-  `DenseNet`_
-  `Inception`_ v3
23
-  `GoogLeNet`_
Bar's avatar
Bar committed
24
-  `ShuffleNet`_ v2
25
26
-  `MobileNetV2`_
-  `MobileNetV3`_
27
-  `ResNeXt`_
28
-  `Wide ResNet`_
29
-  `MNASNet`_
30
-  `EfficientNet`_
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
31
32
33
34
35
36
37
38
39
40

You can construct a model with random weights by calling its constructor:

.. code:: python

    import torchvision.models as models
    resnet18 = models.resnet18()
    alexnet = models.alexnet()
    vgg16 = models.vgg16()
    squeezenet = models.squeezenet1_0()
Ahmed Abdo's avatar
Ahmed Abdo committed
41
    densenet = models.densenet161()
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
42
    inception = models.inception_v3()
43
    googlenet = models.googlenet()
44
    shufflenet = models.shufflenet_v2_x1_0()
45
46
47
    mobilenet_v2 = models.mobilenet_v2()
    mobilenet_v3_large = models.mobilenet_v3_large()
    mobilenet_v3_small = models.mobilenet_v3_small()
48
    resnext50_32x4d = models.resnext50_32x4d()
49
    wide_resnet50_2 = models.wide_resnet50_2()
50
    mnasnet = models.mnasnet1_0()
51
52
53
54
55
56
57
58
    efficientnet_b0 = models.efficientnet_b0()
    efficientnet_b1 = models.efficientnet_b1()
    efficientnet_b2 = models.efficientnet_b2()
    efficientnet_b3 = models.efficientnet_b3()
    efficientnet_b4 = models.efficientnet_b4()
    efficientnet_b5 = models.efficientnet_b5()
    efficientnet_b6 = models.efficientnet_b6()
    efficientnet_b7 = models.efficientnet_b7()
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
59
60
61
62
63
64
65
66
67
68
69

We provide pre-trained models, using the PyTorch :mod:`torch.utils.model_zoo`.
These can be constructed by passing ``pretrained=True``:

.. code:: python

    import torchvision.models as models
    resnet18 = models.resnet18(pretrained=True)
    alexnet = models.alexnet(pretrained=True)
    squeezenet = models.squeezenet1_0(pretrained=True)
    vgg16 = models.vgg16(pretrained=True)
Ahmed Abdo's avatar
Ahmed Abdo committed
70
    densenet = models.densenet161(pretrained=True)
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
71
    inception = models.inception_v3(pretrained=True)
72
    googlenet = models.googlenet(pretrained=True)
73
    shufflenet = models.shufflenet_v2_x1_0(pretrained=True)
74
75
    mobilenet_v2 = models.mobilenet_v2(pretrained=True)
    mobilenet_v3_large = models.mobilenet_v3_large(pretrained=True)
76
    mobilenet_v3_small = models.mobilenet_v3_small(pretrained=True)
77
    resnext50_32x4d = models.resnext50_32x4d(pretrained=True)
78
    wide_resnet50_2 = models.wide_resnet50_2(pretrained=True)
79
    mnasnet = models.mnasnet1_0(pretrained=True)
80
81
82
83
84
85
86
87
    efficientnet_b0 = models.efficientnet_b0(pretrained=True)
    efficientnet_b1 = models.efficientnet_b1(pretrained=True)
    efficientnet_b2 = models.efficientnet_b2(pretrained=True)
    efficientnet_b3 = models.efficientnet_b3(pretrained=True)
    efficientnet_b4 = models.efficientnet_b4(pretrained=True)
    efficientnet_b5 = models.efficientnet_b5(pretrained=True)
    efficientnet_b6 = models.efficientnet_b6(pretrained=True)
    efficientnet_b7 = models.efficientnet_b7(pretrained=True)
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
88

89
90
91
92
Instancing a pre-trained model will download its weights to a cache directory.
This directory can be set using the `TORCH_MODEL_ZOO` environment variable. See
:func:`torch.utils.model_zoo.load_url` for details.

93
94
95
Some models use modules which have different training and evaluation
behavior, such as batch normalization. To switch between these modes, use
``model.train()`` or ``model.eval()`` as appropriate. See
96
:meth:`~torch.nn.Module.train` or :meth:`~torch.nn.Module.eval` for details.
97

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
98
99
100
101
102
103
104
105
106
107
108
109
110
All pre-trained models expect input images normalized in the same way,
i.e. mini-batches of 3-channel RGB images of shape (3 x H x W),
where H and W are expected to be at least 224.
The images have to be loaded in to a range of [0, 1] and then normalized
using ``mean = [0.485, 0.456, 0.406]`` and ``std = [0.229, 0.224, 0.225]``.
You can use the following transform to normalize::

    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

An example of such normalization can be found in the imagenet example
`here <https://github.com/pytorch/examples/blob/42e5b996718797e45c46a25c55b031e6768f8440/imagenet/main.py#L89-L101>`_

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
The process for obtaining the values of `mean` and `std` is roughly equivalent
to::

    import torch
    from torchvision import datasets, transforms as T

    transform = T.Compose([T.Resize(256), T.CenterCrop(224), T.ToTensor()])
    dataset = datasets.ImageNet(".", split="train", transform=transform)

    means = []
    stds = []
    for img in subset(dataset):
        means.append(torch.mean(img))
        stds.append(torch.std(img))

    mean = torch.mean(torch.tensor(means))
    std = torch.mean(torch.tensor(stds))

129
Unfortunately, the concrete `subset` that was used is lost. For more
130
131
132
information see `this discussion <https://github.com/pytorch/vision/issues/1439>`_
or `these experiments <https://github.com/pytorch/vision/pull/1965>`_.

133
134
135
136
The sizes of the EfficientNet models depend on the variant. For the exact input sizes
`check here <https://github.com/pytorch/vision/blob/d2bfd639e46e1c5dc3c177f889dc7750c8d137c7/references/classification/train.py#L92-L93>`_

ImageNet 1-crop error rates
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
137
138

================================  =============   =============
139
Model                             Acc@1           Acc@5
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
140
================================  =============   =============
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
AlexNet                           56.522          79.066
VGG-11                            69.020          88.628
VGG-13                            69.928          89.246
VGG-16                            71.592          90.382
VGG-19                            72.376          90.876
VGG-11 with batch normalization   70.370          89.810
VGG-13 with batch normalization   71.586          90.374
VGG-16 with batch normalization   73.360          91.516
VGG-19 with batch normalization   74.218          91.842
ResNet-18                         69.758          89.078
ResNet-34                         73.314          91.420
ResNet-50                         76.130          92.862
ResNet-101                        77.374          93.546
ResNet-152                        78.312          94.046
SqueezeNet 1.0                    58.092          80.420
SqueezeNet 1.1                    58.178          80.624
Densenet-121                      74.434          91.972
Densenet-169                      75.600          92.806
Densenet-201                      76.896          93.370
Densenet-161                      77.138          93.560
Inception v3                      77.294          93.450
GoogleNet                         69.778          89.530
ShuffleNet V2 x1.0                69.362          88.316
ShuffleNet V2 x0.5                60.552          81.746
MobileNet V2                      71.878          90.286
MobileNet V3 Large                74.042          91.340
167
MobileNet V3 Small                67.668          87.402
168
169
170
171
172
173
ResNeXt-50-32x4d                  77.618          93.698
ResNeXt-101-32x8d                 79.312          94.526
Wide ResNet-50-2                  78.468          94.086
Wide ResNet-101-2                 78.848          94.284
MNASNet 1.0                       73.456          91.510
MNASNet 0.5                       67.734          87.490
174
175
176
177
178
179
180
181
EfficientNet-B0                   77.692          93.532
EfficientNet-B1                   78.642          94.186
EfficientNet-B2                   80.608          95.310
EfficientNet-B3                   82.008          96.054
EfficientNet-B4                   83.384          96.594
EfficientNet-B5                   83.444          96.628
EfficientNet-B6                   84.008          96.916
EfficientNet-B7                   84.122          96.908
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
182
183
184
185
186
187
188
189
190
================================  =============   =============


.. _AlexNet: https://arxiv.org/abs/1404.5997
.. _VGG: https://arxiv.org/abs/1409.1556
.. _ResNet: https://arxiv.org/abs/1512.03385
.. _SqueezeNet: https://arxiv.org/abs/1602.07360
.. _DenseNet: https://arxiv.org/abs/1608.06993
.. _Inception: https://arxiv.org/abs/1512.00567
191
.. _GoogLeNet: https://arxiv.org/abs/1409.4842
Bar's avatar
Bar committed
192
.. _ShuffleNet: https://arxiv.org/abs/1807.11164
193
194
.. _MobileNetV2: https://arxiv.org/abs/1801.04381
.. _MobileNetV3: https://arxiv.org/abs/1905.02244
195
.. _ResNeXt: https://arxiv.org/abs/1611.05431
196
.. _MNASNet: https://arxiv.org/abs/1807.11626
197
.. _EfficientNet: https://arxiv.org/abs/1905.11946
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
198
199
200

.. currentmodule:: torchvision.models

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
Alexnet
-------

.. autofunction:: alexnet

VGG
---

.. autofunction:: vgg11
.. autofunction:: vgg11_bn
.. autofunction:: vgg13
.. autofunction:: vgg13_bn
.. autofunction:: vgg16
.. autofunction:: vgg16_bn
.. autofunction:: vgg19
.. autofunction:: vgg19_bn


ResNet
------

.. autofunction:: resnet18
.. autofunction:: resnet34
.. autofunction:: resnet50
.. autofunction:: resnet101
.. autofunction:: resnet152

SqueezeNet
----------

.. autofunction:: squeezenet1_0
.. autofunction:: squeezenet1_1

Sangwhan Moon's avatar
Sangwhan Moon committed
234
DenseNet
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
235
236
237
238
239
240
241
242
243
244
245
246
---------

.. autofunction:: densenet121
.. autofunction:: densenet169
.. autofunction:: densenet161
.. autofunction:: densenet201

Inception v3
------------

.. autofunction:: inception_v3

247
248
249
250
.. note ::
    This requires `scipy` to be installed


251
252
253
254
255
GoogLeNet
------------

.. autofunction:: googlenet

256
257
258
259
.. note ::
    This requires `scipy` to be installed


Bar's avatar
Bar committed
260
261
262
ShuffleNet v2
-------------

263
264
265
266
.. autofunction:: shufflenet_v2_x0_5
.. autofunction:: shufflenet_v2_x1_0
.. autofunction:: shufflenet_v2_x1_5
.. autofunction:: shufflenet_v2_x2_0
Bar's avatar
Bar committed
267

268
269
270
271
272
MobileNet v2
-------------

.. autofunction:: mobilenet_v2

273
274
275
276
277
278
MobileNet v3
-------------

.. autofunction:: mobilenet_v3_large
.. autofunction:: mobilenet_v3_small

279
ResNext
280
-------
281
282
283
284

.. autofunction:: resnext50_32x4d
.. autofunction:: resnext101_32x8d

285
286
287
288
289
290
Wide ResNet
-----------

.. autofunction:: wide_resnet50_2
.. autofunction:: wide_resnet101_2

291
292
293
294
295
296
297
298
MNASNet
--------

.. autofunction:: mnasnet0_5
.. autofunction:: mnasnet0_75
.. autofunction:: mnasnet1_0
.. autofunction:: mnasnet1_3

299
300
301
302
303
304
305
306
307
308
309
310
EfficientNet
------------

.. autofunction:: efficientnet_b0
.. autofunction:: efficientnet_b1
.. autofunction:: efficientnet_b2
.. autofunction:: efficientnet_b3
.. autofunction:: efficientnet_b4
.. autofunction:: efficientnet_b5
.. autofunction:: efficientnet_b6
.. autofunction:: efficientnet_b7

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
Quantized Models
----------------

The following architectures provide support for INT8 quantized models. You can get
a model with random weights by calling its constructor:

.. code:: python

    import torchvision.models as models
    googlenet = models.quantization.googlenet()
    inception_v3 = models.quantization.inception_v3()
    mobilenet_v2 = models.quantization.mobilenet_v2()
    mobilenet_v3_large = models.quantization.mobilenet_v3_large()
    resnet18 = models.quantization.resnet18()
    resnet50 = models.quantization.resnet50()
    resnext101_32x8d = models.quantization.resnext101_32x8d()
    shufflenet_v2_x0_5 = models.quantization.shufflenet_v2_x0_5()
    shufflenet_v2_x1_0 = models.quantization.shufflenet_v2_x1_0()
    shufflenet_v2_x1_5 = models.quantization.shufflenet_v2_x1_5()
    shufflenet_v2_x2_0 = models.quantization.shufflenet_v2_x2_0()

Obtaining a pre-trained quantized model can be done with a few lines of code:

.. code:: python

    import torchvision.models as models
    model = models.quantization.mobilenet_v2(pretrained=True, quantize=True)
    model.eval()
    # run the model with quantized inputs and weights
    out = model(torch.rand(1, 3, 224, 224))

We provide pre-trained quantized weights for the following models:

================================  =============  =============
Model                             Acc@1          Acc@5
================================  =============  =============
MobileNet V2                      71.658         90.150
MobileNet V3 Large                73.004         90.858
ShuffleNet V2                     68.360         87.582
ResNet 18                         69.494         88.882
ResNet 50                         75.920         92.814
ResNext 101 32x8d                 78.986         94.480
Inception V3                      77.176         93.354
GoogleNet                         69.826         89.404
================================  =============  =============

357
358
359
360

Semantic Segmentation
=====================

361
362
363
The models subpackage contains definitions for the following model
architectures for semantic segmentation:

364
- `FCN ResNet50, ResNet101 <https://arxiv.org/abs/1411.4038>`_
365
366
- `DeepLabV3 ResNet50, ResNet101, MobileNetV3-Large <https://arxiv.org/abs/1706.05587>`_
- `LR-ASPP MobileNetV3-Large <https://arxiv.org/abs/1905.02244>`_
367

368
369
370
371
372
As with image classification models, all pre-trained models expect input images normalized in the same way.
The images have to be loaded in to a range of ``[0, 1]`` and then normalized using
``mean = [0.485, 0.456, 0.406]`` and ``std = [0.229, 0.224, 0.225]``.
They have been trained on images resized such that their minimum size is 520.

373
374
For details on how to plot the masks of such models, you may refer to :ref:`semantic_seg_output`.

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
The pre-trained models have been trained on a subset of COCO train2017, on the 20 categories that are
present in the Pascal VOC dataset. You can see more information on how the subset has been selected in
``references/segmentation/coco_utils.py``. The classes that the pre-trained model outputs are the following,
in order:

  .. code-block:: python

      ['__background__', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus',
       'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike',
       'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']

The accuracies of the pre-trained models evaluated on COCO val2017 are as follows

================================  =============  ====================
Network                           mean IoU       global pixelwise acc
================================  =============  ====================
391
FCN ResNet50                      60.5           91.4
392
FCN ResNet101                     63.7           91.9
393
DeepLabV3 ResNet50                66.4           92.4
394
DeepLabV3 ResNet101               67.4           92.4
395
396
DeepLabV3 MobileNetV3-Large       60.3           91.2
LR-ASPP MobileNetV3-Large         57.9           91.2
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
================================  =============  ====================


Fully Convolutional Networks
----------------------------

.. autofunction:: torchvision.models.segmentation.fcn_resnet50
.. autofunction:: torchvision.models.segmentation.fcn_resnet101


DeepLabV3
---------

.. autofunction:: torchvision.models.segmentation.deeplabv3_resnet50
.. autofunction:: torchvision.models.segmentation.deeplabv3_resnet101
412
413
414
415
416
417
418
.. autofunction:: torchvision.models.segmentation.deeplabv3_mobilenet_v3_large


LR-ASPP
-------

.. autofunction:: torchvision.models.segmentation.lraspp_mobilenet_v3_large
419

420
.. _object_det_inst_seg_pers_keypoint_det:
421
422
423
424

Object Detection, Instance Segmentation and Person Keypoint Detection
=====================================================================

425
426
427
The models subpackage contains definitions for the following model
architectures for detection:

428
429
430
431
- `Faster R-CNN <https://arxiv.org/abs/1506.01497>`_
- `Mask R-CNN <https://arxiv.org/abs/1703.06870>`_
- `RetinaNet <https://arxiv.org/abs/1708.02002>`_
- `SSD <https://arxiv.org/abs/1512.02325>`_
432
- `SSDlite <https://arxiv.org/abs/1801.04381>`_
433

434
435
436
437
438
The pre-trained models for detection, instance segmentation and
keypoint detection are initialized with the classification models
in torchvision.

The models expect a list of ``Tensor[C, H, W]``, in the range ``0-1``.
439
The models internally resize the images but the behaviour varies depending
440
441
on the model. Check the constructor of the models for more information. The
output format of such models is illustrated in :ref:`instance_seg_output`.
442
443
444
445
446
447
448
449
450


For object detection and instance segmentation, the pre-trained
models return the predictions of the following classes:

  .. code-block:: python

      COCO_INSTANCE_CATEGORY_NAMES = [
          '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
451
452
          'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
          'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
453
          'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
454
455
456
457
458
459
460
461
          'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
          'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
          'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
          'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
          'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
          'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
          'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
          'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
462
463
464
465
466
467
      ]


Here are the summary of the accuracies for the models trained on
the instances set of COCO train2017 and evaluated on COCO val2017.

468
469
470
471
472
473
474
======================================  =======  ========  ===========
Network                                 box AP   mask AP   keypoint AP
======================================  =======  ========  ===========
Faster R-CNN ResNet-50 FPN              37.0     -         -
Faster R-CNN MobileNetV3-Large FPN      32.8     -         -
Faster R-CNN MobileNetV3-Large 320 FPN  22.8     -         -
RetinaNet ResNet-50 FPN                 36.4     -         -
475
476
SSD300 VGG16                            25.1     -         -
SSDlite320 MobileNetV3-Large            21.3     -         -
477
478
Mask R-CNN ResNet-50 FPN                37.9     34.6      -
======================================  =======  ========  ===========
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513

For person keypoint detection, the accuracies for the pre-trained
models are as follows

================================  =======  ========  ===========
Network                           box AP   mask AP   keypoint AP
================================  =======  ========  ===========
Keypoint R-CNN ResNet-50 FPN      54.6     -         65.0
================================  =======  ========  ===========

For person keypoint detection, the pre-trained model return the
keypoints in the following order:

  .. code-block:: python

    COCO_PERSON_KEYPOINT_NAMES = [
        'nose',
        'left_eye',
        'right_eye',
        'left_ear',
        'right_ear',
        'left_shoulder',
        'right_shoulder',
        'left_elbow',
        'right_elbow',
        'left_wrist',
        'right_wrist',
        'left_hip',
        'right_hip',
        'left_knee',
        'right_knee',
        'left_ankle',
        'right_ankle'
    ]

514
515
516
517
518
519
Runtime characteristics
-----------------------

The implementations of the models for object detection, instance segmentation
and keypoint detection are efficient.

520
521
522
In the following table, we use 8 GPUs to report the results. During training,
we use a batch size of 2 per GPU for all models except SSD which uses 4
and SSDlite which uses 24. During testing a batch size  of 1 is used.
523
524
525
526
527

For test time, we report the time for the model evaluation and postprocessing
(including mask pasting in image), but not the time for computing the
precision-recall.

528
529
530
531
532
533
534
======================================  ===================  ==================  ===========
Network                                 train time (s / it)  test time (s / it)  memory (GB)
======================================  ===================  ==================  ===========
Faster R-CNN ResNet-50 FPN              0.2288               0.0590              5.2
Faster R-CNN MobileNetV3-Large FPN      0.1020               0.0415              1.0
Faster R-CNN MobileNetV3-Large 320 FPN  0.0978               0.0376              0.6
RetinaNet ResNet-50 FPN                 0.2514               0.0939              4.1
535
536
SSD300 VGG16                            0.2093               0.0744              1.5
SSDlite320 MobileNetV3-Large            0.1773               0.0906              1.5
537
538
539
Mask R-CNN ResNet-50 FPN                0.2728               0.0903              5.4
Keypoint R-CNN ResNet-50 FPN            0.3789               0.1242              6.8
======================================  ===================  ==================  ===========
540
541
542
543
544
545


Faster R-CNN
------------

.. autofunction:: torchvision.models.detection.fasterrcnn_resnet50_fpn
546
.. autofunction:: torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn
547
.. autofunction:: torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn
548
549


550
RetinaNet
551
---------
552
553
554
555

.. autofunction:: torchvision.models.detection.retinanet_resnet50_fpn


556
SSD
557
---
558
559
560
561

.. autofunction:: torchvision.models.detection.ssd300_vgg16


562
SSDlite
563
-------
564
565
566
567

.. autofunction:: torchvision.models.detection.ssdlite320_mobilenet_v3_large


568
569
570
571
572
573
574
575
576
577
578
Mask R-CNN
----------

.. autofunction:: torchvision.models.detection.maskrcnn_resnet50_fpn


Keypoint R-CNN
--------------

.. autofunction:: torchvision.models.detection.keypointrcnn_resnet50_fpn

579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626

Video classification
====================

We provide models for action recognition pre-trained on Kinetics-400.
They have all been trained with the scripts provided in ``references/video_classification``.

All pre-trained models expect input images normalized in the same way,
i.e. mini-batches of 3-channel RGB videos of shape (3 x T x H x W),
where H and W are expected to be 112, and T is a number of video frames in a clip.
The images have to be loaded in to a range of [0, 1] and then normalized
using ``mean = [0.43216, 0.394666, 0.37645]`` and ``std = [0.22803, 0.22145, 0.216989]``.


.. note::
  The normalization parameters are different from the image classification ones, and correspond
  to the mean and std from Kinetics-400.

.. note::
  For now, normalization code can be found in ``references/video_classification/transforms.py``,
  see the ``Normalize`` function there. Note that it differs from standard normalization for
  images because it assumes the video is 4d.

Kinetics 1-crop accuracies for clip length 16 (16x112x112)

================================  =============   =============
Network                           Clip acc@1      Clip acc@5
================================  =============   =============
ResNet 3D 18                      52.75           75.45
ResNet MC 18                      53.90           76.29
ResNet (2+1)D                     57.50           78.81
================================  =============   =============


ResNet 3D
----------

.. autofunction:: torchvision.models.video.r3d_18

ResNet Mixed Convolution
------------------------

.. autofunction:: torchvision.models.video.mc3_18

ResNet (2+1)D
-------------

.. autofunction:: torchvision.models.video.r2plus1d_18