models.rst 13.5 KB
Newer Older
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
1
torchvision.models
2
3
4
5
6
7
8
9
10
11
12
##################


The models subpackage contains definitions of models for addressing
different tasks, including: image classification, pixelwise semantic
segmentation, object detection, instance segmentation and person
keypoint detection.


Classification
==============
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
13

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
14
The models subpackage contains definitions for the following model
15
architectures for image classification:
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
16
17
18
19
20
21
22

-  `AlexNet`_
-  `VGG`_
-  `ResNet`_
-  `SqueezeNet`_
-  `DenseNet`_
-  `Inception`_ v3
23
-  `GoogLeNet`_
Bar's avatar
Bar committed
24
-  `ShuffleNet`_ v2
25
26
-  `MobileNet`_ v2
-  `ResNeXt`_
27
-  `Wide ResNet`_
28
-  `MNASNet`_
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
29
30
31
32
33
34
35
36
37
38

You can construct a model with random weights by calling its constructor:

.. code:: python

    import torchvision.models as models
    resnet18 = models.resnet18()
    alexnet = models.alexnet()
    vgg16 = models.vgg16()
    squeezenet = models.squeezenet1_0()
Ahmed Abdo's avatar
Ahmed Abdo committed
39
    densenet = models.densenet161()
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
40
    inception = models.inception_v3()
41
    googlenet = models.googlenet()
42
43
44
    shufflenet = models.shufflenet_v2_x1_0()
    mobilenet = models.mobilenet_v2()
    resnext50_32x4d = models.resnext50_32x4d()
45
    wide_resnet50_2 = models.wide_resnet50_2()
46
    mnasnet = models.mnasnet1_0()
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
47
48
49
50
51
52
53
54
55
56
57

We provide pre-trained models, using the PyTorch :mod:`torch.utils.model_zoo`.
These can be constructed by passing ``pretrained=True``:

.. code:: python

    import torchvision.models as models
    resnet18 = models.resnet18(pretrained=True)
    alexnet = models.alexnet(pretrained=True)
    squeezenet = models.squeezenet1_0(pretrained=True)
    vgg16 = models.vgg16(pretrained=True)
Ahmed Abdo's avatar
Ahmed Abdo committed
58
    densenet = models.densenet161(pretrained=True)
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
59
    inception = models.inception_v3(pretrained=True)
60
    googlenet = models.googlenet(pretrained=True)
61
62
63
    shufflenet = models.shufflenet_v2_x1_0(pretrained=True)
    mobilenet = models.mobilenet_v2(pretrained=True)
    resnext50_32x4d = models.resnext50_32x4d(pretrained=True)
64
    wide_resnet50_2 = models.wide_resnet50_2(pretrained=True)
65
    mnasnet = models.mnasnet1_0(pretrained=True)
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
66

67
68
69
70
Instancing a pre-trained model will download its weights to a cache directory.
This directory can be set using the `TORCH_MODEL_ZOO` environment variable. See
:func:`torch.utils.model_zoo.load_url` for details.

71
72
73
74
75
Some models use modules which have different training and evaluation
behavior, such as batch normalization. To switch between these modes, use
``model.train()`` or ``model.eval()`` as appropriate. See
:meth:`~torch.nn.Module.train` or :meth:`~torch.nn.Module.eval` for details. 

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
All pre-trained models expect input images normalized in the same way,
i.e. mini-batches of 3-channel RGB images of shape (3 x H x W),
where H and W are expected to be at least 224.
The images have to be loaded in to a range of [0, 1] and then normalized
using ``mean = [0.485, 0.456, 0.406]`` and ``std = [0.229, 0.224, 0.225]``.
You can use the following transform to normalize::

    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

An example of such normalization can be found in the imagenet example
`here <https://github.com/pytorch/examples/blob/42e5b996718797e45c46a25c55b031e6768f8440/imagenet/main.py#L89-L101>`_

ImageNet 1-crop error rates (224x224)

================================  =============   =============
Network                           Top-1 error     Top-5 error
================================  =============   =============
AlexNet                           43.45           20.91
VGG-11                            30.98           11.37
VGG-13                            30.07           10.75
VGG-16                            28.41           9.62
VGG-19                            27.62           9.12
VGG-11 with batch normalization   29.62           10.19
VGG-13 with batch normalization   28.45           9.63
VGG-16 with batch normalization   26.63           8.50
VGG-19 with batch normalization   25.76           8.15
ResNet-18                         30.24           10.92
ResNet-34                         26.70           8.58
ResNet-50                         23.85           7.13
ResNet-101                        22.63           6.44
ResNet-152                        21.69           5.94
SqueezeNet 1.0                    41.90           19.58
SqueezeNet 1.1                    41.81           19.38
Densenet-121                      25.35           7.83
Densenet-169                      24.00           7.00
Densenet-201                      22.80           6.43
Densenet-161                      22.35           6.20
Inception v3                      22.55           6.44
115
GoogleNet                         30.22           10.47
Bar's avatar
Bar committed
116
ShuffleNet V2                     30.64           11.68
117
118
119
MobileNet V2                      28.12           9.71
ResNeXt-50-32x4d                  22.38           6.30
ResNeXt-101-32x8d                 20.69           5.47
120
121
Wide ResNet-50-2                  21.49           5.91
Wide ResNet-101-2                 21.16           5.72
122
MNASNet 1.0                       26.49           8.456
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
123
124
125
126
127
128
129
130
131
================================  =============   =============


.. _AlexNet: https://arxiv.org/abs/1404.5997
.. _VGG: https://arxiv.org/abs/1409.1556
.. _ResNet: https://arxiv.org/abs/1512.03385
.. _SqueezeNet: https://arxiv.org/abs/1602.07360
.. _DenseNet: https://arxiv.org/abs/1608.06993
.. _Inception: https://arxiv.org/abs/1512.00567
132
.. _GoogLeNet: https://arxiv.org/abs/1409.4842
Bar's avatar
Bar committed
133
.. _ShuffleNet: https://arxiv.org/abs/1807.11164
134
135
.. _MobileNet: https://arxiv.org/abs/1801.04381
.. _ResNeXt: https://arxiv.org/abs/1611.05431
136
.. _MNASNet: https://arxiv.org/abs/1807.11626
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
137
138
139

.. currentmodule:: torchvision.models

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
Alexnet
-------

.. autofunction:: alexnet

VGG
---

.. autofunction:: vgg11
.. autofunction:: vgg11_bn
.. autofunction:: vgg13
.. autofunction:: vgg13_bn
.. autofunction:: vgg16
.. autofunction:: vgg16_bn
.. autofunction:: vgg19
.. autofunction:: vgg19_bn


ResNet
------

.. autofunction:: resnet18
.. autofunction:: resnet34
.. autofunction:: resnet50
.. autofunction:: resnet101
.. autofunction:: resnet152

SqueezeNet
----------

.. autofunction:: squeezenet1_0
.. autofunction:: squeezenet1_1

Sangwhan Moon's avatar
Sangwhan Moon committed
173
DenseNet
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
174
175
176
177
178
179
180
181
182
183
184
185
---------

.. autofunction:: densenet121
.. autofunction:: densenet169
.. autofunction:: densenet161
.. autofunction:: densenet201

Inception v3
------------

.. autofunction:: inception_v3

186
187
188
189
190
GoogLeNet
------------

.. autofunction:: googlenet

Bar's avatar
Bar committed
191
192
193
ShuffleNet v2
-------------

194
195
196
197
.. autofunction:: shufflenet_v2_x0_5
.. autofunction:: shufflenet_v2_x1_0
.. autofunction:: shufflenet_v2_x1_5
.. autofunction:: shufflenet_v2_x2_0
Bar's avatar
Bar committed
198

199
200
201
202
203
204
MobileNet v2
-------------

.. autofunction:: mobilenet_v2

ResNext
205
-------
206
207
208
209

.. autofunction:: resnext50_32x4d
.. autofunction:: resnext101_32x8d

210
211
212
213
214
215
Wide ResNet
-----------

.. autofunction:: wide_resnet50_2
.. autofunction:: wide_resnet101_2

216
217
218
219
220
221
222
223
MNASNet
--------

.. autofunction:: mnasnet0_5
.. autofunction:: mnasnet0_75
.. autofunction:: mnasnet1_0
.. autofunction:: mnasnet1_3

224
225
226
227

Semantic Segmentation
=====================

228
229
230
231
232
233
The models subpackage contains definitions for the following model
architectures for semantic segmentation:

- `FCN ResNet101 <https://arxiv.org/abs/1411.4038>`_
- `DeepLabV3 ResNet101 <https://arxiv.org/abs/1706.05587>`_

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
As with image classification models, all pre-trained models expect input images normalized in the same way.
The images have to be loaded in to a range of ``[0, 1]`` and then normalized using
``mean = [0.485, 0.456, 0.406]`` and ``std = [0.229, 0.224, 0.225]``.
They have been trained on images resized such that their minimum size is 520.

The pre-trained models have been trained on a subset of COCO train2017, on the 20 categories that are
present in the Pascal VOC dataset. You can see more information on how the subset has been selected in
``references/segmentation/coco_utils.py``. The classes that the pre-trained model outputs are the following,
in order:

  .. code-block:: python

      ['__background__', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus',
       'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike',
       'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']

The accuracies of the pre-trained models evaluated on COCO val2017 are as follows

================================  =============  ====================
Network                           mean IoU       global pixelwise acc
================================  =============  ====================
FCN ResNet101                     63.7           91.9
DeepLabV3 ResNet101               67.4           92.4
================================  =============  ====================


Fully Convolutional Networks
----------------------------

.. autofunction:: torchvision.models.segmentation.fcn_resnet50
.. autofunction:: torchvision.models.segmentation.fcn_resnet101


DeepLabV3
---------

.. autofunction:: torchvision.models.segmentation.deeplabv3_resnet50
.. autofunction:: torchvision.models.segmentation.deeplabv3_resnet101


Object Detection, Instance Segmentation and Person Keypoint Detection
=====================================================================

277
278
279
280
281
282
The models subpackage contains definitions for the following model
architectures for detection:

- `Faster R-CNN ResNet-50 FPN <https://arxiv.org/abs/1506.01497>`_
- `Mask R-CNN ResNet-50 FPN <https://arxiv.org/abs/1703.06870>`_

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
The pre-trained models for detection, instance segmentation and
keypoint detection are initialized with the classification models
in torchvision.

The models expect a list of ``Tensor[C, H, W]``, in the range ``0-1``.
The models internally resize the images so that they have a minimum size
of ``800``. This option can be changed by passing the option ``min_size``
to the constructor of the models.


For object detection and instance segmentation, the pre-trained
models return the predictions of the following classes:

  .. code-block:: python

      COCO_INSTANCE_CATEGORY_NAMES = [
          '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
300
301
          'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
          'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
302
          'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
303
304
305
306
307
308
309
310
          'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
          'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
          'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
          'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
          'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
          'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
          'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
          'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
      ]


Here are the summary of the accuracies for the models trained on
the instances set of COCO train2017 and evaluated on COCO val2017.

================================  =======  ========  ===========
Network                           box AP   mask AP   keypoint AP
================================  =======  ========  ===========
Faster R-CNN ResNet-50 FPN        37.0     -         -
Mask R-CNN ResNet-50 FPN          37.9     34.6      -
================================  =======  ========  ===========

For person keypoint detection, the accuracies for the pre-trained
models are as follows

================================  =======  ========  ===========
Network                           box AP   mask AP   keypoint AP
================================  =======  ========  ===========
Keypoint R-CNN ResNet-50 FPN      54.6     -         65.0
================================  =======  ========  ===========

For person keypoint detection, the pre-trained model return the
keypoints in the following order:

  .. code-block:: python

    COCO_PERSON_KEYPOINT_NAMES = [
        'nose',
        'left_eye',
        'right_eye',
        'left_ear',
        'right_ear',
        'left_shoulder',
        'right_shoulder',
        'left_elbow',
        'right_elbow',
        'left_wrist',
        'right_wrist',
        'left_hip',
        'right_hip',
        'left_knee',
        'right_knee',
        'left_ankle',
        'right_ankle'
    ]

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
Runtime characteristics
-----------------------

The implementations of the models for object detection, instance segmentation
and keypoint detection are efficient.

In the following table, we use 8 V100 GPUs, with CUDA 10.0 and CUDNN 7.4 to
report the results. During training, we use a batch size of 2 per GPU, and
during testing a batch size of 1 is used.

For test time, we report the time for the model evaluation and postprocessing
(including mask pasting in image), but not the time for computing the
precision-recall.

==============================  ===================  ==================  ===========
Network                         train time (s / it)  test time (s / it)  memory (GB)
==============================  ===================  ==================  ===========
Faster R-CNN ResNet-50 FPN      0.2288               0.0590              5.2
Mask R-CNN ResNet-50 FPN        0.2728               0.0903              5.4
Keypoint R-CNN ResNet-50 FPN    0.3789               0.1242              6.8
==============================  ===================  ==================  ===========
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397


Faster R-CNN
------------

.. autofunction:: torchvision.models.detection.fasterrcnn_resnet50_fpn


Mask R-CNN
----------

.. autofunction:: torchvision.models.detection.maskrcnn_resnet50_fpn


Keypoint R-CNN
--------------

.. autofunction:: torchvision.models.detection.keypointrcnn_resnet50_fpn