transforms.rst 17.7 KB
Newer Older
1
2
.. _transforms:

3
4
Transforming and augmenting images
==================================
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
5
6
7

.. currentmodule:: torchvision.transforms

Nicolas Hug's avatar
Nicolas Hug committed
8
9
10
11
Torchvision supports common computer vision transformations in the
``torchvision.transforms`` and ``torchvision.transforms.v2`` modules. Transforms
can be used to transform or augment data for training or inference of different
tasks (image classification, detection, segmentation, video classification).
12

Nicolas Hug's avatar
Nicolas Hug committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
.. code:: python

    # Image Classification
    import torch
    from torchvision.transforms import v2

    H, W = 32, 32
    img = torch.randint(0, 256, size=(3, H, W), dtype=torch.uint8)

    transforms = v2.Compose([
        v2.RandomResizedCrop(size=(224, 224), antialias=True),
        v2.RandomHorizontalFlip(p=0.5),
        v2.ToDtype(torch.float32, scale=True),
        v2.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])
    img = transforms(img)

.. code:: python

    # Detection (re-using imports and transforms from above)
    from torchvision import datapoints

    img = torch.randint(0, 256, size=(3, H, W), dtype=torch.uint8)
    bboxes = torch.randint(0, H // 2, size=(3, 4))
    bboxes[:, 2:] += bboxes[:, :2]
    bboxes = datapoints.BoundingBoxes(bboxes, format="XYXY", canvas_size=(H, W))

    # The same transforms can be used!
    img, bboxes = transforms(img, bboxes)
    # And you can pass arbitrary input structures
    output_dict = transforms({"image": img, "bboxes": bboxes})

Transforms are typically passed as the ``transform`` or ``transforms`` argument
to the :ref:`Datasets <datasets>`.

.. TODO: add link to getting started guide here.

Supported input types and conventions
-------------------------------------
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
52

53
Most transformations accept both `PIL <https://pillow.readthedocs.io>`_ images
Nicolas Hug's avatar
Nicolas Hug committed
54
55
56
57
58
59
60
61
62
63
64
65
and tensor images. The result of both backends (PIL or Tensors) should be very
close. In general, we recommend relying on the tensor backend :ref:`for
performance <transforms_perf>`.  The :ref:`conversion transforms
<conversion_transforms>` may be used to convert to and from PIL images, or for
converting dtypes and ranges.

Tensor image are expected to be of shape ``(C, H, W)``, where ``C`` is the
number of channels, and ``H`` and ``W`` refer to height and width. Most
transforms support batched tensor input. A batch of Tensor images is a tensor of
shape ``(N, C, H, W)``, where ``N`` is a number of images in the batch. The
:ref:`v2 <v1_or_v2>` transforms generally accept an arbitrary number of leading
dimensions ``(..., C, H, W)`` and can handle batched images or batched videos.
66

Nicolas Hug's avatar
Nicolas Hug committed
67
68
69
70
.. _range_and_dtype:

Dtype and expected value range
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
71

72
The expected range of the values of a tensor image is implicitly defined by
73
the tensor dtype. Tensor images with a float dtype are expected to have
Nicolas Hug's avatar
Nicolas Hug committed
74
values in ``[0, 1]``. Tensor images with an integer dtype are expected to
75
have values in ``[0, MAX_DTYPE]`` where ``MAX_DTYPE`` is the largest value
Nicolas Hug's avatar
Nicolas Hug committed
76
77
that can be represented in that dtype. Typically, images of dtype
``torch.uint8`` are expected to have values in ``[0, 255]``.
78

Nicolas Hug's avatar
Nicolas Hug committed
79
80
Use :class:`~torchvision.transforms.v2.ToDtype` to convert both the dtype and
range of the inputs.
81

Nicolas Hug's avatar
Nicolas Hug committed
82
.. _v1_or_v2:
83

Nicolas Hug's avatar
Nicolas Hug committed
84
85
V1 or V2? Which one should I use?
---------------------------------
86

Nicolas Hug's avatar
Nicolas Hug committed
87
88
89
**TL;DR** We recommending using the ``torchvision.transforms.v2`` transforms
instead of those in ``torchvision.transforms``. They're faster and they can do
more things. Just change the import and you should be good to go.
90

Nicolas Hug's avatar
Nicolas Hug committed
91
92
93
In Torchvision 0.15 (March 2023), we released a new set of transforms available
in the ``torchvision.transforms.v2`` namespace. These transforms have a lot of
advantages compared to the v1 ones (in ``torchvision.transforms``):
94

Nicolas Hug's avatar
Nicolas Hug committed
95
96
97
98
99
100
101
102
- They can transform images **but also** bounding boxes, masks, or videos. This
  provides support for tasks beyond image classification: detection, segmentation,
  video classification, etc.
- They support more transforms like :class:`~torchvision.transforms.v2.CutMix`
  and :class:`~torchvision.transforms.v2.MixUp`.
- They're :ref:`faster <transforms_perf>`.
- They support arbitrary input structures (dicts, lists, tuples, etc.).
- Future improvements and features will be added to the v2 transforms only.
103

Nicolas Hug's avatar
Nicolas Hug committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
.. TODO: Add link to e2e example for first bullet point.

These transforms are **fully backward compatible** with the v1 ones, so if
you're already using tranforms from ``torchvision.transforms``, all you need to
do to is to update the import to ``torchvision.transforms.v2``. In terms of
output, there might be negligible differences due to implementation differences.

To learn more about the v2 transforms, check out
:ref:`sphx_glr_auto_examples_v2_transforms_plot_transforms_v2.py`.

.. TODO: make sure link is still good!!

.. note::

    The v2 transforms are still BETA, but at this point we do not expect
    disruptive changes to be made to their public APIs. We're planning to make
    them fully stable in version 0.17. Please submit any feedback you may have
    `here <https://github.com/pytorch/vision/issues/6753>`_.

.. _transforms_perf:

Performance considerations
--------------------------

We recommend the following guidelines to get the best performance out of the
transforms:

- Rely on the v2 transforms from ``torchvision.transforms.v2``
- Use tensors instead of PIL images
- Use ``torch.uint8`` dtype, especially for resizing
- Resize with bilinear or bicubic mode

This is what a typical transform pipeline could look like:

.. code:: python

    from torchvision.transforms import v2
    transforms = v2.Compose([
        v2.ToImage(),  # Convert to tensor, only needed if you had a PIL image
        v2.ToDtype(torch.uint8, scale=True),  # optional, most input are already uint8 at this point
        # ...
        v2.RandomResizedCrop(size=(224, 224), antialias=True),  # Or Resize(antialias=True)
        # ...
        v2.ToDtype(torch.float32, scale=True),  # Normalize expects float input
        v2.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

The above should give you the best performance in a typical training environment
that relies on the :class:`torch.utils.data.DataLoader` with ``num_workers >
0``.

Transforms tend to be sensitive to the input strides / memory layout. Some
transforms will be faster with channels-first images while others prefer
channels-last. You may want to experiment a bit if you're chasing the very
best performance. Using :func:`torch.compile` on individual transforms may
also help factoring out the memory layout variable (e.g. on
:class:`~torchvision.transforms.v2.Normalize`). Note that we're talking about
**memory layout**, not tensor shape.

Note that resize transforms like :class:`~torchvision.transforms.v2.Resize`
and :class:`~torchvision.transforms.v2.RandomResizedCrop` typically prefer
channels-last input and tend **not** to benefit from :func:`torch.compile` at
this time.

.. _functional_transforms:
169

Nicolas Hug's avatar
Nicolas Hug committed
170
171
Transform classes, functionals, and kernels
-------------------------------------------
172

Nicolas Hug's avatar
Nicolas Hug committed
173
174
175
176
177
178
Transforms are available as classes like
:class:`~torchvision.transforms.v2.Resize`, but also as functionals like
:func:`~torchvision.transforms.v2.functional.resize` in the
``torchvision.transforms.v2.functional`` namespace.
This is very much like the :mod:`torch.nn` package which defines both classes
and functional equivalents in :mod:`torch.nn.functional`.
179

Nicolas Hug's avatar
Nicolas Hug committed
180
181
182
The functionals support PIL images, pure tensors, or :ref:`datapoints
<datapoints>`, e.g. both ``resize(image_tensor)`` and ``resize(bboxes)`` are
valid.
183

Nicolas Hug's avatar
Nicolas Hug committed
184
185
186
187
188
189
190
191
.. note::

    Random transforms like :class:`~torchvision.transforms.v2.RandomCrop` will
    randomly sample some parameter each time they're called. Their functional
    counterpart (:func:`~torchvision.transforms.v2.functional.crop`) does not do
    any kind of random sampling and thus have a slighlty different
    parametrization. The ``get_params()`` class method of the transforms class
    can be used to perform parameter sampling when using the functional APIs.
192
193


Nicolas Hug's avatar
Nicolas Hug committed
194
195
196
197
198
199
200
201
202
203
The ``torchvision.transforms.v2.functional`` namespace also contains what we
call the "kernels". These are the low-level functions that implement the
core functionalities for specific types, e.g. ``resize_bounding_boxes`` or
```resized_crop_mask``. They are public, although not documented. Check the
`code
<https://github.com/pytorch/vision/blob/main/torchvision/transforms/v2/functional/__init__.py>`_
to see which ones are available (note that those starting with a leading
underscore are **not** public!). Kernels are only really useful if you want
:ref:`torchscript support <transforms_torchscript>` for types like bounding
boxes or masks.
204

Nicolas Hug's avatar
Nicolas Hug committed
205
.. _transforms_torchscript:
206

Nicolas Hug's avatar
Nicolas Hug committed
207
208
Torchscript support
-------------------
209

Nicolas Hug's avatar
Nicolas Hug committed
210
211
Most transform classes and functionals support torchscript. For composing
transforms, use :class:`torch.nn.Sequential` instead of ``Compose``:
212
213
214
215

.. code:: python

    transforms = torch.nn.Sequential(
Nicolas Hug's avatar
Nicolas Hug committed
216
217
        CenterCrop(10),
        Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
218
219
220
    )
    scripted_transforms = torch.jit.script(transforms)

Nicolas Hug's avatar
Nicolas Hug committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
.. warning::

    v2 transforms support torchscript, but if you call ``torch.jit.script()`` on
    a v2 **class** transform, you'll actually end up with its (scripted) v1
    equivalent.  This may lead to slightly different results between the
    scripted and eager executions due to implementation differences between v1
    and v2.

    If you really need torchscript support for the v2 tranforms, we recommend
    scripting the **functionals** from the
    ``torchvision.transforms.v2.functional`` namespace to avoid surprises.


Also note that the functionals only support torchscript for pure tensors, which
are always treated as images. If you need torchscript support for other types
like bounding boxes or masks, you can rely on the :ref:`low-level kernels
<functional_transforms>`.
238
239
240

For any custom transformations to be used with ``torch.jit.script``, they should be derived from ``torch.nn.Module``.

Nicolas Hug's avatar
Nicolas Hug committed
241
242
V2 API reference - Recommended
------------------------------
243

244
Geometry
Nicolas Hug's avatar
Nicolas Hug committed
245
246
247
248
^^^^^^^^

Resizing
""""""""
249

250
251
252
253
.. autosummary::
    :toctree: generated/
    :template: class.rst

254
    v2.Resize
255
256
257
    v2.ScaleJitter
    v2.RandomShortestSize
    v2.RandomResize
Nicolas Hug's avatar
Nicolas Hug committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

Functionals

.. autosummary::
    :toctree: generated/
    :template: function.rst

    v2.functional.resize

Cropping
""""""""

.. autosummary::
    :toctree: generated/
    :template: class.rst

274
275
    v2.RandomCrop
    v2.RandomResizedCrop
276
    v2.RandomIoUCrop
277
278
279
    v2.CenterCrop
    v2.FiveCrop
    v2.TenCrop
Nicolas Hug's avatar
Nicolas Hug committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

Functionals

.. autosummary::
    :toctree: generated/
    :template: function.rst

    v2.functional.crop
    v2.functional.resized_crop
    v2.functional.ten_crop
    v2.functional.center_crop
    v2.functional.five_crop

Others
""""""

.. autosummary::
    :toctree: generated/
    :template: class.rst

    v2.RandomHorizontalFlip
    v2.RandomVerticalFlip
302
    v2.Pad
303
304
    v2.RandomZoomOut
    v2.RandomRotation
305
306
    v2.RandomAffine
    v2.RandomPerspective
307
    v2.ElasticTransform
308

Nicolas Hug's avatar
Nicolas Hug committed
309
310
311
312
313
314
315
316
317
318
319
320
321
Functionals

.. autosummary::
    :toctree: generated/
    :template: function.rst

    v2.functional.horizontal_flip
    v2.functional.vertical_flip
    v2.functional.pad
    v2.functional.rotate
    v2.functional.affine
    v2.functional.perspective
    v2.functional.elastic
322

323
Color
Nicolas Hug's avatar
Nicolas Hug committed
324
^^^^^
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
325

326
327
328
329
.. autosummary::
    :toctree: generated/
    :template: class.rst

330
    v2.ColorJitter
331
    v2.RandomChannelPermutation
332
    v2.RandomPhotometricDistort
333
334
335
336
337
338
339
340
341
    v2.Grayscale
    v2.RandomGrayscale
    v2.GaussianBlur
    v2.RandomInvert
    v2.RandomPosterize
    v2.RandomSolarize
    v2.RandomAdjustSharpness
    v2.RandomAutocontrast
    v2.RandomEqualize
342

Nicolas Hug's avatar
Nicolas Hug committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
Functionals

.. autosummary::
    :toctree: generated/
    :template: function.rst

    v2.functional.permute_channels
    v2.functional.rgb_to_grayscale
    v2.functional.to_grayscale
    v2.functional.gaussian_blur
    v2.functional.invert
    v2.functional.posterize
    v2.functional.solarize
    v2.functional.adjust_sharpness
    v2.functional.autocontrast
    v2.functional.adjust_contrast
    v2.functional.equalize
    v2.functional.adjust_brightness
    v2.functional.adjust_saturation
    v2.functional.adjust_hue
    v2.functional.adjust_gamma


366
Composition
Nicolas Hug's avatar
Nicolas Hug committed
367
^^^^^^^^^^^
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
368

369
370
371
.. autosummary::
    :toctree: generated/
    :template: class.rst
vfdev's avatar
vfdev committed
372

373
374
375
376
    v2.Compose
    v2.RandomApply
    v2.RandomChoice
    v2.RandomOrder
vfdev's avatar
vfdev committed
377

378
Miscellaneous
Nicolas Hug's avatar
Nicolas Hug committed
379
^^^^^^^^^^^^^
vfdev's avatar
vfdev committed
380

381
382
383
.. autosummary::
    :toctree: generated/
    :template: class.rst
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
384

385
386
387
388
    v2.LinearTransformation
    v2.Normalize
    v2.RandomErasing
    v2.Lambda
389
390
    v2.SanitizeBoundingBoxes
    v2.ClampBoundingBoxes
391
    v2.UniformTemporalSubsample
vfdev's avatar
vfdev committed
392

Nicolas Hug's avatar
Nicolas Hug committed
393
394
395
396
397
398
399
400
401
402
403
Functionals

.. autosummary::
    :toctree: generated/
    :template: function.rst

    v2.functional.normalize
    v2.functional.erase
    v2.functional.clamp_bounding_boxes
    v2.functional.uniform_temporal_subsample

404
.. _conversion_transforms:
405

406
Conversion
Nicolas Hug's avatar
Nicolas Hug committed
407
^^^^^^^^^^
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
408

Nicolas Hug's avatar
Nicolas Hug committed
409
410
411
412
.. note::
    Beware, some of these conversion transforms below will scale the values
    while performing the conversion, while some may not do any scaling. By
    scaling, we mean e.g. that a ``uint8`` -> ``float32`` would map the [0,
Nicolas Hug's avatar
Nicolas Hug committed
413
414
    255] range into [0, 1] (and vice-versa). See :ref:`range_and_dtype`.

415
416
417
.. autosummary::
    :toctree: generated/
    :template: class.rst
vfdev's avatar
vfdev committed
418

419
    v2.ToImage
Nicolas Hug's avatar
Nicolas Hug committed
420
421
422
    v2.ToPureTensor
    v2.PILToTensor
    v2.ToPILImage
Nicolas Hug's avatar
Nicolas Hug committed
423
    v2.ToDtype
vfdev's avatar
vfdev committed
424
    v2.ConvertBoundingBoxFormat
Nicolas Hug's avatar
Nicolas Hug committed
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

functionals

.. autosummary::
    :toctree: generated/
    :template: functional.rst

    v2.functional.to_image
    v2.functional.pil_to_tensor
    v2.functional.to_pil_image
    v2.functional.to_dtype
    v2.functional.convert_bounding_box_format


Deprecated

.. autosummary::
    :toctree: generated/
    :template: class.rst

    v2.ToTensor
    v2.functional.to_tensor
    v2.ConvertImageDtype
    v2.functional.convert_image_dtype
Nicolas Hug's avatar
Nicolas Hug committed
449

450
Auto-Augmentation
Nicolas Hug's avatar
Nicolas Hug committed
451
^^^^^^^^^^^^^^^^^
452
453
454
455
456
457
458

`AutoAugment <https://arxiv.org/pdf/1805.09501.pdf>`_ is a common Data Augmentation technique that can improve the accuracy of Image Classification models.
Though the data augmentation policies are directly linked to their trained dataset, empirical studies show that
ImageNet policies provide significant improvements when applied to other datasets.
In TorchVision we implemented 3 policies learned on the following datasets: ImageNet, CIFAR10 and SVHN.
The new transform can be used standalone or mixed-and-matched with existing transforms:

459
460
461
.. autosummary::
    :toctree: generated/
    :template: class.rst
462

463
464
465
466
    v2.AutoAugment
    v2.RandAugment
    v2.TrivialAugmentWide
    v2.AugMix
467

Nicolas Hug's avatar
Nicolas Hug committed
468

469
CutMix - MixUp
Nicolas Hug's avatar
Nicolas Hug committed
470
^^^^^^^^^^^^^^
471

472
CutMix and MixUp are special transforms that
473
are meant to be used on batches rather than on individual images, because they
474
475
are combining pairs of images together. These can be used after the dataloader
(once the samples are batched), or part of a collation function. See
476
:ref:`sphx_glr_auto_examples_v2_transforms_plot_cutmix_mixup.py` for detailed usage examples.
477
478
479
480
481

.. autosummary::
    :toctree: generated/
    :template: class.rst

Nicolas Hug's avatar
Nicolas Hug committed
482
483
    v2.CutMix
    v2.MixUp
484

Nicolas Hug's avatar
Nicolas Hug committed
485
486
Developer tools
^^^^^^^^^^^^^^^
487

Nicolas Hug's avatar
Nicolas Hug committed
488
489
490
.. autosummary::
    :toctree: generated/
    :template: function.rst
491

Nicolas Hug's avatar
Nicolas Hug committed
492
    v2.functional.register_kernel
493

494

Nicolas Hug's avatar
Nicolas Hug committed
495
496
V1 API Reference
----------------
497

Nicolas Hug's avatar
Nicolas Hug committed
498
499
Geometry
^^^^^^^^
500

Nicolas Hug's avatar
Nicolas Hug committed
501
502
503
.. autosummary::
    :toctree: generated/
    :template: class.rst
504

Nicolas Hug's avatar
Nicolas Hug committed
505
506
507
508
509
510
511
512
513
514
515
516
517
    Resize
    RandomCrop
    RandomResizedCrop
    CenterCrop
    FiveCrop
    TenCrop
    Pad
    RandomRotation
    RandomAffine
    RandomPerspective
    ElasticTransform
    RandomHorizontalFlip
    RandomVerticalFlip
518
519


Nicolas Hug's avatar
Nicolas Hug committed
520
521
Color
^^^^^
522

Nicolas Hug's avatar
Nicolas Hug committed
523
524
525
.. autosummary::
    :toctree: generated/
    :template: class.rst
526

Nicolas Hug's avatar
Nicolas Hug committed
527
528
529
530
531
532
533
534
535
536
    ColorJitter
    Grayscale
    RandomGrayscale
    GaussianBlur
    RandomInvert
    RandomPosterize
    RandomSolarize
    RandomAdjustSharpness
    RandomAutocontrast
    RandomEqualize
537

Nicolas Hug's avatar
Nicolas Hug committed
538
539
Composition
^^^^^^^^^^^
540

Nicolas Hug's avatar
Nicolas Hug committed
541
542
543
.. autosummary::
    :toctree: generated/
    :template: class.rst
544

Nicolas Hug's avatar
Nicolas Hug committed
545
546
547
548
    Compose
    RandomApply
    RandomChoice
    RandomOrder
549

Nicolas Hug's avatar
Nicolas Hug committed
550
551
Miscellaneous
^^^^^^^^^^^^^
552

Nicolas Hug's avatar
Nicolas Hug committed
553
554
555
.. autosummary::
    :toctree: generated/
    :template: class.rst
556

Nicolas Hug's avatar
Nicolas Hug committed
557
558
559
560
    LinearTransformation
    Normalize
    RandomErasing
    Lambda
561

Nicolas Hug's avatar
Nicolas Hug committed
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
Conversion
^^^^^^^^^^

.. note::
    Beware, some of these conversion transforms below will scale the values
    while performing the conversion, while some may not do any scaling. By
    scaling, we mean e.g. that a ``uint8`` -> ``float32`` would map the [0,
    255] range into [0, 1] (and vice-versa). See :ref:`range_and_dtype`.
    
.. autosummary::
    :toctree: generated/
    :template: class.rst

    ToPILImage
    ToTensor
    PILToTensor
    ConvertImageDtype

Auto-Augmentation
^^^^^^^^^^^^^^^^^

`AutoAugment <https://arxiv.org/pdf/1805.09501.pdf>`_ is a common Data Augmentation technique that can improve the accuracy of Image Classification models.
Though the data augmentation policies are directly linked to their trained dataset, empirical studies show that
ImageNet policies provide significant improvements when applied to other datasets.
In TorchVision we implemented 3 policies learned on the following datasets: ImageNet, CIFAR10 and SVHN.
The new transform can be used standalone or mixed-and-matched with existing transforms:

.. autosummary::
    :toctree: generated/
    :template: class.rst

    AutoAugmentPolicy
    AutoAugment
    RandAugment
    TrivialAugmentWide
    AugMix



Functional Transforms
^^^^^^^^^^^^^^^^^^^^^

.. currentmodule:: torchvision.transforms.functional
605

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
.. autosummary::
    :toctree: generated/
    :template: function.rst

    adjust_brightness
    adjust_contrast
    adjust_gamma
    adjust_hue
    adjust_saturation
    adjust_sharpness
    affine
    autocontrast
    center_crop
    convert_image_dtype
    crop
    equalize
    erase
    five_crop
    gaussian_blur
625
    get_dimensions
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
    get_image_num_channels
    get_image_size
    hflip
    invert
    normalize
    pad
    perspective
    pil_to_tensor
    posterize
    resize
    resized_crop
    rgb_to_grayscale
    rotate
    solarize
    ten_crop
    to_grayscale
    to_pil_image
    to_tensor
    vflip